Parameter estimation χ^2 and likelihood

- Introduction to estimation
- Properties of χ^2 , ML estimators
- Measuring and interpreting Goodness-Of-Fit
- Numerical issues in fitting
- Understanding MINUIT
- Mitigating fit stability problems
- Bounding fit parameters
- Simultaneous fitting
- Multidimensional fitting
- Fit validation studies
 - Fit validity issues at low statistics
- Toy Monte Carlo techniques

Parameter estimation – Introduction

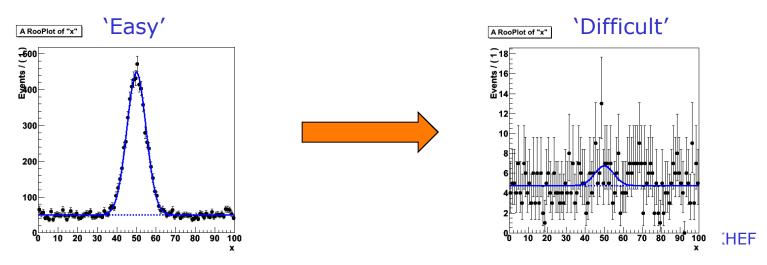


 Given the theoretical distribution parameters p, what can we say about the data

• Need a procedure to estimate p from D

Multiple methods

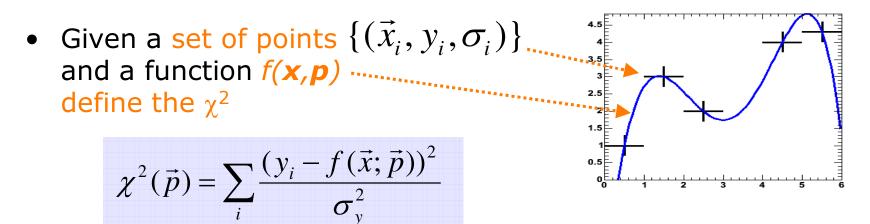
- Many ways to infer information on model (parameter) from data
 - $-\chi^2$ fit $\rightarrow p = 5.2 \pm 0.3$
 - Likelihood fit $\rightarrow p = 4.7 \pm 0.4$
 - Bayesian interval $\rightarrow p \in [4.5 5.9]$ at 68% credibility
 - − Frequentist interval \rightarrow p \in [4.4 5.8] at 68% confidence level
- When data is abundant, methods usually give consistent answers
- Issues and differences between methods arise when experimental result contains little information



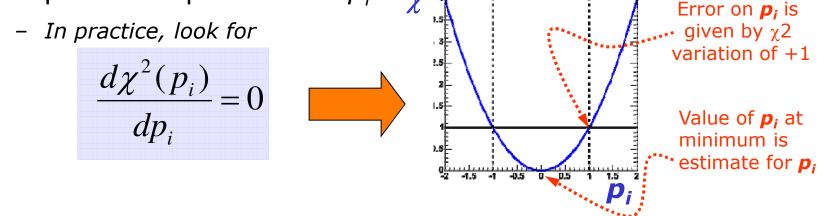
Multiple methods

- Many ways to infer information on model (parameter) from data
 - $-\chi^2 \text{ fit } \rightarrow p = 5.2 \pm 0.3$
 - Likelihood fit $\rightarrow p = 4.7 \pm 0.4$
 - − Bayesian interval \rightarrow p \in [4.5 5.9] at 68% credibility
 - − Frequentist interval \rightarrow p \in [4.4 5.8] at 68% confidence level
- Will first focus χ^2 and likelihood estimation procedures
 - Well known, often used
 - Explore assumptions, limitations
- In the next module focus on interpreting experiments with little information content

A well known estimator – the χ^2 fit



• Estimate parameters by minimizing the $\chi^2(p)$ with respect to all parameters $p_i \qquad \sqrt{2}$



• Well known: but why does it work? Is it always right? Does it always give the best possible error?

Basics – What is an estimator?

 An estimator is a procedure giving a value for a parameter or a property of a distribution as a function of the actual data values, i.e.

$$\hat{\mu}(x) = \frac{1}{N} \sum_{i} x_i$$
$$\hat{V}(x) = \frac{1}{N} \sum_{i} (x_i - \vec{\mu})^2$$

← Estimator of the mean

← Estimator of the variance

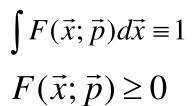
- A perfect estimator is
 - $\lim_{n\to\infty}(\hat{a}) = a$ - Consistent:
 - Unbiased With finite statistics you get the right answer on average
 - Efficient

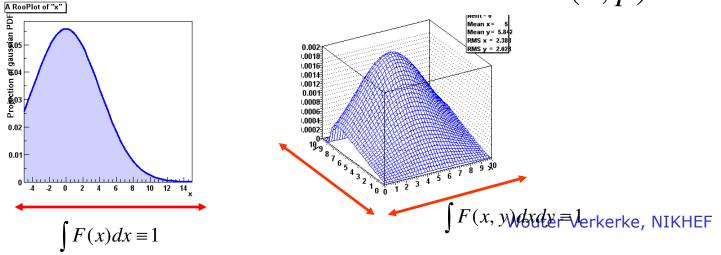
 $V(\hat{a}) = \langle (\hat{a} - \langle \hat{a} \rangle)^2 \rangle$ This is called the Minimum Variance Bound

- There are no perfect estimators!

How to model your data

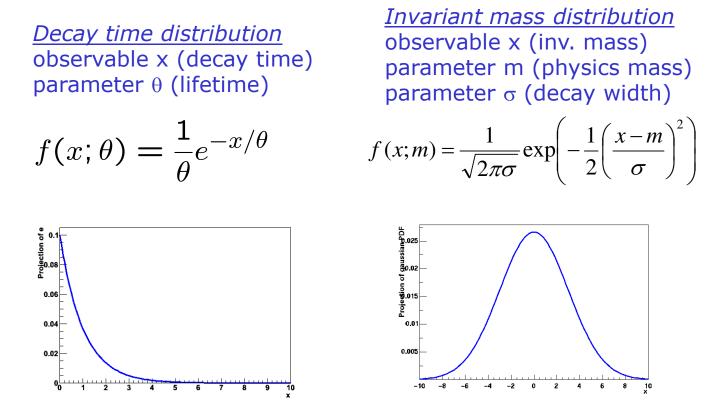
- Approach in χ^2 fit very empirical Function f(x,y) can be any arbitrary function
- Many techniques (Likelihood, Bayesian, Frequentist) require a more formal approach to data modeling through probability density functions
- We can characterize data distributions with *probability density functions* F(x;p)
 - x = observables (measured quantities)
 - **p** = parameters (model/theory parameters)
- Properties
 - Normalized to unity with respect to observable(s) x
 - Positive definite F(x;p)>=0 for all (x,p)





Probability density functions

- Properties
 - Parameters can be physics quantities of interest (life time, mass)



- Vehicle to infer physics parameters from data distributions

Wouter Verkerke, NIKHEF

Likelihood

- The *likelihood* is the value of a probability density function evaluated at the measured value of the observable(s)
 - Note that likelihood is only function of parameters, not of observables

$$L(\vec{p}) = F(\vec{x} \equiv \vec{x}_{data}; \vec{p})$$

 For a dataset that consists of multiple data points, the product is taken

$$L(\vec{p}) = \prod_{i} F(\vec{x}_{i}; \vec{p}), \text{ i.e. } L(\vec{p}) = F(x_{0}; \vec{p}) \cdot F(x_{1}; \vec{p}) \cdot F(x_{2}; \vec{p})...$$

Probability, Probability Density, and Likelihood

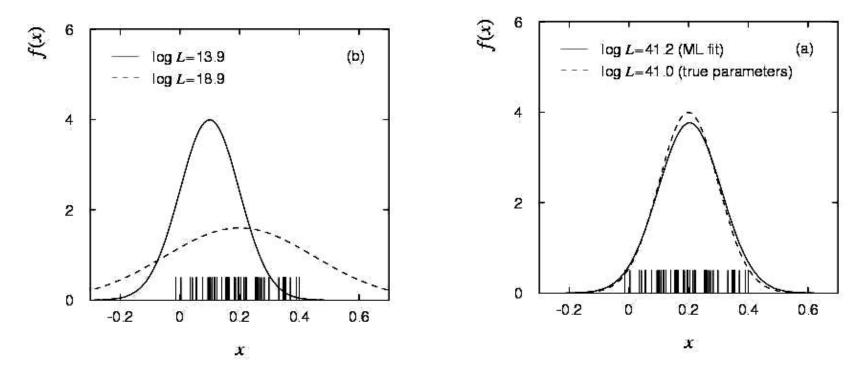
- Poisson *probability* $P(n|\mu) = \mu^n exp(-\mu)/n!$
- Gaussian probability density function (pdf) p(x|μ,σ): p(x|μ,σ)dx is differential of probability dP.
- In Poisson case, suppose n=3 is observed. Substituting n=3 into P(n|µ) yields the *likelihood function* $L(\mu) = \mu^3 exp(-\mu)/3!$
 - Key point is that $L(\mu)$ is *not* a probability density in μ . (It is not a density!)
 - Area under L is meaningless. That's why a new word, "likelihood", was invented for this function of the parameter(s), to distinguish from a pdf in the observable(s)! Many people nevertheless talk about 'integrating the likelihood' → confusion about what is done in Bayesian interval (more later)
 - Likelihood Ratios L(μ 1) /L(μ 2) are useful and frequently used.

Change of variable x, change of parameter $\boldsymbol{\theta}$

- For pdf p(x|θ) and (1-to-1) change of variable from x to y(x):
 p(y(x)|θ) = p(x|θ) / |dy/dx|.
- Jacobian modifies probability *density, guaranties that* $P(y(x_1) < y < y(x_2)) = P(x_1 < x < x_2)$, i.e., that
- Probabilities are invariant under change of variable x.
 - Mode of probability *density* is *not* invariant (so, e.g., criterion of maximum probability density is ill-defined).
 - Likelihood ratio is invariant under change of variable x. (Jacobian in denominator cancels that in numerator).
- For likelihood $L(\theta)$ and reparametrization from θ to $u(\theta)$: $L(\theta) = L(u(\theta))$ (!).
 - Likelihood L(θ) is invariant under reparametrization of parameter θ (reinforcing fact that L is *not* a pdf in θ).

Parameter estimation using Maximum Likelihood

Likelihood is high for values of *p* that result in distribution similar to data



 Define the maximum likelihood (ML) estimator(s) to be the parameter value(s) for which the likelihood is maximum.

Parameter estimation – Maximum likelihood

- Computational issues
 - For convenience the negative log of the Likelihood is often used as addition is numerically easier than multiplication

$$-\ln L(\vec{p}) = -\sum_{i} \ln F(\vec{x}_i; \vec{p})$$

- Maximizing L(p) equivalent to minimizing –log L(p)
- In practice, find point where derivative is zero

$$\frac{d\ln L(\vec{p})}{d\vec{p}}\bigg|_{p_i = \hat{p}_i} = 0$$

Variance on ML parameter estimates

• The ML estimator for the parameter variance is

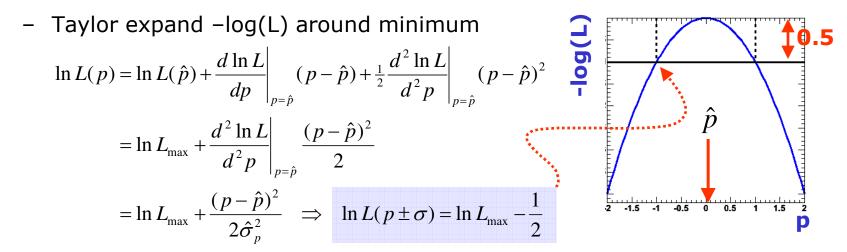
$$\hat{\sigma}(p)^2 = \hat{V}(p) = \left(\frac{d^2 \ln L}{d^2 p}\right)^{-1}$$

- I.e. variance is estimated from 2nd derivative of -log(L) at minimum
- Valid if estimator is
 efficient and unbiased! """

From Rao-Cramer-Frechet
inequality
$$V(\hat{p}) \ge \frac{1 + \frac{db}{dp}}{\left(\frac{d^2 \ln L}{d^2 p}\right)}$$

b = bias as function of p, inequality becomes equality in limit of efficient estimator

• Visual interpretation of variance estimate



Properties of Maximum Likelihood estimators

- In general, Maximum Likelihood estimators are
 - **Consistent** (gives right answer for $N \rightarrow \infty$)
 - **Mostly unbiased** (bias $\propto 1/N$, may need to worry at small N)
 - Efficient for large N (you get the smallest possible error)
 - Invariant: (a transformation of parameters will Not change your answer, e.g

 $(\hat{p})^2 = \widehat{(p^2)}$

for variance estimate is usually OK

- MLE efficiency theorem: the MLE will be unbiased and efficient if an unbiased efficient estimator exists
 - Proof not discussed here
 - Of course this does not guarantee that any MLE is unbiased and efficient for any given problem

More about maximum likelihood estimation

- It's not 'right' it is just sensible
- It does not give you the `most likely value of p' –
 it gives you the value of p for which this data is most likely
- Numeric methods are often needed to find the maximum of ln(L)
 - Especially difficult if there is >1 parameter
 - Standard tool in HEP: MINUIT (more about this later)
- Max. Likelihood does **not** give you a goodness-of-fit measure
 - If assumed F(x;p) is not capable of describing your data for any p, the procedure will not complain
 - The absolute value of L tells you nothing!

Relation between Likelihood and χ^2 estimators

• Properties of χ^2 estimator follow from properties of ML estimator using *Gaussian probability density functions*

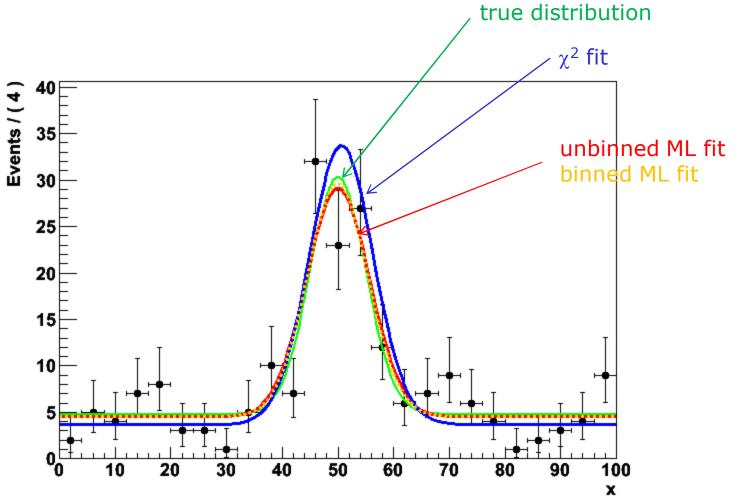
$$F(x_i, y_i, \sigma_i; \vec{p}) = \exp\left[-\left(\frac{y_i - f(x_i; \vec{p})}{\sigma_i}\right)^2\right]$$
Probability Density Function
in p for single data point $x_i(\sigma_i)$
and function $f(x_i; p)$
Take log,
Sum over all points $(\mathbf{x}_i, \mathbf{y}_i, \sigma_i)$

$$\ln L(\vec{p}) = -\frac{1}{2} \sum_i \left(\frac{y_i - f(x_i; \vec{p})}{\sigma_i}\right) = -\frac{1}{2} \chi^2$$
The Likelihood function in p
for given points $x_i(\sigma_i)$
and function $f(x_i; p)$

- The χ^2 estimator follows from ML estimator, i.e it is
 - Efficient, consistent, bias 1/N, invariant,
 - But only in the limit that the error on x_i is truly Gaussian
 - i.e. need $n_i > 10$ if y_i follows a Poisson distribution
- Bonus: Goodness-of-fit measure $\chi^2\approx 1$ per d.o.f

Example of χ^2 vs ML fit

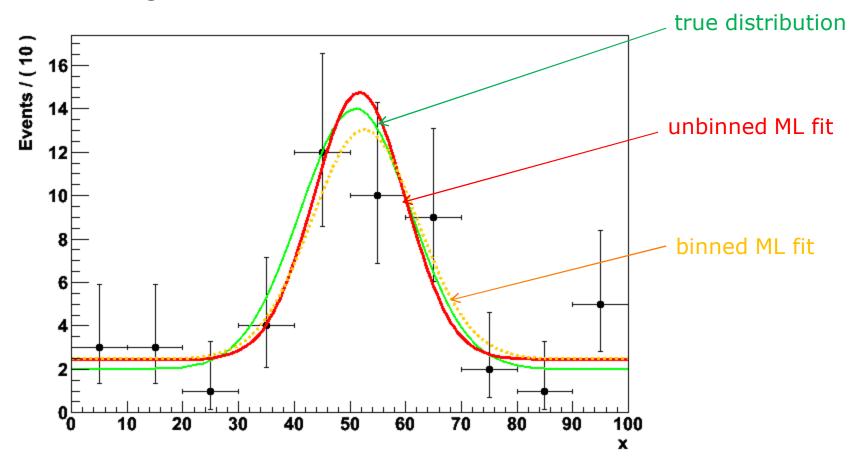
• Example with many low statistics bins



Wouter Verkerke, NIKHEF

Example of binned vs unbinned ML fit

• Lowering number of bins and number of events...



Proper way to study bias, precision is with toy MC study
 → at the end of this module
 Wouter Verkerke, NIKHEF

Maximum Likelihood or χ^2 – What should you use?

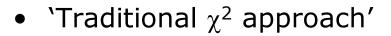
- χ^2 fit is fastest, easiest
 - Works fine at high statistics
 - Gives absolute goodness-of-fit indication
 - Make (incorrect) Gaussian error assumption on low statistics bins
 - Has bias proportional to 1/N
 - Misses information with feature size < bin size
- Full Maximum Likelihood estimators most robust
 - No Gaussian assumption made at low statistics
 - No information lost due to binning
 - Gives best error of all methods (especially at low statistics)
 - No intrinsic goodness-of-fit measure, i.e. no way to tell if 'best' is actually 'pretty bad'
 - Has bias proportional to 1/N
 - Can be computationally expensive for large N
- Binned Maximum Likelihood in between
 - Much faster than full Maximum Likihood
 - Correct Poisson treatment of low statistics bins
 - Misses information with feature size < bin size
 - Has bias proportional to 1/N

$$-\ln L(p)_{\text{binned}} = \sum_{\text{bins}} n_{\text{bin}} \ln F(\vec{x}_{\text{bin-center}}; \vec{p})$$

Wouter Verkerke, UCSB

You can (almost) always avoid χ^2 fits

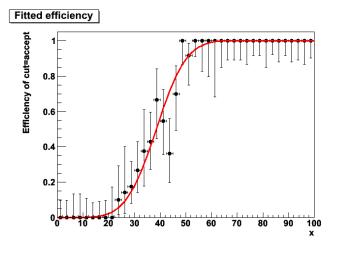
- Case study: Fit for efficiency function
 - Have some simulation sample: need to parameterize which fraction of events passes as function of observable x



- Make histogram of Npassed/Ntotal
- Fit parameterized efficiency function to histogram
- Tricky question: what errors to use? \sqrt{N} is wrong.

Can use binomial errors $V(r) = np(1-p) \implies \sigma = \sqrt{np(1-p)}$

However still quite approximate: true errors will be asymmetric (i.e. no upward error on bin with Npass=10, Ntotal=10)



You can (almost) always avoid χ^2 fits

- MLE approach
 - Realize that your dataset has two observables (x,c), where c is a discrete observable with states 'accept' and 'reject'
 - Corresponding probability density function:

$$F(c \mid x, \vec{p}) = \theta(c = accept) \cdot \varepsilon(x, \vec{p}) + \theta(c = reject)(1 - \varepsilon(x, \vec{p}))$$

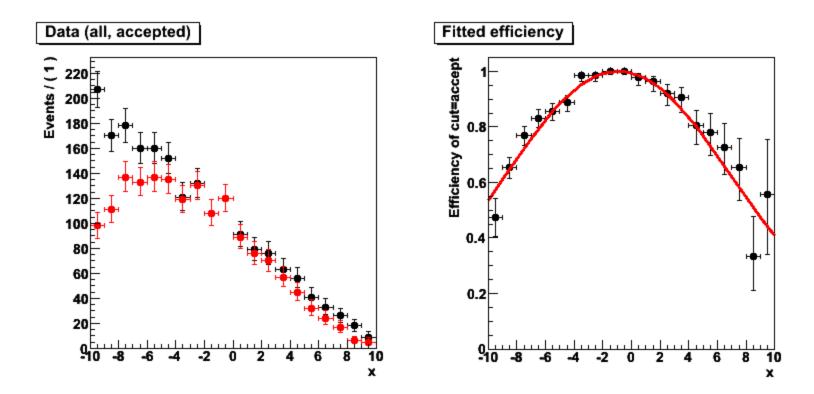
- Clearly unit-normalized over c for each value of (x,p)
 (ε must be between 0 and 1 for all (x,p))
- Write -log(L) as usual, using above p.d.f. and minimize

$$-\ln L(\vec{p}) = -\sum_{i} \ln F(x_i, c_i; \vec{p})$$

- Result: estimation of e(x,p) using correct binomial/poisson assumption on distribution of observables.
- Fit can also be performed unbinned

You can (almost) always avoid χ^2 fits

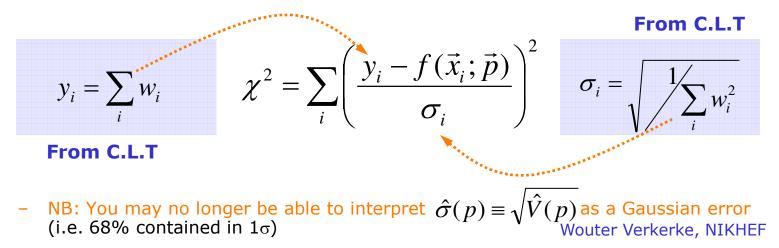
• Example of unbinned MLE fit for efficiency



Wouter Verkerke, NIKHEF

Weighted data

- Sometimes input data is weighted
- Examples:
 - Certain Next-to-leading order event generator for LHC physics produce simulated events with weights +1 and -1.
 - You've subtracted a distribution of background events from a sideband in data (also results in events with weight +1 and -1)
 - You work with reweighted data samples for a variety of reasons (e.g. not enough data was available for one background sample, rescale available events with some non-unit weight to match available amounts of other samples)
- How to deal with event weights in χ^2 , MLE parameter estimation
- χ^2 fit of histograms with weighted data are straightforward



Weighted data – χ^2 vs MLE

 Adding event weights to -log(L) straightforward, but does not yield correct estimates on parameter variance

$$-\ln L(\vec{p})_{\text{weighted}} = -\sum_{i} W_{i} \ln F(\vec{x}_{i}; \vec{p})$$

- Variance estimate on parameters will be proportional to $\sum_{i} W_{i}$ - If $\sum_{i} w_{i} < N$ errors will be too small, if $\sum_{i} w_{i} > N$ errors will be too large!

 No clean solution available that retains all good properties of MLE, but it is possible to perform sum-of-weights-like correction to covariance matrix to correct for effect of on-unit weights

$$V' = VC^{-1}V$$

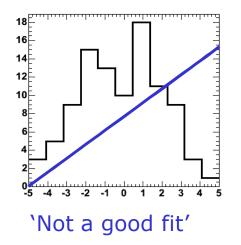
- where V is the cov. matrix calculated from a -log(L) with event weights w, and C is the cov. matrix calculated from a -log(L) with event weights w²
- It is easy to see that in the case of 1 parameter this is equivalent to $\sigma_i = \sqrt{\frac{1}{2}}$

Hypothesis testing – Goodness of fit

- Hypothesis testing and goodness-of-fit
 - Reminder:

classical hypothesis test compares data to two hypothesis H_0 and H_1 (e.g background-only vs signal+background). Type-I error = claiming signal when you should *not* have Type-II error = *not* claiming signal when you should have

- If there is no alternate (H0) hypothesis, hypothesis test is called 'goodness-of-fit' test. NB: Can only quantify Type-I error thus question "which g.o.f. test is *best*" (e.g. χ^2 , Kolmogorov) is ill posed



Estimating and interpreting Goodness-Of-Fit

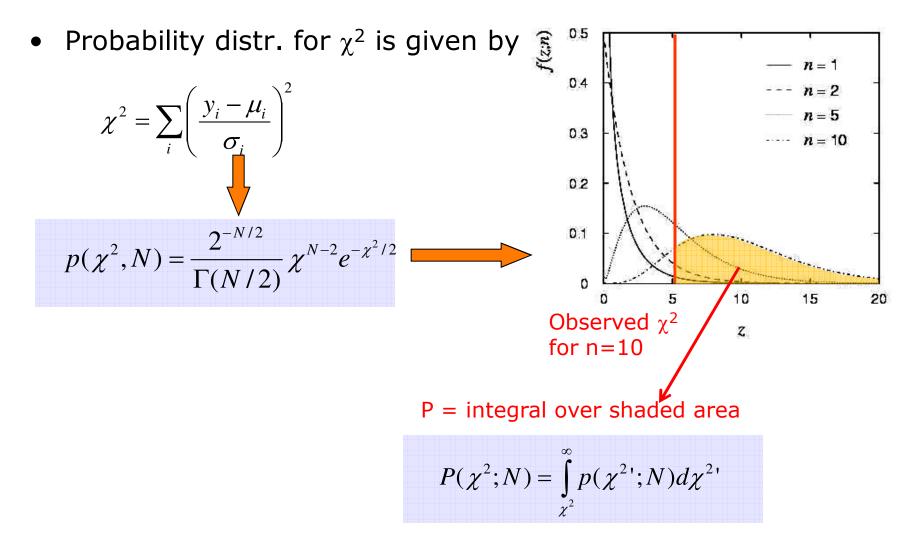
• Most common test: the χ^2 test

$$\chi^2 = \sum_{i} \left(\frac{y_i - f(\vec{x}_i; \vec{p})}{\sigma_i} \right)^2$$

– If f(x) describes data then $\chi^2 \approx N$, if $\chi^2 >> N$ something is wrong

- How to quantify meaning of `large χ^2 '?
 - What you really want to know: the probability that a function which does genuinely describe the data on N points would give a χ^2 probability as large or larger than the one you already have.
 - For large N, sqrt($2\chi^2$) has a Gaussian distribution with mean sqrt(2N-1) and $\sigma=1 \rightarrow$ `Easy'
 - How to make a well calibrated statement for intermediate N

How to quantify meaning of `large $\chi^{2'}$



• Good news: Integral of χ^2 pdf is analytically calculable! Wouter Verkerke, UCSB

Goodness-of-fit – χ^2

- Example for χ^2 probability
 - Suppose you have a function f(x;p) which gives a χ^2 of 20 for 5 points (histogram bins).
 - Not impossible that **f(x;p)** describes data correctly, just unlikely

- How unlikely?
$$\int_{20}^{\infty} p(\chi^2, 5) d\chi^2 = 0.0012$$

- Note: If function has been fitted to the data
 - Then you need to account for the fact that parameters have been adjusted to describe the data

$$N_{\rm d.o.f.} = N_{\rm data} - N_{\rm params}$$

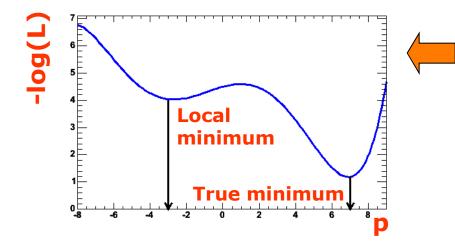
- Practical tips
 - To calculate the probability in ROOT `TMath::Prob(chi2,ndf)'

Practical estimation – Numeric χ^2 and -log(L) minimization

- For most data analysis problems minimization of χ^2 or log(L) cannot be performed analytically
 - Need to rely on numeric/computational methods
 - In >1 dimension generally a difficult problem!
- But no need to worry Software exists to solve this problem for you:
 - Function minimization workhorse in HEP many years: MINUIT
 - MINUIT does function minimization and error analysis
 - It is used in the PAW,ROOT fitting interfaces behind the scenes
 - It produces a lot of useful information, that is sometimes overlooked
 - Will look in a bit more detail into MINUIT output and functionality next

Numeric χ^2 /-log(L) minimization – Proper starting values

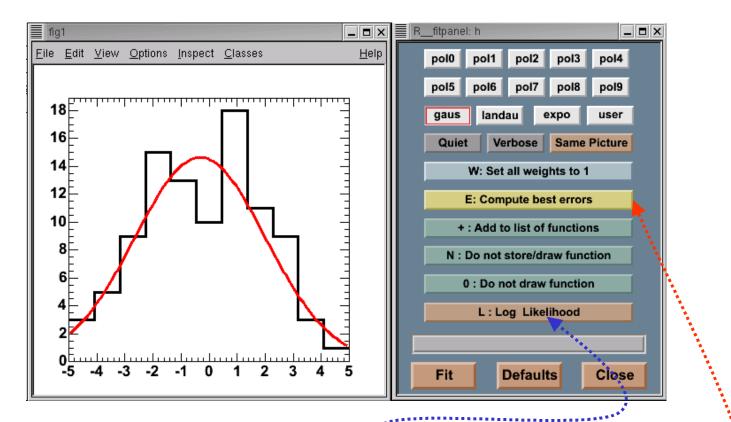
- For all but the most trivial scenarios it is not possible to automatically find reasonable starting values of parameters
 - This may come as a disappointment to some...
 - So you need to supply good starting values for your parameters



Reason: There may exist multiple (local) minima in the likelihood or χ^2

- Supplying good initial uncertainties on your parameters helps too
- Reason: Too large error will result in MINUIT coarsely scanning a wide region of parameter space. It may accidentally find a far away local minimum
 Wouter Verkerke, UCSB

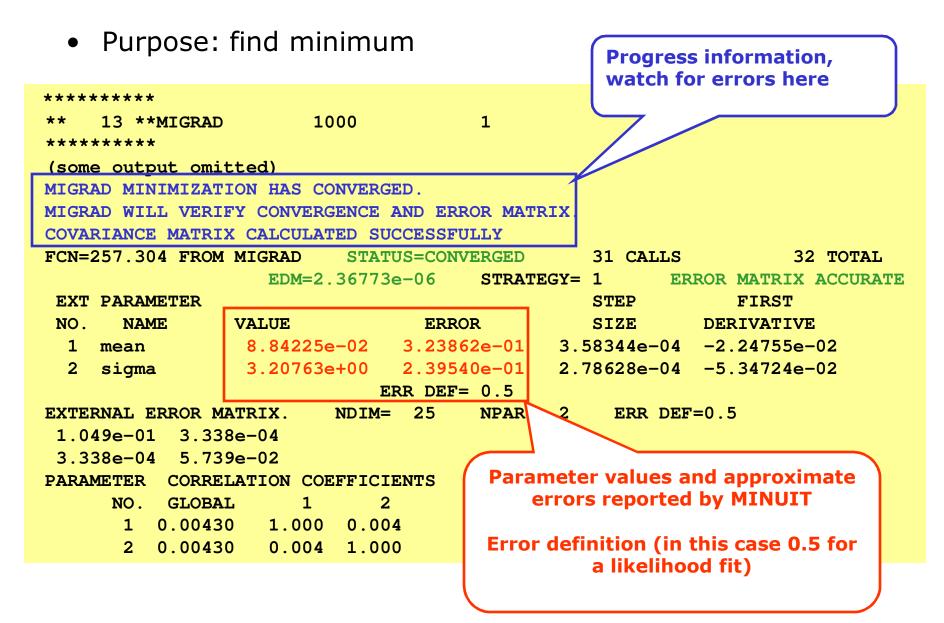
Example of interactive fit in ROOT



What happens in MINUIT behind the scenes

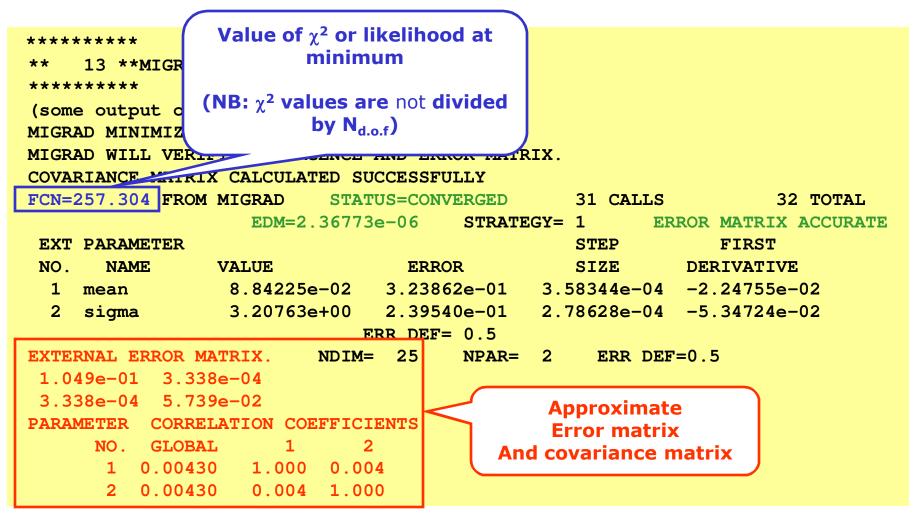
 Find minimum in -log(L) or χ² - MINUIT function MIGRAD
 Calculate errors on parameters - MINUIT function HESSE
 Optionally do more robust error estimate - MINUIT function MINOS

Minuit function MIGRAD



Minuit function MIGRAD

• Purpose: find minimum

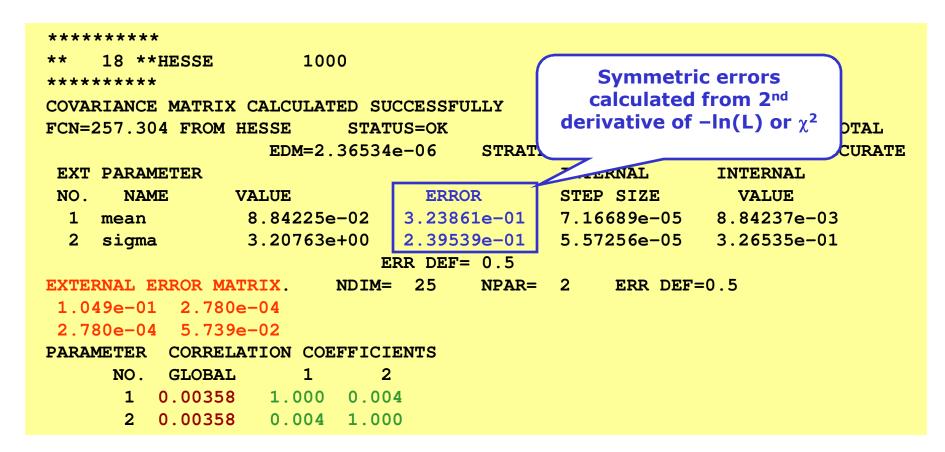


Wouter Verkerke, UCSB

Minuit function MIGRAD	
 Purpose: find minimu 	Status: Should be 'converged' but can be 'failed' Estimated Distance to Minimum
* * * * * * * * *	should be small O(10 ⁻⁶)
** 13 **MIGRAD 1000	
****	Error Matrix Quality
(some output omitted)	should be 'accurate', but can be
MIGRAD MINIMIZATION HAS CONVERG	
MIGRAD WILL VERIFY CONVERGENCE AND E	
COVARIANCE MATRIX CALCULATED SUCCESSFULLY	
FCN=257.304 FROM MIGRAD STAT	TUS=CONVERGED 31 CALLS 32 TOTAL
EDM=2.36773	3e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER	STEP FIRST
NO. NAME VALUE	ERROR SIZE DERIVATIVE
1 mean 8.84225e-02	3.23862e-01 3.58344e-04 -2.24755e-02
2 sigma 3.20763e+00	2.39540e-01 2.78628e-04 -5.34724e-02
E	ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM=	= 25 NPAR= 2 ERR DEF=0.5
1.049e-01 3.338e-04	
3.338e-04 5.739e-02	
PARAMETER CORRELATION COEFFICIENTS	
NO. GLOBAL 1 2	— — — — — — — — — — — — — — — — — — —
1 0.00430 1.000 0.00	
2 0.00430 0.004 1.00	00

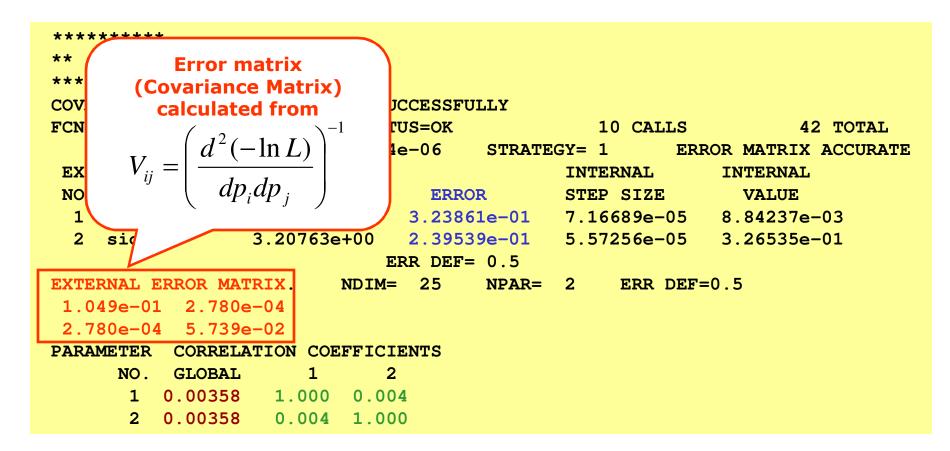
Minuit function HESSE

• Purpose: calculate error matrix from $\frac{d^2L}{dr^2}$



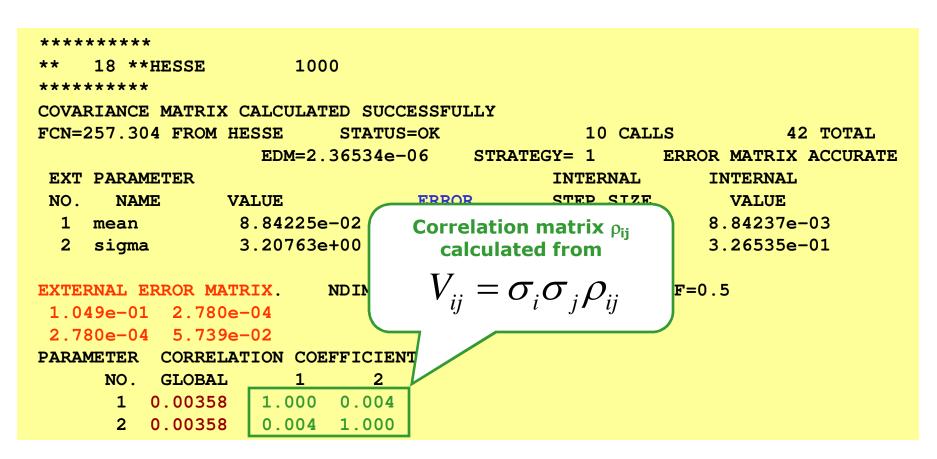
Minuit function HESSE

• Purpose: calculate error matrix from $\frac{d^2L}{dp^2}$



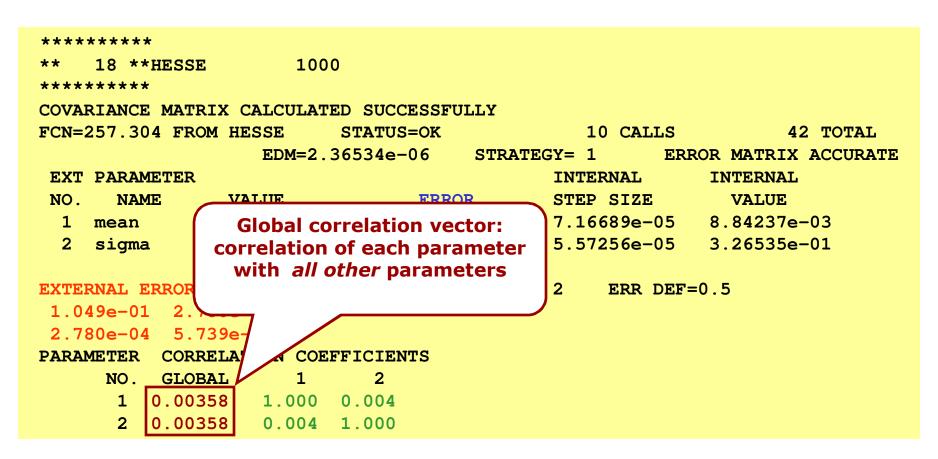
Minuit function HESSE

• Purpose: calculate error matrix from $\frac{d^2L}{dn^2}$



Minuit function HESSE

• Purpose: calculate error matrix from $\frac{d^2L}{dn^2}$



Wouter Verkerke, UCSB

Minuit function MINOS

- MINOS errors are calculated by 'hill climbing algorithm'.
 - In one dimension find points where $\Delta L = +0.5$.
 - In >1 dimension find contour with ΔL =+0.5. Errors are defined by bounding box of contour.
 - In >>1 dimension very time consuming, but more in general more robust.
- Optional activated by option "E" in ROOT or PAW

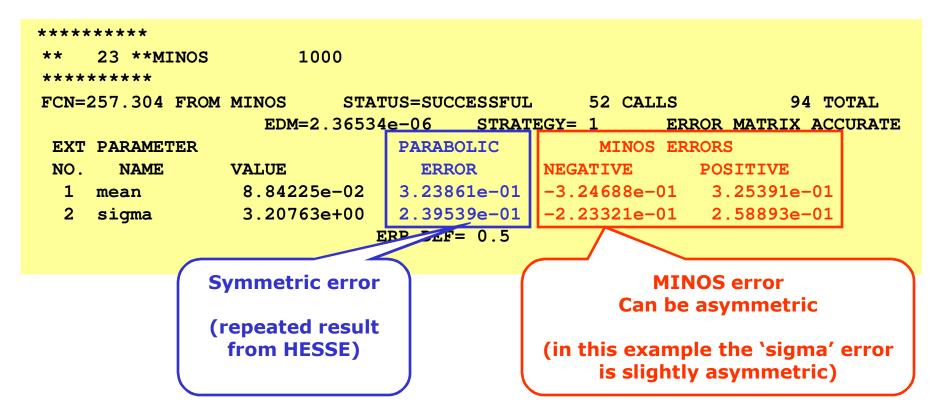
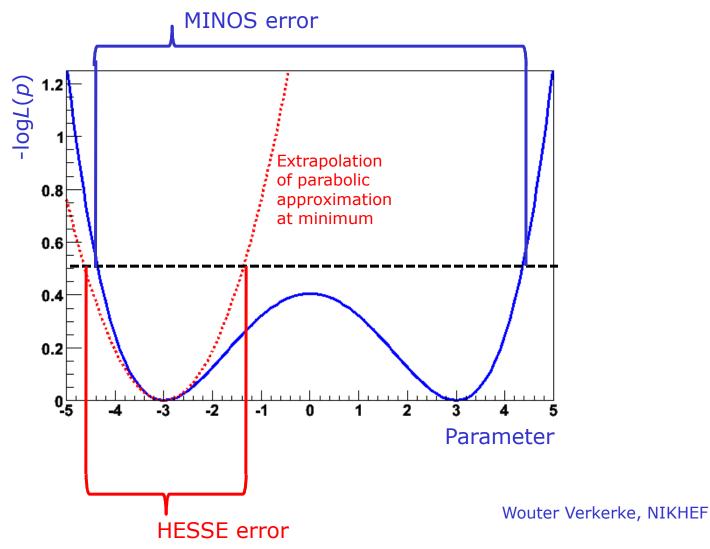


Illustration of difference between HESSE and MINOS errors

• 'Pathological' example likelihood with multiple minima and non-parabolic behavior



Practical estimation – Fit converge problems

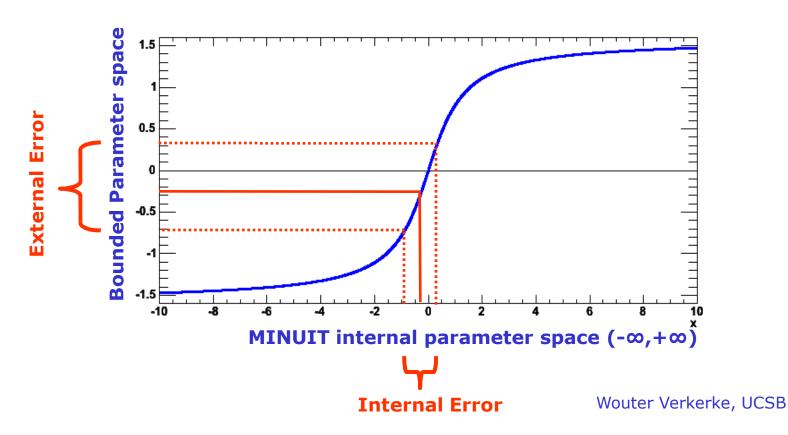
- Sometimes fits don't converge because, e.g.
 - MIGRAD unable to find minimum
 - HESSE finds negative second derivatives (which would imply negative errors)
- Reason is usually numerical precision and stability problems, but
 - The underlying cause of fit stability problems is usually by highly correlated parameters in fit
- HESSE correlation matrix in primary investigative tool

PARAMETER	CORRELATION COEFFICIENTS			Signs of trouble
NO.	GLOBAL	1	2	
1	0.99835	1.000	0.998 🚽	
2	0.99835	0.998	1.000	

In limit of 100% correlation, the usual point solution becomes a line solution (or surface solution) in parameter space.
 Minimization problem is no longer well defined Wouter Verkerke, UCSB

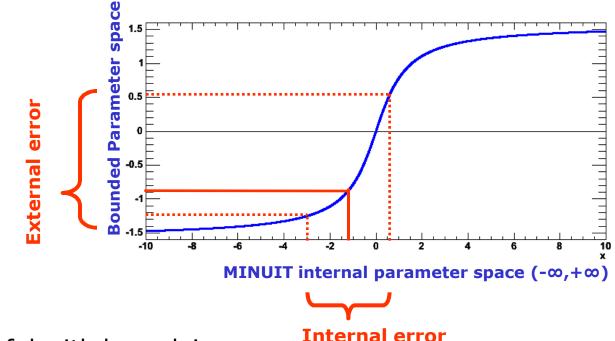
Practical estimation – Bounding fit parameters

- Sometimes is it desirable to bound the allowed range of parameters in a fit
 - Example: a fraction parameter is only defined in the range [0,1]
 - MINUIT option 'B' maps finite range parameter to an internal infinite range using an arcsin(x) transformation:



Practical estimation – Bounding fit parameters

• If fitted parameter values is close to boundary, errors will become asymmetric (and possible incorrect)

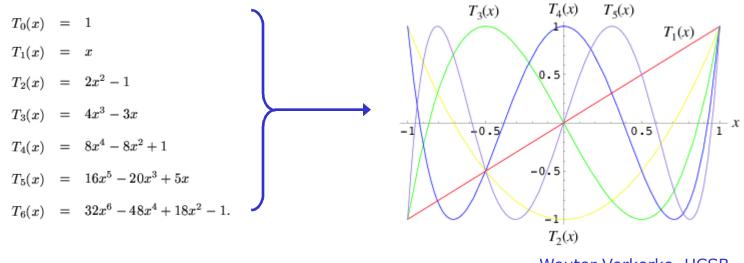


• So be careful with bounds!

- If boundaries are imposed to avoid region of instability, look into other parameterizations that naturally avoid that region
- If boundaries are imposed to avoid `unphysical', but statistically valid results, consider not imposing the limit and dealing with the `unphysical' interpretation in a later stage
 Wouter Verkerke, UCSB

Mitigating fit stability problems -- Polynomials

- Warning: Regular parameterization of polynomials a₀+a₁x+a₂x²+a₃x³ nearly always results in strong correlations between the coefficients a_i.
 - Fit stability problems, inability to find right solution common at higher orders
- Solution: Use existing parameterizations of polynomials that have (mostly) uncorrelated variables
 - Example: Chebychev polynomials



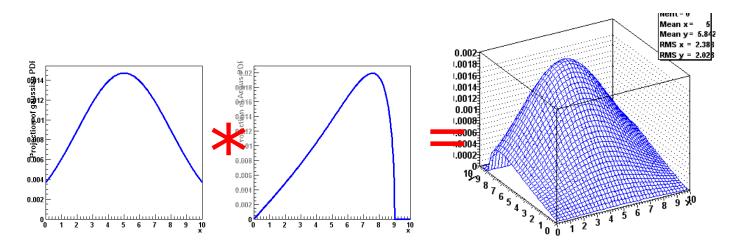
Wouter Verkerke, UCSB

Extending models to more than one dimension

- If you have data with many observables, there are two common approaches
 - Compactify information with test statistic (see previous section)
 - **Describe full** N-dimensional **distribution** with a p.d.f.
- Choice of approach largely correlated with understanding of correlation between observables and amount of information contained in correlations
 - No correlation between observables →
 `Big fit' and `Compactification' work equally well.
 - Important correlations that are poorly understood → Compactification preferred. Approach:
 - 1. Compactify all-but-one observable (ideally uncorrelated with the compactified observables)
 - 2. Cut on compactification test statistic to reduce backgrounds
 - Fit remaining observable → Estimate from data remaining amount of background (smallest systematic uncertainty due to poor understanding of test statistic and its inputs)
 - Important correlations that are well understood \rightarrow Big fit preferred

Extending models to more than one dimension

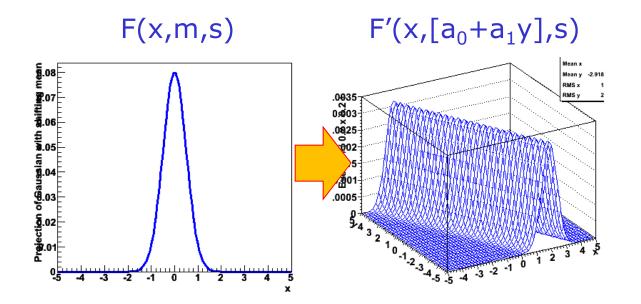
- Bottom line: N-dim models used when either *no correlations* or *well understood correlations*
- Constructing multi-dimensional models without correlations is easy
 - Just multiply N 1-dimensional p.d.f.s.



 No complex issues with p.d.f. normalization: if 1-dim p.d.f.s are normalized then product is also by construction

Writing multi-dimensional models with correlations

- Formulating N-dim models *with* correlations may seem daunting, but it really isn't so difficult.
 - Simplest approach: start with one-dimensional model, replace one parameter p with a function p'(y) of another observable
 - Yields correction distribution of x for every given value of y



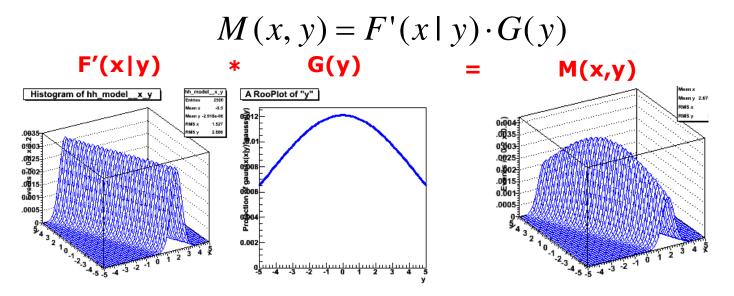
- NB: Distribution of y probably not correct...

Writing multi-dimensional models with correlations

- Solution: see F'(x,y,p) as a conditional p.d.f. F'(x|y)
 - Difference is in normalization

$$\int F(x, y) dx dy \equiv 1 \qquad \int F(x \mid y) dx \equiv 1 \quad \text{for each value of y}$$

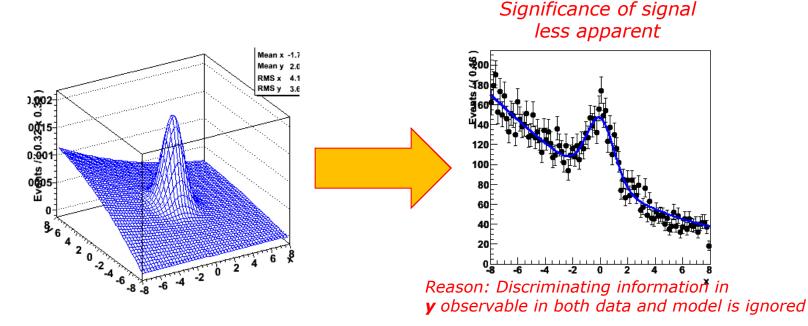
- Then multiply with a separate p.d.f describing distribution in y



- Almost **all** modeling issues with correlations can be treated this way
 - Iteration 1) Exponential Missing ET distr. of 'background' is independent of Transverse mass
 - Iteration 2) Slope depends linearly on MT \rightarrow write conditional pdf F(ET|MT)
 - Iteration 3) Multiply F(ET|MT) with empirical shape for MT

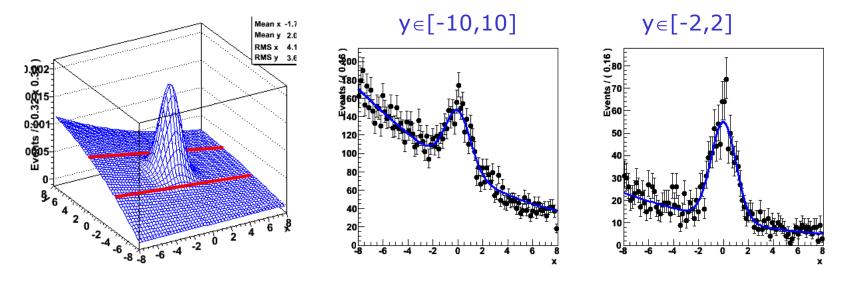
Visualization of multi-dimensional models

- Visualization of multi-dimensional models presents some additional challenges w.r.t. 1-D
- Can show 2D,3D distribution
 - Graphically appealing, but not so useful as you cannot overlay model on data and judge goodness-of-fit
 - Prefer to project on one dimension (there will be multiple choices)
 - But plain projection discards a lot of information contained in both model and data



Visualizing signal projections of N-dim models

- Simplest solution, only show model and data in "signal range" of observable y
 - Significance shown in "range projection" much more in line with that of 2D distribution

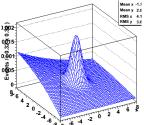


 Easy to define a "signal range" simple model above. How about 6-dimensional model with non-trivial shape?

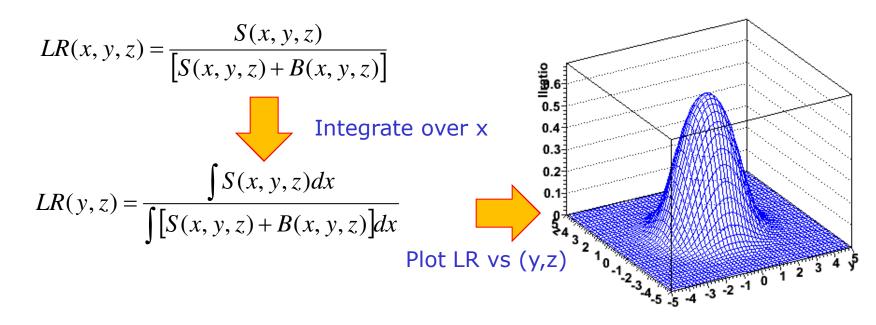
- Need *generic algorithm* \rightarrow Likelihood ratio plot

Likelihood ratio plots

- Idea: use information on S/(S+B) ratio in projected observables to define a cut
- Example: generalize previous toy model to 3 dimensions

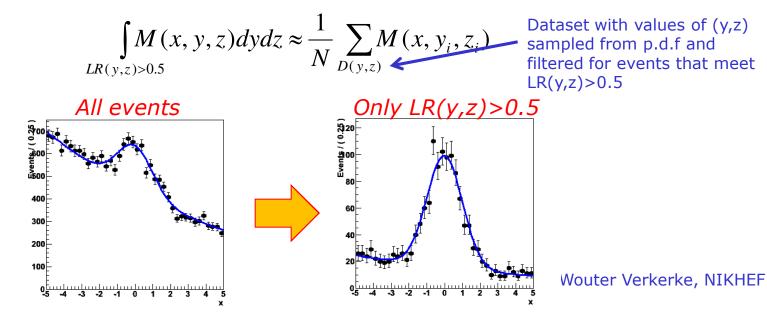


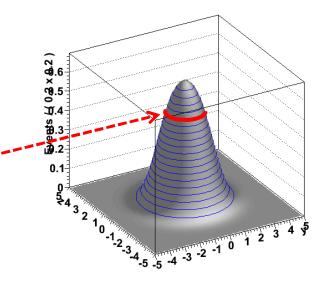
 Express information on S/(S+B) ratio of model in terms of integrals over model components



Likelihood ratio plots

- Decide on s/(s+b) purity contour of LR(y,z)
 - Example s/(s+b) > 50% -
- Plot both data and model with corresponding cut.
 - For data: calculate LR(y,z) for each event, plot only event with LR>0.5
 - For model: using Monte Carlo integration technique:





Multidimensional fits – Goodness-of-fit determination

- Goodness-of-fit determination of >1 D models is difficult
 - Standard χ^2 test does not work very will in N-dim because of natural occurrence of large number of empty bins
 - Simple equivalent of (unbinned) Kolmogorov test in >1-D does not exist
- This area is still very much a work in progress
 - Several new ideas proposed but sometimes difficult to calculate, or not universally suitable
 - Some examples
 - Cramer-von Mises (close to Kolmogorov in concept)
 - Anderson-Darling
 - `Energy' tests

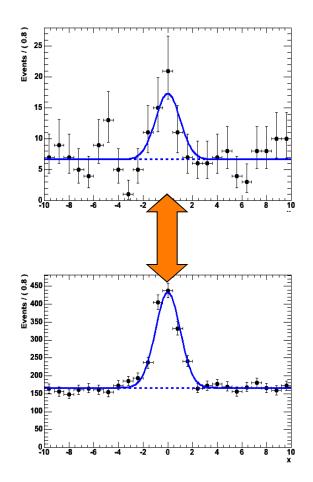
- No magic bullet here, "best" generally an ill-posed question

- Some references to recent progress:
 - PHYSTAT2001/2003/2005

Practical fitting – Error propagation between samples

- Common situation: you want to fit a small signal in a large sample
 - Problem: small statistics does not constrain shape of your signal very well
 - Result: errors are large

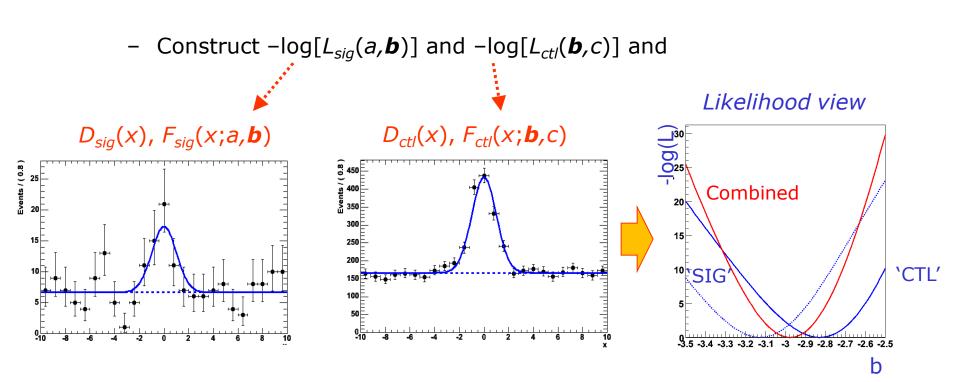
- Idea: Constrain shape of your signal from a fit to a control sample
 - Larger/cleaner data or MC sample with similar properties



 Needed: a way to propagate the information from the control sample fit (parameter values and errors) to your signal fit

Practical fitting – Simultaneous fit technique

• given data $D_{sig}(x)$ and model $F_{sig}(x;a,b)$ and data $D_{ctl}(x)$ and model $F_{ctl}(x;b,c)$



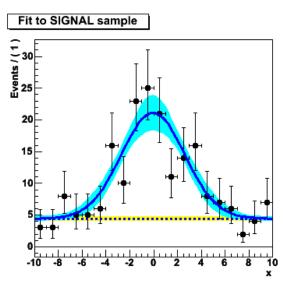
• Minimize $-\log L(a, \mathbf{b}, c) = -\log L(a, \mathbf{b}) + -\log L(\mathbf{b}, c)$

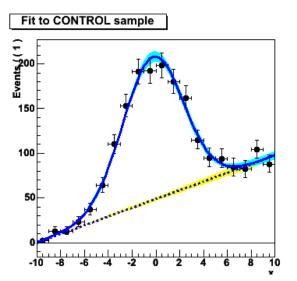
Errors, correlations on common param. b automatically propagated

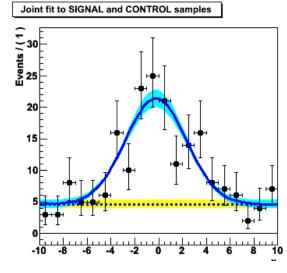
Wouter Verkerke, UCSB

Practical fitting – Simultaneous fit technique

• Simultaneous fit with visualization of error

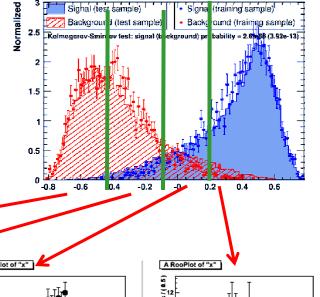


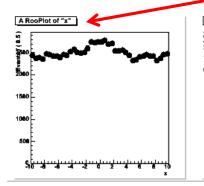


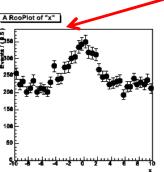


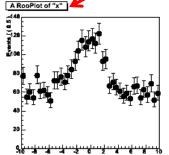
Another application of simultaneous fits

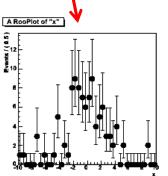
- You can also use simultaneous fits to samples of the same type ("signal samples") with different purity
- Go back to example of NN with one observable left out
 - Fit xN after cut on N(x)
 - But instead of just fitting data with $N(x) > \alpha$, slice data in bins of N(x) and fit each bin.
 - Now you exploit all data instead of just most pure data. Still no uncontrolled systematic uncertainty as purity is measured from data in each slide
 - Combine information of all slices in simultaneous fit







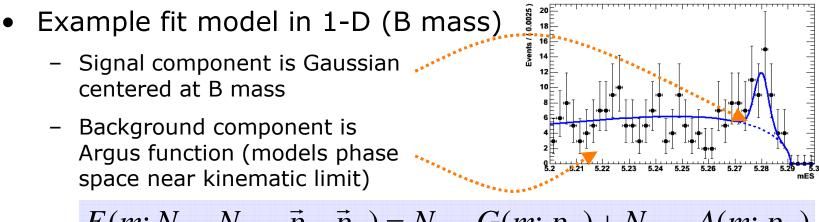




Practical Estimation – Verifying the validity of your fit

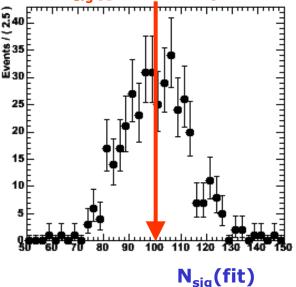
- How to validate your fit? You want to demonstrate that
 - 1) Your fit procedure gives on average the correct answer 'no bias'
 - 2) The uncertainty quoted by your fit is an accurate measure for the statistical spread in your measurement **'correct error'**
- Validation is important for low statistics fits
 - Correct behavior not obvious a priori due to intrinsic ML bias proportional to 1/N
- Basic validation strategy A simulation study
 - 1) Obtain a large sample of simulated events
 - Divide your simulated events in O(100-1000) samples with the same size as the problem under study
 - 3) Repeat fit procedure for each data-sized simulated sample
 - 4) Compare average value of fitted parameter values with generated value →
 Demonstrates (absence of) bias
 - 5) Compare spread in fitted parameters values with quoted parameter error → **Demonstrates (in)correctness of error**

Fit Validation Study – Practical example



$$F(m; N_{\text{sig}}, N_{\text{bkg}}, \vec{p}_S, \vec{p}_B) = N_{\text{sig}} \cdot G(m; p_S) + N_{\text{bkg}} \cdot A(m; p_B)$$

- Fit parameter under study: **N**_{sig}
 - Results of simulation study: 1000 experiments with N_{SIG}(gen)=100, N_{BKG}(gen)=200
 - − Distribution of N_{sig}(fit)
 - This particular fit looks unbiased...

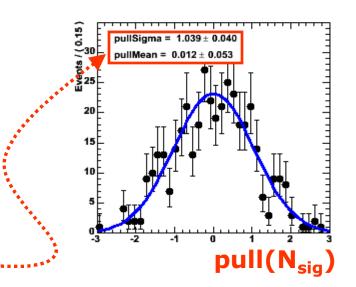


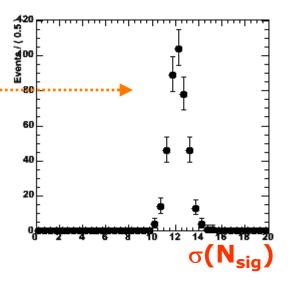
Fit Validation Study – The pull distribution

- What about the validity of the error?
 - Distribution of error from simulated experiments is difficult to interpret...
 - We don't have equivalent of N_{sig}(generated) for the error
- Solution: look at the *pull distribution*
 - Definition:

$$\text{pull}(N_{\text{sig}}) = \frac{N_{sig}^{fit} - N_{sig}^{true}}{\sigma_{N}^{fit}}$$

- Properties of pull:
 - Mean is 0 if there is no bias
 - Width is 1 if error is correct
- In this example: no bias, correct error within statistical precision of study



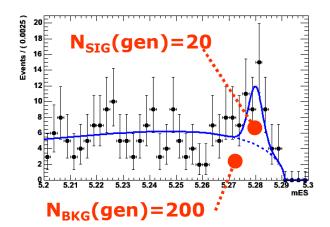


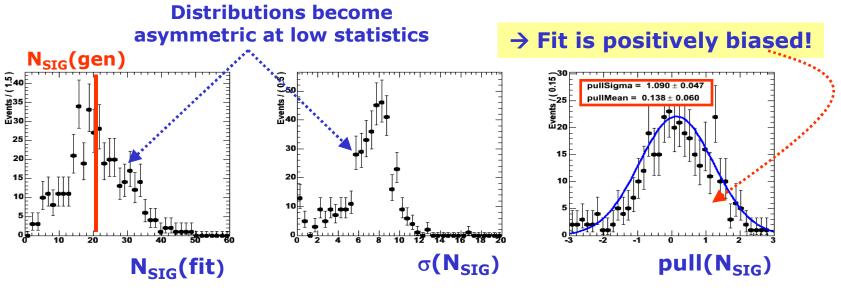
Fit Validation Study – Low statistics example

- Special care should be taken when fitting small data samples
 - Also if fitting for small signal component in large sample
- Possible causes of trouble
 - χ^2 estimators may become approximate as Gaussian approximation of Poisson statistics becomes inaccurate
 - ML estimators may no longer be efficient \rightarrow error estimate from 2nd derivative may become inaccurate
 - Bias term proportional to 1/N of ML and χ^2 estimators may no longer be small compared to 1/sqrt(N)
- In general, absence of bias, correctness of error can not be assumed. How to proceed?
 - Use unbinned ML fits only most robust at low statistics
 - Explicitly verify the validity of your fit

Demonstration of fit bias at low N – pull distributions

- Low statistics example:
 - Scenario as before but now with 200 bkg events and only 20 signal events (instead of 100)
- Results of simulation study





• Absence of bias, correct error at low statistics not obvious!

- Small yields are typically overestimated

Fit Validation Study – How to obtain 10.000.000 simulated events?

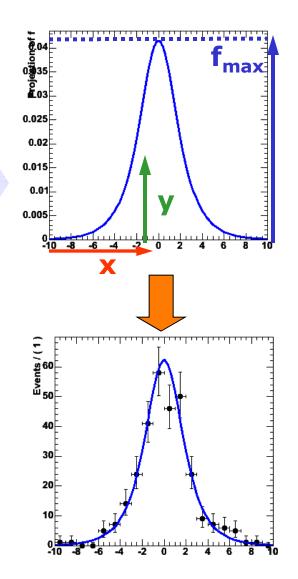
- Practical issue: usually you need very large amounts of simulated events for a fit validation study
 - Of order 1000x number of events in your fit, easily >1.000.000 events
 - Using data generated through a full GEANT-based detector simulation can be prohibitively expensive
- Solution: Use events sampled directly from your fit function
 - Technique named `*Toy Monte Carlo'* sampling
 - Advantage: Easy to do and very fast
 - Good to determine fit bias due to low statistics, choice of parameterization, boundary issues etc
 - Cannot be used to test assumption that went into model (e.g. absence of certain correlations). Still need full GEANT-based simulation for that.

Toy MC generation – Accept/reject sampling

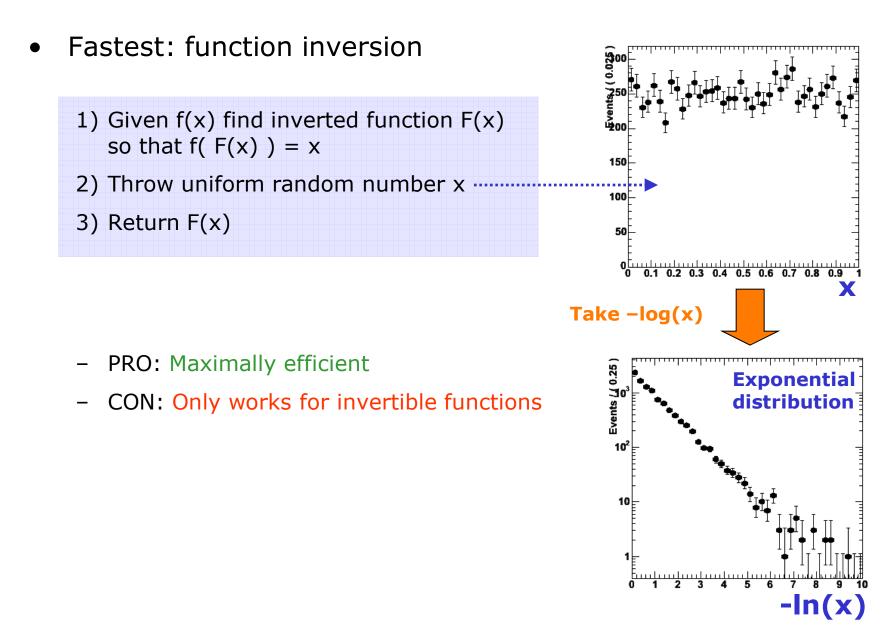
- How to sample events directly from your fit function?
- Simplest: accept/reject sampling

 Determine maximum of function f_{max}
 Throw random number x
 Throw another random number y
 If y<f(x)/f_{max} keep x, otherwise return to step 2)

- PRO: Easy, always works
- CON: It can be inefficient if function is strongly peaked.
 Finding maximum empirically through random sampling can be lengthy in >2 dimensions

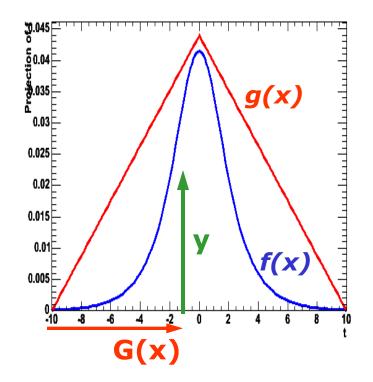


Toy MC generation – Inversion method



Toy MC Generation in a nutshell

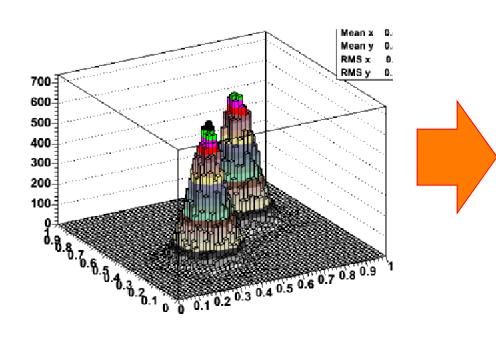
- Hybrid: Importance sampling
 - Find 'envelope function' g(x) that is invertible into G(x) and that fulfills g(x)>=f(x) for all x
 - 2) Generate random number x from G using inversion method
 - 3) Throw random number 'y'
 - 4) If y<f(x)/g(x) keep x, otherwise return to step 2

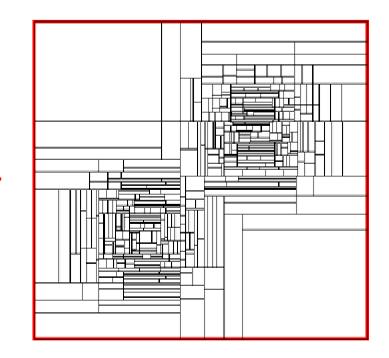


- PRO: Faster than plain accept/reject sampling Function does not need to be invertible
- CON: Must be able to find invertible envelope function

Toy MC Generation in a nutshell

- General algorithms exists that can construct empirical envelope function
 - Divide observable space recursively into smaller boxes and take uniform distribution in each box
 - Example shown below from FOAM algorithm

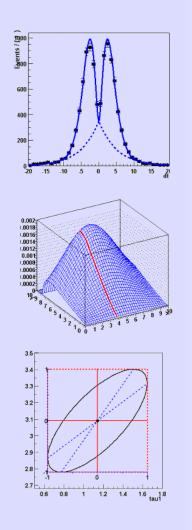




Wouter Verkerke, NIKHEF

(Software Advertisement #2) ROOFit

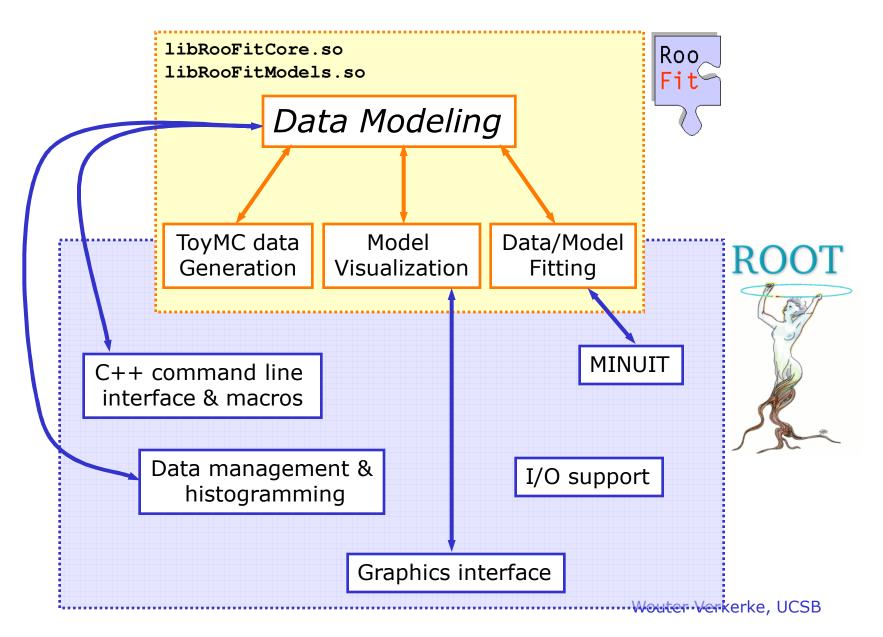
Wouter Verkerke, UCSB



RooFit A general purpose tool kit for data modeling

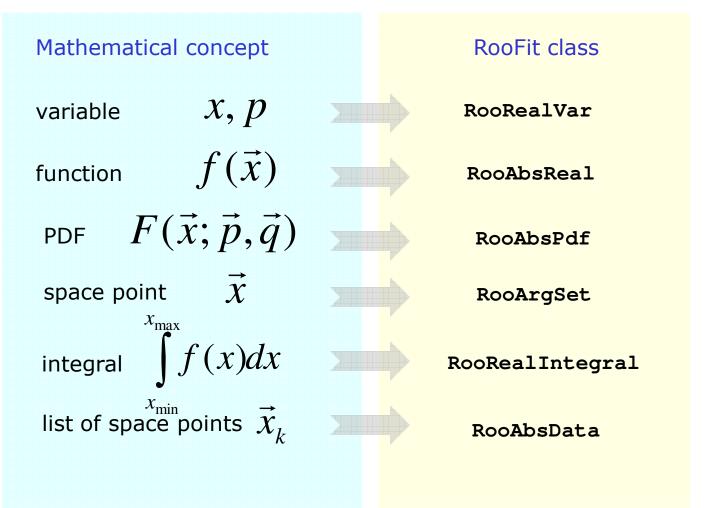
Wouter Verkerke (UC Santa Barbara) David Kirkby (UC Irvine)

Implementation – Add-on package to ROOT



Data modeling – OO representation

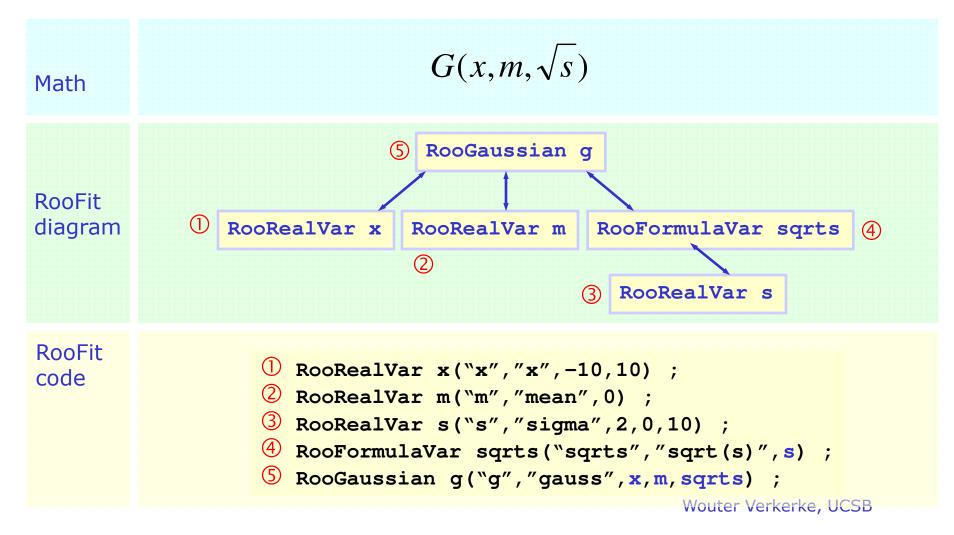
• Mathematical objects are represented as C++ objects



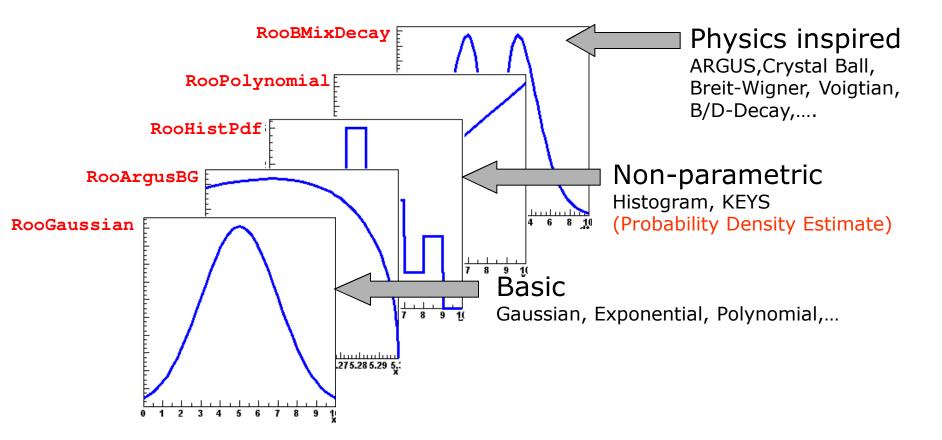
Wouter Verkerke, UCSB

Data modeling – Constructing composite objects

 Straightforward correlation between mathematical representation of formula and RooFit code



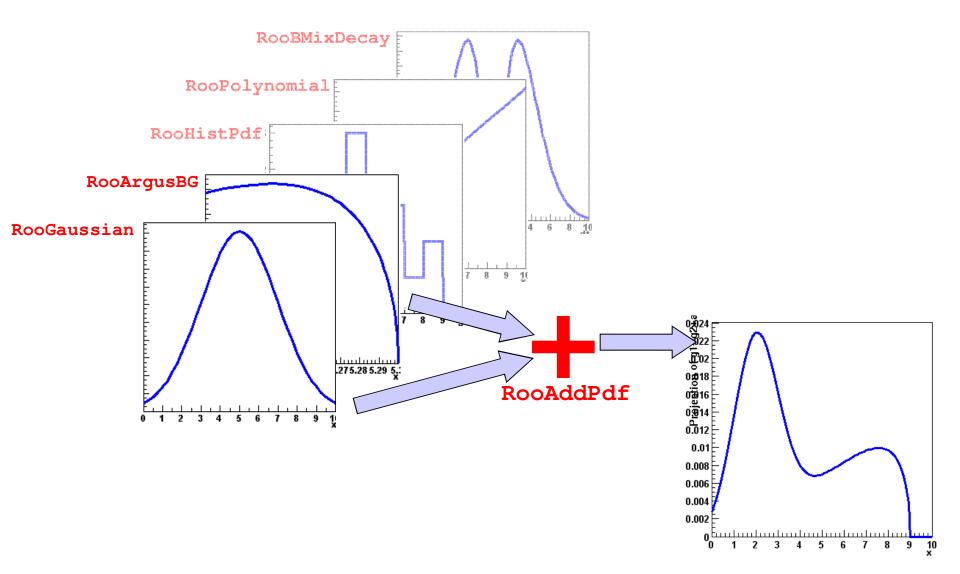
RooFit provides a collection of compiled standard PDF classes



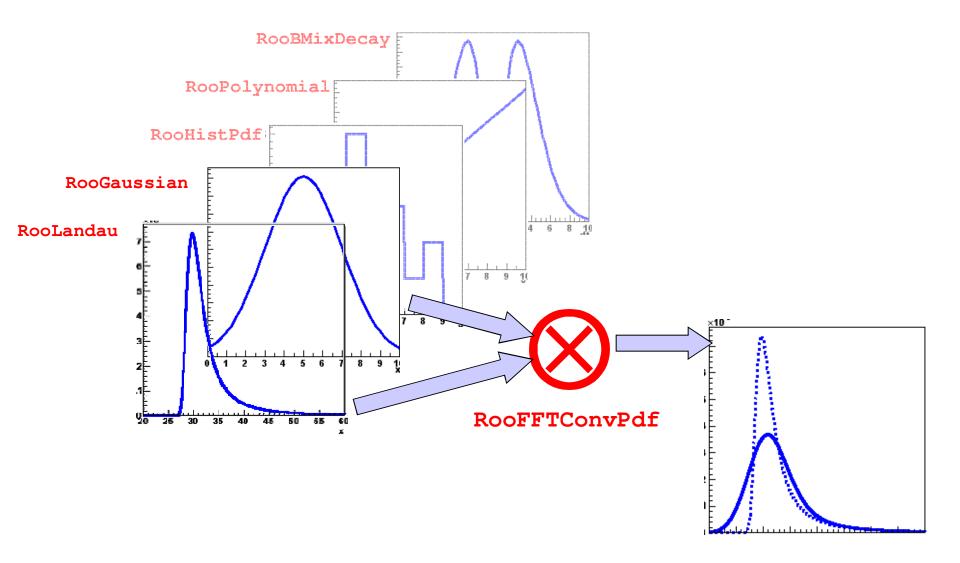
PDF Normalization

- By default RooFit uses numeric integration to achieve normalization
- Classes can optionally provide (partial) analytical integrals
- Final normalization can be hybrid numeric/analytic form

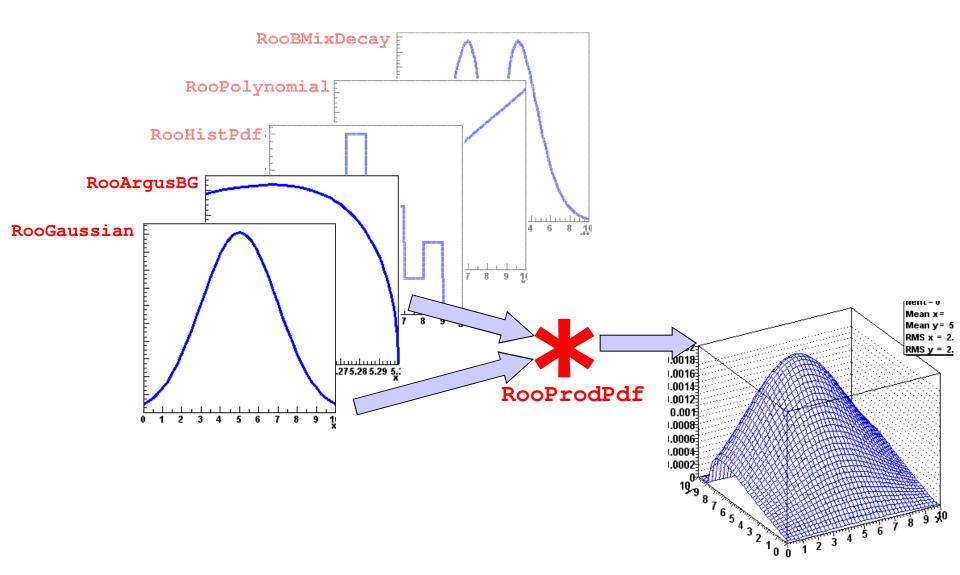
• Most physics models can be composed from 'basic' shapes



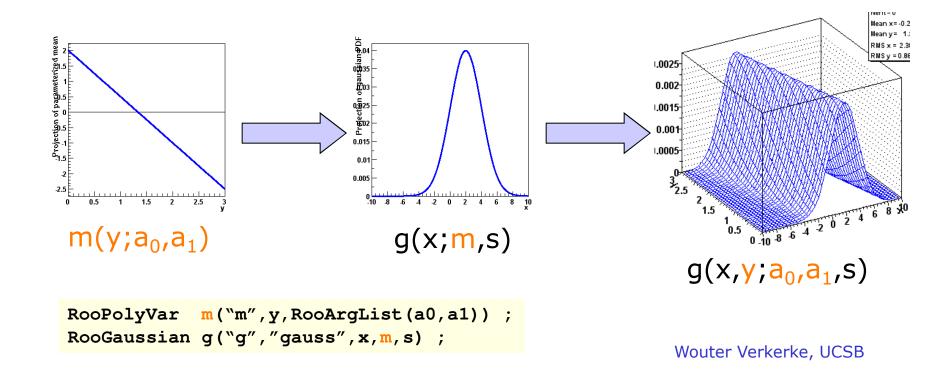
• Most physics models can be composed from 'basic' shapes



• Most physics models can be composed from 'basic' shapes

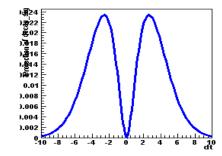


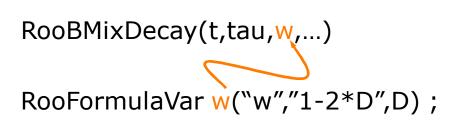
- Building blocks are *flexible*
 - Function *variables can be functions* themselves
 - Just plug in *anything* you like
 - Universally supported by core code (PDF classes don't need to implement special handling)



Model building – Expression based components

- **RooFormulaVar** Interpreted real-valued function
 - Based on ROOT **TFormula** class
 - Ideal for modifying parameterization of existing compiled PDFs



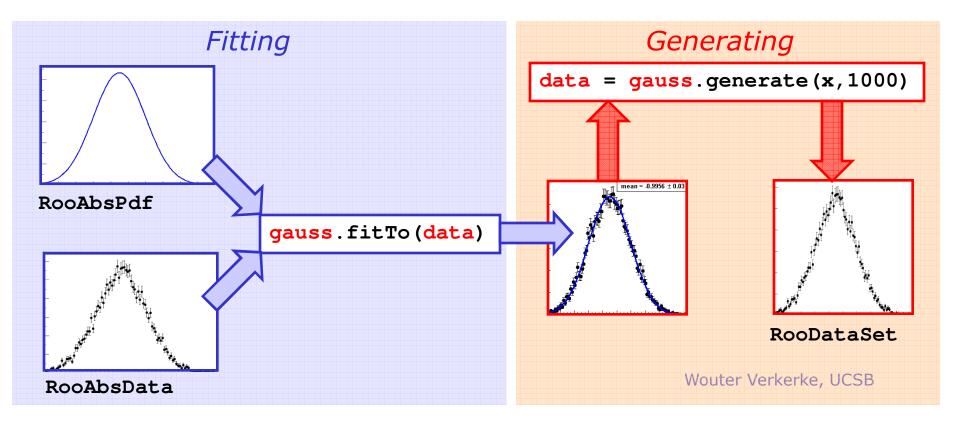




RooGenericPdf f("f", "1+sin(0.5*x)+abs(exp(0.1*x)*cos(-1*x))", x)

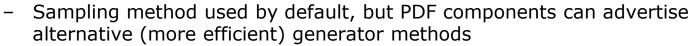
Using models - Overview

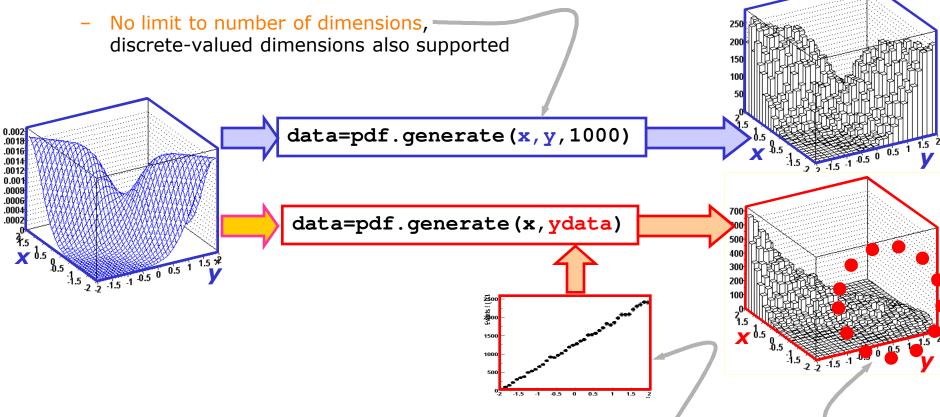
- All RooFit models provide universal and complete fitting and Toy Monte Carlo generating functionality
 - Model complexity only limited by available memory and CPU power
 - models with >16000 components, >1000 fixed parameters and>80 floating parameters have been used (published physics result)
 - Very easy to use Most operations are one-liners



Using models – Toy MC Generation

Generate "Toy" Monte Carlo samples from any PDF

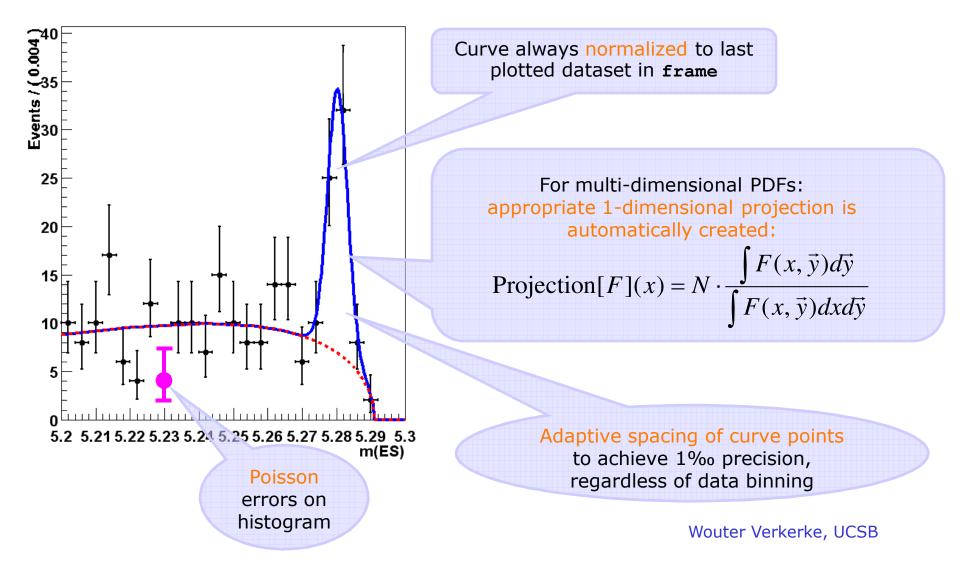




- Subset of variables can be taken from a prototype dataset
 - E.g. to more accurately model the statistical fluctuations in a particular sample.
 - Correlations with prototype observables correctly taken into account, Woulder Verkerke, UCSB

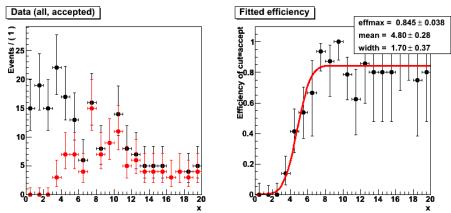
Using models – Plotting

RooPlot – View of ≥1 datasets/PDFs projected on the same dimension

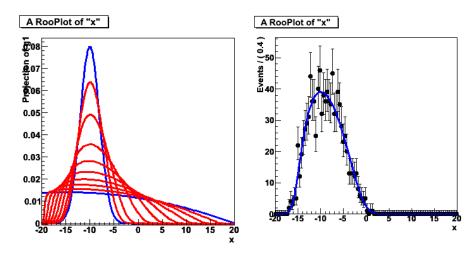


Many default solutions for standard problems

- Unbinned ML fit of efficiency curves
 - Example: trigger threshold



- Template interpolation
 - Example: morph polynomial into Gaussian
 - Realistic use case: interpolate full MC Higgs signal between masses of e.g. 160 GeV and 180 GeV



Persisting models in the workspace

• Using both model & p.d.f from file

ຼິອ¹⁰⁰ TFile f("myresults.root") ; RooWorkspace* w = f.Get("w") : RooPlot* xframe = w->var("x")->frame() ; Make plot w->data("d")->plotOn(xframe) ; of data w->pdf("g")->plotOn(xframe) ; and p.d.f Construct RooNLLVar n11("n11", "n11", *w->pdf("g"), *w->data("d")) ; likelihood RooProfileLL pll("pll", "pll", nll, *w->var("m")) ; & profile LH - 🗆 × Edit View Options Inspect Classes RooPlot* mframe = w->var("m")->frame(-1,1) ; A RooPlot of "m" Draw pll.plotOn(mframe) ;
mframe->Draw() profile LH ike Projection of profile 6 5

<u>- | | ×</u>

Edit View Options Inspect Classe

-0.08 -0.06 -0.04 -0.02

0

0.02 0.04 0.06

0.08 0.1

A RooPlot of "x"

Advanced features – Task automation

Support for routine task automation, e.g. goodness-of-fit study

