Parameter estimation
v2 and likelihood

— Introduction to estimation
— Properties of y2, ML estimators
— Measuring and interpreting Goodness-Of-Fit
— Numerical issues in fitting
— Understanding MINUIT
— Mitigating fit stability problems
— Bounding fit parameters
— Simultaneous fitting
— Multidimensional fitting
— Fit validation studies
— Fit validity issues at low statistics
— Toy Monte Carlo techniques
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Parameter estimation — Introduction

T'(x;p)

Theory

Probability

>

Calculus

D(x)

Data

e Given the theoretical distribution parameters p, what
can we say about the data

D(x)

Data

>

Statistical
inference

T(x;p)

Theory

Need a procedure to estimate p from D
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Multiple methods

e Many ways to infer information on model (parameter) from
data

- 2 fit ->p=52+0.3

— Likelihood fit >p=4.7+0.4

— Bayesian interval > pel4.5-59]at 68% credibility

— Frequentist interval > p e[ 4.4 - 5.8 ] at 68% confidence level

e When data is abundant, methods usually give consistent
answers

e Issues and differences between methods arise when
experimental result contains little information

‘Easy’ ‘Difficult’
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Multiple methods

o Will first focus %2 and likelihood estimation procedures
- Well known, often used

— Explore assumptions, limitations

e In the next module focus on interpreting experiments
with little information content
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A well known estimator — the y? fit

4.5F

e Given a set of points {(X;, y;,0;)}.
and a function f(x,p) ... i
define they2 e ,

(5= Z(y, f(xp))

Gy

e Estimate parameters by mlnlmlzmg the Xz(p) with
respect to all parameters p, SRS

i Error on p; is
1 e given by y2
i variation of +1

— In practice, look for

dZ (pl 0 ‘

e Well known: but why does it work? Is it always right?
Does it always give the best possible error?

Value of p; at
minimum is
“** estimate for p;
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Basics — What is an estimator?

e An estimator is a procedure giving a value for a
parameter or a property of a distribution as a function of
the actual data values, i.e.

N 1
(x)=— ) x. < Estimator of the mean
M N i
i
A 1 )
V(x)= ﬁz (x; — 1) < Estimator of the variance
i

o A perfect estimator is
— Consistent: hmn_m(a) =9

- Unbiased - With finite statistics you get the right answer on average

— Efficient ANEENY g _<A> 2\ — Thisis called the
V(a) <(CZ g ) Minimum Variance Bound

— There are no perfect estimators!
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How to model your data

e Approach in y2 fit very empirical - Function f(x,y) can be any
arbitrary function

e Many techniques (Likelihood, Bayesian, Frequentist) require a
more formal approach to data modeling through probability
density functions

e We can characterize data distributions with probability density
functions F(X;p)

- X = observables (measured quantities)
- p = parameters (model/theory parameters)
e Properties

- Normalized to unity with respect to observable(s) x
— Positive definite - F(x;p)>=0 for all (x,p)

j F(%p)dx=1
F(x;p)=0

A RooPlot of "x"
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Probability density functions

e Properties

— Parameters can be physics quantities of interest (life time, mass)

Invariant mass distribution
observable x (inv. mass)
parameter m (physics mass)
parameter ¢ (decay width)

Decay time distribution
observable x (decay time)
parameter 0 (lifetime)

o)
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— Vehicle to infer physics parameters from data distributions
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Likelihood

e The likelihood is the value of a probability density
function evaluated at the measured value of the
observable(s)

— Note that likelihood is only function of parameters, not of
observables

L(p) = F(X=X4,;P)

e For a dataset that consists of multiple data points, the
product is taken

L(p) = HF(JZ-; p), ie. L(P)=F(x,;p) F(x;p)-F(xy;P)...
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Probability, Probability Density, and Likelihood

e Poisson probability P(n|u) = u" exp(-u)/n!

e (Gaussian probability density function (pdf) p(x|u,0):
p(x|u,0)dx is differential of probability dP.

e In Poisson case, suppose n=3 is observed.
Substituting n=3 into P(n|p) yields the
likelihood function L(u) = uPexp(-u)/3!

— Key point is that L(pn) is not a probability density in p. (It is not a
density!)

— Area under L is meaningless. That’s why a new word, “likelihood”,
was invented for this function of the parameter(s), to distinguish
from a pdf in the observable(s)! Many people nevertheless talk
about ‘integrating the likelihood’ - confusion about what is done
in Bayesian interval (more later)

— Likelihood Ratios L(u1) /L(p2) are useful and frequently used.
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Change of variable x, change of parameter 6

For pdf p(x|6) and (1-to-1) change of variable from x to y(x):
p(y(x)[8) = p(x|8) / |dy/dx].

Jacobian modifies probability density, guaranties that
P(y(x1)<y <y(x2)) = P(xi1< x < x2), i.e., that

Probabilities are invariant under change of variable x.

— Mode of probability density is not invariant (so, e.g., criterion of maximum
probability density is ill-defined).

— Likelihood ratio is invariant under change of variable x. (Jacobian in
denominator cancels that in numerator).

For likelihood L(8) and
reparametrization from 6 to u(8): L(6) = L(u(8)) (!).

— Likelihood L(B) is invariant under reparametrization of parameter 6
(reinforcing fact that L is not a pdf in ©).
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Parameter estimation using Maximum Likelihood

e Likelihood is high for values of p that result in

distribution similar to data
g © - g°
= — log£=139 (b) By — leg L=41 2 (ML fit) (a)
- logL-189 - log L=41 0 (true parameters)

X

e Define the maximum likelihood (ML) estimator(s) to be
the parameter value(s) for which the likelihood is

maximum.
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Parameter estimation - Maximum likelihood

e Computational issues

— For convenience the is often used
as addition is numerically easier than multiplication

~InL(p)=-) InF(%;p)
- Maximizing L(p) equivalent to minimizing -log L(p)

e In practice, find point where derivative is zero

din L(p)|
dp

=()

‘pi:ﬁi
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Variance on ML parameter estimates

e The ML estimator for the parameter variance is

_1 -y
2 0‘ .0
A 2 & d Ink <~ |From Rao-Cramer-Frechet
o(p)y =V(p)= dzp A S *1inequality |4
®apus® _|_ LUy
A d,
V(p) > y (dzlnL)
dzp

— I.e. variance is estimated from
2nd derivative of —log(L) at minimum

— Valid if estimator is

b = bias as function of p,
inequality becomes equality

in limit of efficient estimator

alw
““““
" *
*
*
14

efficient and unbiased!

e Visual interpretation of variance estimate

— Taylor expand -log(L) around minimum
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Properties of Maximum Likelihood estimators
e In general, Maximum Likelihood estimators are

— Consistent (gives right answer for N->wx)
- Mostly unbiased (bias ««1/N, may need to worry at small N)

— Efficient for large N (you get the smallest possible error)

- . N
— Invariant: (a transformation of parameters

. A2 _ .2
’ will Not change your answer, e.g (P) —(P )
........ Use of 2nd derivative of —log(L)
for variance estimate is usually OK

e MLE efficiency theorem: the MLE will be unbiased and
efficient if an unbiased efficient estimator exists

— Proof not discussed here

— Of course this does not guarantee that any MLE is unbiased and
efficient for any given problem
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More about maximum likelihood estimation

e It does not give you the ‘most likely value of p’ -
it gives you the value of p for which this data is most likely

to find
the maximum of In(L)

— Especially difficult if there is >1 parameter
— Standard tool in HEP: MINUIT (more about this later)

e Max. Likelihood does give you a measure

— If assumed F(x;p) is not capable of describing your data for any p,
the procedure will not complain

— The absolute value of L tells you nothing!

Wouter Verkerke, UCSB



Relation between Likelihood and y2 estimators

e Properties of y2 estimator follow from properties of ML
estimator using Gaussian probability density functions

~ f(x; D) 2 Probability Density Function
F(x,,y,,0,;p)=exp| — Vi i> P in p for single data point x;(c;)
o and function f(x;;p)

Take log,
Sum over all points (x,-,y,-,a,-)

.....

" —f(xsp) | B The Likelihood function in p
InL(p) = —%Z[ ] )(2 <4— for given points x;(c;)
i O; '. = and function f(x;;p)

lllll

e The y? estimator follows from ML estimator, i.e it is
- Efficient, consistent, bias 1/N, invariant,
- But only in the limit that the error on Xx; is truly Gaussian
- i.e. need n; > 10 if y, follows a Poisson distribution

e Bonus: Goodness-of-fit measure — y2 ~ 1 per d.o.f



Example of y2 vs ML fit

e Example with many low statistics bins

true distribution

/ P v2 fit

unbinned ML fit

35
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10
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Example of binned vs unbinned ML fit

e Lowering number of bins and number of events...

~__true distribution

-
o

Events / (10)
I

-
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10

| unbinned ML fit
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e Proper way to study bias, precision is with t
- at the end of this module Wou
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Maximum Likelihood or y2 - What should you use?

o 2 fit is fastest, easiest

Works fine at high statistics

Gives absolute goodness-of-fit indication

Make (incorrect) Gaussian error assumption on low statistics bins
Has bias proportional to 1/N

Misses information with feature size < bin size

e Full Maximum Likelihood estimators most robust

No Gaussian assumption made at low statistics
No information lost due to binning
Gives best error of all methods (especially at low statistics)

No intrinsic goodness-of-fit measure, i.e. no way to tell if ‘best’ is actually
‘pretty bad’

Has bias proportional to 1/N
Can be computationally expensive for large N

e Binned Maximum Likelihood in between —InL(p)yue =D M N F Ky coners P)

bins

Much faster than full Maximum Likihood

Correct Poisson treatment of low statistics bins

Misses information with feature size < bin size

Has bias proportional to 1/N Wouter Verkerke, UCSB



You can (almost) always avoid y? fits

e Case study: Fit for efficiency function

11—

- Have some simulation sample:
need to parameterize which fraction
of events passes as function of
observable x

08—

0.6 —

Efflclency of cut=accept

04—

02l

e ‘Traditional y2 approach’ Hll;

I A4S I P I N T
oﬂ 10 20 30 40 50 60 70 80 90

— Make histogram of Npassed/Ntotal

— Fit parameterized efficiency function to histogram

- Tricky question: what errors to use? VN is wrong.

Can use binomial errors V(r)=np(1-p) = o =/np(1-p)

However still quite approximate: true errors will be asymmetric
(i.e. no upward error on bin with Npass=10, Ntotal=10)

Wouter Verkerke, NIKHEF



You can (almost) always avoid y? fits

e MLE approach

— Realize that your dataset has two observables (x,c), where cis a
discrete observable with states ‘accept’ and ‘reject’

— Corresponding probability density function:

F(clx,p)= 6(c=accept)-&(x,p)+
O(c = reject)(1—&(x, p))

— Clearly unit-normalized over c for each value of (x,p)
(¢ must be between 0 and 1 for all (x,p))

— Write -log(L) as usual, using above p.d.f. and minimize
~InL(p)=-) InF(x,,c;p)
i

— Result: estimation of e(x,p) using correct binomial/poisson
assumption on distribution of observables.

— Fit can also be performed unbinned
Wouter Verkerke, NIKHEF



You can (almost) always avoid y? fits

e Example of unbinned MLE fit for efficiency

| Data (all, accepted) | | Fitted efficiency |
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Weighted data

e Sometimes input data is weighted

e Examples:

— Certain Next-to-leading order event generator for LHC physics produce
simulated events with weights +1 and -1.

— You've subtracted a distribution of background events from a sideband in
data (also results in events with weight +1 and -1)

- You work with reweighted data samples for a variety of reasons
(e.g. not enough data was available for one background sample, rescale
available events with some non-unit weight to match available amounts of
other samples)

e How to deal with event weights in y2, MLE parameter estimation
o 2 fit of histograms with weighted data are straightforward

From C.L.T
2
2 Y _f()_éi;]_j) i 1
yi:lzwi 4 _Z o, o /wa

From C.L.T

6(p)=4V(p)

(i.e. 68% contained in 10) Wouter Verkerke, NIKHEF



Weighted data - y2 vs MLE

e Adding event weights to -log(L) straightforward, but does not
yield correct estimates on parameter variance

~ ..» Event weight
— ln L(p)weighted = _szln F(xl'; p)

l

Zi Wi

- If Zwi < N errors will be too small, if Zwi > N errors will be too large!

l l

e No clean solution available that retains all good properties of
MLE, but it is possible to perform sum-of-weights-like correction
to covariance matrix to correct for effect of on-unit weights

’ -1
Vi=VC'V
— where V is the cov. matrix calculated from a -log(L) with event weights w,
and C is the cov. matrix calculated from a -log(L) with event weights w?
— It is easy to see that in the case of 1 parameter this is equivalent to o, = / lg:; 2

Wouter Verkerke,



Hypothesis testing — Goodness of fit

e Hypothesis testing and goodness-of-fit

- Reminder:
classical hypothesis test compares data to two hypothesis H, and
H, (e.g background-only vs signal+background).
Type-I error = claiming signal when you should not have
Type-II error = not claiming signal when you should have

— If there is no alternate (HO) hypothesis, hypothesis test is called
‘goodness-of-fit’ test. NB: Can only quantify Type-I error thus
question “which g.o.f. test is best” (e.g. 2, Kolmogorov) is ill
posed

LE:TALEL L AL
16
14
12
10
8

6
4
2

U'I_"l‘"l"‘l"'l"‘l"'l"‘l' Lol d

1] I B U TP Y EROPY IS U I
5 4 -3 2 41 0 1 2 3

‘Not a good fit’

-8
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Estimating and interpreting Goodness-Of-Fit

e Most common test:

pEn Z[yi —f(xl-;p)j

O.

1

- If f(x) describes data then y2 =~ N, if y2 >> N something is wrong

e How to quantify meaning of ‘large »2'?

— What you really want to know: the probability that a function
which does genuinely describe the data on N points would give a
v2 probability as large or larger than the one you already have.

- For large N, sqrt(2y2) has a Gaussian distribution
with mean sqrt(2N-1) and c=1 - ‘Easy’

- How to make a well calibrated statement for intermediate N

Wouter Verkerke, UCSB



How to quantify meaning of ‘large y2’

e Probability distr. for 2 is given by § °*
2 A Be . :Z;
2 _ Yi — H, n=>5
#-x5) -l
@ 02 h
2—N/2 01
2 N-2 —%/2
W= ——— Y
p(y,N) TN /2);( s Lo LR
) b 10 15
Observed y? ”
for n=10
P = integral over shaded area
P(y*sN) = [ p(x*'s N)dy™
Z2
e Good news: Integral of ¥2 pdf is analytically calculable!
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Goodness-of-fit — y2

e Example for ¢2 probability

— Suppose you have a function f(x;p) which gives a y2 of 20 for 5
points (histogram bins).

— Not impossible that f(x;p) describes data correctly, just unlikely
- How unlikely? [ p(y,5)dy* =0.0012
20

e Note: If function has been fitted to the data

— Then you need to account for the fact that parameters have been
adjusted to describe the data

Nyos. =Ny =N

data params

e Practical tips
— To calculate the probability in ROOT ‘TMath: :Prob(chi2, ndf)’

Wouter Verkerke, UCSB



Practical estimation — Numeric 2 and -log(L) minimization

e For most data analysis problems minimization of 42 or -
log(L)
— Need to rely on numeric/computational methods

- In >1 dimension !

e But no need to worry — Software exists to solve this
problem for you:

— MINUIT does function minimization and error analysis
- Itis used in the PAW,ROQT fitting interfaces behind the scenes

— It produces a lot of useful information, that is sometimes
overlooked

— Will look in a bit more detail into MINUIT output and functionality
next

Wouter Verkerke, UCSB



Numeric y2/-log(L) minimization - Proper starting values

e For all but the most trivial scenarios it is not possible to
automatically find reasonable starting values of
parameters

— This may come as a disappointment to some...

— So you need to supply good starting values for your parameters

Reason: There may exist
multiple (local) minima
in the likelihood or 42

-log(L)

Local
minimum

ITI‘LIIe minimum

s 6 4 2 0 2 r s 8

— Supplying good initial uncertainties on your parameters helps too

— Reason: Too large error will result in MINUIT coarsely scanning a
wide region of parameter space. It may accidentally find a far away

local minimum Wouter Verkerke, UCSB



Example of interactive fit in ROOT
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e What happens in MINUI'F-; behind the scenes
1) Find minimum in -log(L) or'x2 — MINUIT function MIGRAD
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Minuit function MIGRAD

i PUFDOSE: find minimum Progress information,

watch for errors here
*khkkkkhkkkkkk

* * 13 **MIGRAD 1000 1
%k dkdokkok koK

(some output omitted)
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX
COVARIANCE MATRIX CALCULATED SUCCESSFULLY

FCN=257.304 FROM MIGRAD STATUS=CONVERGED 31 CALLS 32 TOTAL
EDM=2.36773e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER STEP FIRST

NO. NAME VALUE ERROR SIZE DERIVATIVE

1 mean 8.84225e-02 3.23862e-01
2 sigma 3.20763e+00 2.39540e-01
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR

1.049e-01 3.338e-04

3.58344e-04 -2.24755e-02
2.78628e-04 -5.34724e-02

ERR DEF=0.5

3.338e-04 5.739e-02 _

PARAMETER CORRELATION COEFFICIENTS Parameter values and approximat
NO. GLOBAL 1 2 errors reported by MINUIT

1 0.00430 1.000 0.004

2 0.00430 0.004 1.000 Error definition (in this case 0.5 for

a likelihood fit)

\-

~

e

J




Minuit function MIGRAD

e Purpose: find minimum

2o e e 5 e %o ok e e f Value of x2 or likelihood at )
*x* 13 **MIGR minimum
*hkkkkkkkkxk
(some output d (NB: 2 values are not divided
MIGRAD MINIMIZ by Ny...r)
MIGRAD WILL VE IX.
COVARIAN CALCULATED SUCCESSFULLY
FCN=257.304 |[FROM MIGRAD STATUS=CONVERGED 31 CALLS 32 TOTAL
EDM=2.36773e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1l mean 8.84225e-02 3.23862e-01 3.58344e-04 -2.24755e-02
2 sigma 3.20763e+00 2.39540e-01 2.78628e-04 -5.34724e-02
ERR_DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5

1.049e-01 3.338e-04
3.338e-04 5.739%e-02
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2
1 0.00430 1.000 0.004
2 0.00430 0.004 1.000

Approximate
Error matrix
And covariance matrix

Wouter Verkerke, UCSB



Minuit function MIGRAD

i

e Purpose: find minimu
khkkkkkkkk*k
* * 13 **MIGRAD 1000
*kkkkkkkkk*k
(some output omitted)

MIGRAD MINIMIZATION HAS CONVERG
MIGRAD WILL VERIFY CONVERGENCE AND
COVARIANCE MATRIX C

Should be ‘converged’ but can be *failed’

\

Status:

Estimated Distance to Minimum
should be small 0(10-°)

Error Matrix Quality
should be ‘accurate’, but can be
‘approximate’ in case of trouble

/

FCN=257.304 FROM MIGRAD STATUS=CONVERGED 31 CALLS 32 TOTAL
EDM=2.36773e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 mean 8.84225e-02 3.23862e-01 3.58344e-04 -2.24755e-02
2 sigma 3.20763e+00 2.39540e-01 2.78628e-04 -5.34724e-02
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5
1.049e-01 3.338e-04
3.338e-04 5.739%e-02
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2
1 0.00430 1.000 0.004
2 0.00430 0.004 1.000

Wouter Verkerke, UCSB




Minuit function HESSE

e Purpose: calculate error matrix from

kkhkkkkkkkkk

** 18 **HESSE
k*kkkkkkkkk*k
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE STATUS=OK
EDM=2.36534e-06

1000

EXT PARAMETER

d’L
a’p2

STRAT%

NO. NAME VALUE ERROR
1 mean 8.84225e-02 3.23861e-01
2 sigma 3.20763e+00 2.39539%e-01
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR=
1.049e-01 2.780e-04
2.780e-04 5.739%e-02
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2
1 0.00358 1.000 0.004
2 0.00358 0.004 1.000

Symmetric errors
calculated from 2nd
derivative of —In(L) or x> prar,

URATE
INTERNAL
STEP SIZE VALUE
7.16689e-05 8.84237e-03
5.57256e-05 3.26535e-01

2 ERR DEF=0.5

Wouter Verkerke, UCSB



Minuit function HESSE

2
e Purpose: calculate error matrix from fllg
P
* % % %
** Error matrix )
e (Covariance Matrix)
cov calculated from JCCESSFULLY
FCN| -1 [US=OK 10 CALLS 42 TOTAL
d’(-InL) le-06  STRATEGY= 1 ERROR MATRIX ACCURATE
EX i = INTERNAL INTERNAL
NO dpidp j ERROR STEP SIZE VALUE
1 <1/ 3.23861e-01 7.16689e-05 8.84237e-03
2 si 3.20763e+00 2.39539%e-01 5.57256e-05 3.26535e-01
ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= ERR DEF=0.5
1.049e-01 2.780e-04
2.780e-04 5.739%e-02
PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2
1 0.00358 1.000 0.004
2 0.00358 0.004 1.000

Wouter Verkerke, UCSB



Minuit function HESSE

[ H d2L
e Purpose: calculate error matrix from >
P
*kkkkkkkkk
** 18 **HESSE 1000
*kkkkkkkhkkkk
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE STATUS=0K 10 CALLS 42 TOTAL
EDM=2.36534e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE (_mumu:r_u\ VALUE
1l mean 8.84225e-02 Correlation matrix pl_] 8.84237e-03
2 sigma 3.20763e+00 calculated from 3.26535e-01
EXTERNAL ERROR MATRIX. NDINM V = 0.0 p F=0.5
1.049e-01 2.780e-04 Y A )

2.780e-04 5.739e-02
PARAMETER CORRELATION COEFFICIEN
NO. GLOBAL 1 2
1 0.00358 1.000 0.004
2 0.00358 0.004 1.000

Wouter Verkerke, UCSB



Minuit function HESSE

2
e Purpose: calculate error matrix from flf
P
*kkkkkkkkk
*% 18 **HESSE 1000
k*kkkkkkkkk*k
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE STATUS=0K 10 CALLS 42 TOTAL
EDM=2.36534e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME STEP SIZE VALUE
1l mean Global correlation vector: 7.16689e-05 8.84237e-03
2 sigma correlation of each parameter |5-57256e-05  3.26535e-01

with all other parameters
EXTERNAL ERRO 2 ERR DEF=0.5
1.049%9e-01 2.
2.780e-04 5.739%e
PARAMETER CORRELA COEFFICIENTS
NO. GLOBAL 1 2
1 |0.00358 1.000 0.004

2 ]0.00358 0.004 1.000

Wouter Verkerke, UCSB



Minuit function MINOS

e MINOS errors are calculated by 'hill climbing algorithm’.
— In one dimension find points where AL=+0.5.

— In >1 dimension find contour with AL=+0.5. Errors are defined by
bounding box of contour.

- In >>1 dimension very time consuming, but more in general more

robust.

e Optional - activated by option “"E” in ROOT or PAW

khkkkkkkkkk

** 23 **MINOS 1000
*kkkkkkkkkk
FCN=257.304 FROM MINOS STATUS=SUCCESSFUL 52 CALLS 94 TOTAL
EDM=2.36534e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

EXT PARAMETER PARABOLIC MINOS ERRORS
NO. NAME VALUE ERROR NEGATIVE POSITIVE

1l mean 8.84225e-02 3.23861le-01||-3.24688e-01 3.25391e-01

2 sigma 3.20763e+00 2.39539e-01||-2.23321e-01 2.58893e-01

= 0.5 (_/\
( MINOS error N

Symmetric error

(repeated result
from HESSE)

\

J

\

Can be asymmetric

(in this example the ‘sigma’ error

is slightly asymmetric)

J




Illustration of difference between HESSE and MINQOS errors

e ‘Pathological’ example likelihood with multiple minima
and non-parabolic behavior

MINOS error

Q 1.2
j
~
(@)
o 1 :
' S i Extrapolation
0 B_— : of parabolic
T ; approximation
K > at minimum
0.6:'%
0.4
0.2
5 5
Parameter
' Wouter Verkerke, NIKHEF

HESSE error



Practical estimation - Fit converge problems

e Sometimes fits don’t converge because, e.qg.

— MIGRAD unable to find minimum

— HESSE finds negative second derivatives
(which would imply negative errors)

e Reason is usually numerical precision and stability

problems, but

- The of fit stability problems is usually
by in fit

e HESSE correlation matrix in primary investigative tool

PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2
1 0.99835 1.000 0.998
2 0.99835 0.998 1.000

— In limit of 100% correlation, the usual point solution becomes a line

solution (or surface solution) in parameter space.
Minimization problem is no longer well defined Wouter Verkerke, UCSB



Practical estimation — Bounding fit parameters

e Sometimes is it desirable to bound the allowed range of
parameters in a fit

- Example: a fraction parameter is only defined in the range [0,1]

— MINUIT option ‘B’ maps finite range parameter to an internal infinite
range using an arcsin(x) transformation:

e
tn

External Error
&
on

Bounded Parameter space

1 I - I - L1 1 I:I |E| PR SN AU SN T AN S T NN SN SO S O T
-8 ] -4 -2 0 2 4 L 8

MINUIT internal parameter space (-00,+ )

L'J

Internal Error Wouter Verkerke, UCSB
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Practical estimation — Bounding fit parameters

o [f fitted parameter values is close to boundary, errors will
become asymmetric (and possible incorrect)

o
© 1.5 ' I —
© 15F ]
w E -
- =
o 'F =
§ -
- EO_S:_. .......................................... —
(@) © - ]
bt - . F 3
= c - =
Q a. - =
© F il E
£ J 2k :
g S = 3
lﬁ m_1_5—_l I S B R - I B B B B —
=10 -8 ] . | =2 0 2 4 6 1
n

MINUIT internal parameter space (-00,+®)

H_l

i Internal error
e So be careful with bounds!

- If boundaries are imposed to avoid region of instability, look into other
parameterizations that naturally avoid that region

- If boundaries are imposed to avoid ‘unphysical’, but statistically valid
results, consider not imposing the limit and dealing with the ‘unphysical’
interpretation in a later stage Wouter Verkerke, UCSB



Mitigating fit stability problems -- Polynomials

Regular parameterization of polynomials
a,+a;x+a.,x?’+asx3 nearly always results in strong
correlations between the coefficients a,.

— Fit stability problems, inability to find right solution common at
higher orders

Use existing parameterizations of
polynomials that have (mostly) uncorrelated variables

- Example: Chebychev polynomials

To(z)
Ty(z)
Ty(z)
Ty(x)
Ty(z)
Ts(z)

Tﬁ.{ i }

1

T

21° — 1

4r* — 3

8zt — 827 + 1

162® — 20z° + 5

3225 — 4821 + 1827 — 1.

\

—

|
|I|
|
i\
i

Tyx Tyx)  Tex)
\ T T, (a.#j,/
7N 0.5

III

H > -0.5 '
S AR

)
{
/
/

=0. -~ .
? -~ lI'-.III

X
1
o

":li-"".f "II'I. |II
. i\ Il|

T5(x)
Wouter Verkerke, UCSB



Extending models to more than one dimension

e If you have data with many observables,
there are two common approaches

— Compactify information with test statistic (see previous section)
— Describe full N-dimensional distribution with a p.d.f.

e Choice of approach largely correlated with understanding
of correlation between observables and amount of
information contained in correlations

— No correlation between observables >
‘Big fit" and ‘Compactification’ work equally well.

— Important correlations that are poorly understood 2>
Compactification preferred. Approach:

1. Compactify all-but-one observable (ideally uncorrelated with the compactified
observables)

2. Cut on compactification test statistic to reduce backgrounds

3. Fit remaining observable - Estimate from data remaining amount of background

(smallest systematic uncertainty due to poor understanding of test statistic and its
inputs)

- Big fit preferred



Extending models to more than one dimension

e Bottom line: N-dim models used when either no
correlations or well understood correlations

e Constructing multi-dimensional models without
correlations is easy

— Just multiply N 1-dimensional p.d.f.s.

AN,
et e
D,
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I
o
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=

i
e,
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i

=
-
&
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e
ANty
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g T,
g5 —0067 ;@%‘qu
s —004] W’ﬁ%
F s ‘(:”:‘*‘Q“

i t‘z@n @& °us;ﬁ“2}§
B
aRaaw

= .
gtlorgof q

b= roj
]

0.004 ¢

0.002}-

— No complex issues with p.d.f. normalization: if 1-dim p.d.f.s are
normalized then product is also by construction

Wouter Verkerke, NIKHEF



Writing multi-dimensional models with correlations

e Formulating N-dim models with correlations may seem
daunting, but it really isn't so difficult.

— Simplest approach: start with one-dimensional model, replace one
parameter p with a function p’(y) of another observable

— Yields correction distribution of x for every given value of y

F(x,m,s) F'(x,[ag+aiY],s)
: wg»ww;o

— NB: Distribution of y probably not correct...

Wouter Verkerke, NIKHEF



Writing multi-dimensional models with correlations

e Solution: see F'(x,y,p) as a conditional p.d.f. F'(x|y)
- Difference is in normalization

jF(x, y)dxdy =1 J-F(x | y)dx =1 for each value of y

- Then multiply with a separate p.d.f describing distribution in y

M(x,y)=F'(xly)-G(y)

F'(x]y) * G(y) = M(x,y)

-

[ Histogram of hh_model__x_ y |

Enines

‘% | i H-!H :;f.ﬁj”::iﬁﬁ' -3-/\ ” Hﬁfn‘s ':??i.:fff;iij::ffi::fffii
s !m"! I m (j,” ] 8 "JM ”‘W“"W‘
! r&f i ru“ g | - w ul i,
_nno; ‘ ""J"!"’!”"!"!‘l"é!‘\\{‘ %u;_ 3 .». MI M:I“",“ft

o Almost all modeling issues with correlations can be treated this way
- Iteration 1) Exponential Missing ET distr. of ‘background’ is independent of Transverse mass
- Iteration 2) Slope depends linearly on MT - write conditional pdf F(ET|MT)
- Iteration 3) Multiply F(ET|MT) with empirical shape for MT



Visualization of multi-dimensional models

e Visualization of multi-dimensional models presents
some additional challenges w.r.t. 1-D

e Can show 2D,3D distribution

— Graphically appealing, but not so useful as you cannot overlay
model on data and judge goodness-of-fit

— Prefer to project on one dimension (there will be multiple choices)

— But plain projection discards a lot of information contained in both

model and data o _
Significance of signal

less apparent

%0.3)

o
ts 120.3
-IL

Ev§
[4,]

=

-BIH-GHI-4IH-2|”0”|2H|4IHGIHB
Reason: Discriminating informatiort in
y observable in both data and model is ignored




Visualizing signal projections of N-dim models

e Simplest solution, only show model and data in
“signal range” of observable y

— Significance shown in “range projection” much more in line with
that of 2D distribution

oo ye[-10,10] ye[-2,2]

“w{Rmsy 3e

5 0.3)

o
ts fgl.'l..'i
-Il

w|.i||||I||||||||I||||I|

Events / { 0.16 )
g 8 3
I I I

= ‘. =.'Eh—'

Ev§
h
8 & B :

e Easy to define a “signal range” simple model above.
How about 6-dimensional model with non-trivial shape?

— Need generic algorithm - Likelihood ratio plot
Wouter Verkerke, NIKHEF



Likelihood ratio plots

Idea: use information on S/(S+B) ratio in projected
observables to define a cut

Example: generalize previous toy model
to 3 dimensions

Express information on S/(S+B) ratio of model in terms

of integrals over model components

LR(x,y,z) = > (%,3,2)
@ Integrate over x o4

e

023 o O

J S ey s I i

LR(y,2) = i
I[S (x,,2) + B(x, y,2) Jdx - A

Plot LR vs (y,z) ’

|




Likelihood ratio plots

e Decide on s/(s+b) purity
contour of LR(y,z)

- Example s/(s+b) > 50% -

Plot both data and model
with corresponding cut.

— For data: calculate LR(y,z) for each event, plot only event with LR>0.5
— For model: using Monte Carlo integration technique:

1 Dataset with values of (y,z)
_[M(xa y,2)dydz = — ZMW sampled from p.d.f and
LR(y,2)>0.5 N D(y,7) filtered for events that meet

LR(y,z)>0.5
All events Only LR(y,z)>0.5

T

=)
T
N

Eventg.‘ (035)
Events / ( 0.25)
2

4

Wouter Verkerke, NIKHEF



Multidimensional fits — Goodness-of-fit determination

e Goodness-of-fit determination of >1 D models is difficult

— Standard y 2 test does not work very will in N-dim because of natural
occurrence of large number of empty bins

— Simple equivalent of (unbinned) Kolmogorov test in >1-D does not
exist

e This area is still very much a work in progress

— Several new ideas proposed but sometimes difficult to calculate, or
not universally suitable
- Some examples
e Cramer-von Mises (close to Kolmogorov in concept)
e Anderson-Darling

e ‘Energy’ tests

- Some references to recent progress:
« PHYSTAT2001/2003/2005

Wouter Verkerke, UCSB



Practical fitting — Error propagation between samples

e Common situation: you want to fit
a small signal in a large sample

— Problem: small statistics does not
constrain shape of your signal very well

— Result: errors are large

e Idea: Constrain shape of your signal
from a fit to a control sample

— Larger/cleaner data or MC sample with
similar properties

Events /(0.8 )

Events /(0.8 )

[
o
=]

3
2
2
1
1

N
(2]

[X]
=

151

o bl b b b b L L L
0 8 6 4 2 0 2 4 € & 10

Needed: a way to propagate the information from the

control sample fit (parameter values and errors) to your

signal fit

Wouter Verkerke, UCSB



Events / { 0.8 )

Practical fitting — Simultaneous fit technique

e given data D;,(x) and model F,,(x;a,b) and
data D_,(x) and model F_,(x,;b,c)

— Construct -log[L4(a,b)] and -log[L,(b,c)] and

3 v Likelihood view
DSig(X)I Fsig(X;a/b) Dct/(X)l Fctl(X;b/C) :Eo?
L L B L B L L L B L BN BN 8 4soF T T T T T T T T T —i 925
3 400 3 v i
gm E oL \COmMbined
300 —; E
250 _; 151
200 —E
150X g Y LTt = 10 ‘CTL’
100 =
3 5
3 E i 4
X 534 3332 -31 -3 -29 -28 2.7 -2.6 -2.5

b

e Minimize -logL(a,b,c)= -logL(a,b)+ -logL(b,c)

— Errors, correlations on common param. b automatically propagated
Wouter Verkerke, UCSB



Practical fitting — Simultaneous fit technique

e Simultaneous fit with visualization of error

| Fitto SIGNAL sample | | Fitto CONTROL sample |

Events /(1)




Another application of simultaneous fits

e You can also use simultaneous fits to samples of the same
type (“signal samples”) with different purity
e Go back to example of NN with one observable left out
— Fit xN after cut on N(x)

— But instead of just fitting data with
N(x)>a, slice data in bins of N(x)
and fit each bin.

Sgha\(le Eama\e; o
[£27] Backgrourfy (test samp\e)l .

*? [Kolmogorov-Smirffov test: signal (bf{ckground)

Normalized
N
[4,]

— Now you exploit all data instead
of just most pure data. Still no 15F
uncontrolled systematic uncertainty
as purity is measured from data in
each slide

— Combine information of all slices in
simultaneous fit

| H B
b 5
"
| B
A 2 5;.-..-,"::,. g’ 1
L A AR SR AR
I A TR A

{44 - #a LA b = PN e

0 -0. . \U‘
A RooPlat of "x~ A RooPlot of "x~

A RoaPlot of "x=

apaiint %-%g , gﬁﬁ% %: M %‘i::
ol PR wh o



Practical Estimation — Verifying the validity of your fit

e How to validate your fit? — You want to demonstrate that
1) Your fit procedure gives on average the correct answer 'no bias’

2) The uncertainty quoted by your fit is an accurate measure for the statistical
spread in your measurement ‘correct error’

e Validation is important for low statistics fits

- Correct behavior not obvious a priori due to intrinsic ML bias
proportional to 1/N

e Basic validation strategy — A simulation study
1) Obtain a large sample of simulated events

2) Divide your simulated events in O(100-1000) samples with the same size as
the problem under study

3) Repeat fit procedure for each data-sized simulated sample

4) Compare average value of fitted parameter values with generated value -
Demonstrates (absence of) bias

5) Compare spread in fitted parameters values with quoted parameter error >
Demonstrates (in)correctness of error

Wouter Verkerke, UCSB



Fit Validation Study - Practical example

Example fit model in 1-D (B mass)

Signal component is Gaussian

centered at B mass

Background component is
Argus function (models phase
space near kinematic limit)

E
P 15:

u% 141

= e
12

O e A AN
g

:W

F(m;NSigakagaﬁS’ﬁB):stg 'G(m;P5)+kag 'A(m;PB)

Results of simulation study:

1000 experiments

with Ng;c(gen)=100, Ngks(gen)=200

Distribution of Ng,(fit)

This particular fit looks unbiased...

Events | { 2.5)
&

b [
) =

Nii;(generated)

80 90 100 110 120

N.iq(fit)



Fit Validation Study — The pull distribution

e What about the validity of the error?

— Distribution of error from simulated

experiments is difficult to interpret... -

- We don’t have equivalent of
N (generated) for the error

e Solution: look at the pull distribution

fit _ ngtrue

- Definition: pull(N;,)= sig ~ sig
O-N

— Properties of pull:
e Mean is O if there is no bias

e Width is 1 if error is correct

— In this example: no bias, correct error
within statistical precision of study

IIIIIIIIIIIII

pullSigma = 1.039 + 0.040
pullMean = 0.012 + 0.053




Fit Validation Study — Low statistics example

e Special care should be taken when fitting small data
samples

— Also if fitting for small signal component in large sample

e Possible causes of trouble

- 2 estimators may become approximate as Gaussian
approximation of Poisson statistics becomes inaccurate

— ML estimators may no longer be efficient
- error estimate from 2" derivative may become inaccurate

- Bias term proportional to 1/N of ML and y2 estimators may
no longer be small compared to 1/sqrt(N)

e In general,
. How to proceed?

— Use unbinned ML fits only — most robust at low statistics
- Explicitly verify the validity of your fit

Wouter Verkerke, UCSB



Demonstration of fit bias at low N - pull distributions

P L R B L I R AR R S R

Ns;c(gen)=20

e Low statistics example:

— Scenario as before but now with
200 bkg events and
only 20 signal events (instead of 100)

g.Z‘ 5.|21 5.|22 5.|23 5.144 5.|25 5.‘28 5.!.7 5.28 5.IibII§.3
. i Ngzc(gen)=200 -
e Results of simulation study 2atd
Distributions become
_ NSIG(gen) e
Paol '— ROV S S Eah Ty AR
O TP B S S B s v
%H SRR .
.S m&%“;n Tiﬁwﬁgm%
Ng;c(fit) 6(Ns16) Pull(Ng;c)

e Absence of bias, correct error at low statistics not obvious!

- Small yields are typically overestimated

S



Fit Validation Study — How to obtain 10.000.000 simulated events?

e Practical issue: usually you need very large amounts of
simulated events for a fit validation study

— Of order 1000x number of events in your fit, easily >1.000.000 events

— Using data generated through a full GEANT-based detector
simulation can be prohibitively expensive

e Solution:

— Technique named ‘Toy Monte Carlo’ sampling
— Advantage: Easy to do and very fast

— Good to determine fit bias due to low statistics, choice of
parameterization, boundary issues etc

— Cannot be used to test assumption that went into model

(e.g. absence of certain correlations). Still need full GEANT-based
simulation for that.

Wouter Verkerke, UCSB



Toy MC generation — Accept/reject sampling

e Simplest: accept/reject sampling EM?_'.".'.".'J.'.'-'J.'.'H'.""'.'J'.'.'J.'.I'|'.:l.';'.l'.'.j‘

1) Determine maximum of function f, .,
2) Throw random number x
3) Throw another random number y

4) If y<f(x)/f,. .. keep x,
otherwise return to step 2)

— PRO: Easy, always works

— CON: It can be inefficient if function
is strongly peaked.
Finding maximum empirically
through random sampling can
be lengthy in >2 dimensions




Toy MC generation — Inversion method

e Fastest: function inversion

1) Given f(x) find inverted function F(x)
so that f( F(x) ) = X

2) Throw uniform random number X e

3) Return F(x)

— PRO: Maximally efficient

— CON: Only works for invertible functions
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Toy MC Generation in a nutshell

e Hybrid: Importance sampling

1) Find ‘envelope function’ g(x)
that is invertible into G(x)
and that fulfills g(x)>=f(x)
for all x

2) Generate random number x
from G using inversion method

3) Throw random number 'y’

4) If y<f(x)/g(x) keep x,
otherwise return to step 2

'ED.MS:"' L L B L L L L L BRI B

§0.04
%.nasf
e r

0031
0025}
002}
0015
001

— PRO: Faster than plain accept/reject sampling
Function does not need to be invertible

— CON: Must be able to find invertible envelope function

Wouter Verkerke, UCSB



Toy MC Generation in a nutshell

e General algorithms exists that can construct empirical
envelope function

— Divide observable space recursively into smaller boxes and take
uniform distribution in each box

- Example shown below from FOAM algorithm

il

Wouter Verkerke, NIKHEF



(Software Advertisement #2)

RooFit

Wouter Verkerke, UCSB
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Implementation - Add-on package to ROOT

---------------------------------------------------------------------------------------------

: LibRooFitCore.so Roo
: 1ibRooFitModels.so Fit

Data Modeling

|

............... TOyMC data MOdeI Data/MOdel . .............. .
: :| Generation || Visualization Fitting ’
\ \
C++ command line MINUIT

interface & macros

Data management & I/O support
histogramming

v
Graphics interface

E ........................................................................................................... Ve .\v{e.r.i(erke, ucsB




Data modeling — OO representation

e Mathematical objects are represented as C++ objects

Mathematical concept RooFit class
variable x, p RooRealVar
function f (.X') RooAbsReal

PDF F(.;é, ]_5, g) RooAbsPdf

space point X RooArgSet
xmax
integral jf(.Xf)dX RooReallIntegral
. Xmin =
list of space points xk RooAbsData

Wouter Verkerke, UCSB



Data modeling — Constructing composite objects

e Straightforward correlation between mathematical
representation of formula and RooFit code

G(x,m,s)

Math

® RooGaussian g

RooFit //// ‘ \\\\

diagram @O RooRealVar x RooRealVar m RooFormulaVar sqrts @

@ N

3) RooRealVar s

RooFit

code RooRealVar x(“x”,”x"”,-10,10) ;

RooRealVar m(™m”, "mean”,0) ;
RooRealVar s(“s”,”sigma”,2,0,10) ;
RooFormulaVar sqrts(“sqrts”,”sqrt(s)”,s) ;
RooGaussian g(“g”,”"gauss”, x,m, sqrts) ;

Wouter Verkerke, UCSB
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Model building — (Re)using standard components

e RoOFit provides a

RooBMixDecay

<m=== Physics inspired
ARGUS,Crystal Ball,

R°°P°lyn°mialE Breit-Wigner, Voigtian,
/ B/D-Decay,....
T T

RooHistPdfif |—|

| Non-parametric

Histogram, KEYS
4+ 8 81 (Probability Density Estimate)

RooArgusBG ¢

RooGaussian

T8 9 1
| Basic
\r s 9 « Gaussian, Exponential, Polynomial,...

P
Y

Loveal i linns
275.28 5.29 51.:

e By RooFit uses to achieve normalization
¢ Classes can provide (partial) integrals
¢ Final normalization can be numeric/analytic form



Model building — (Re)using standard components

e Most physics models can be composed from *basic’ shapes

RooBMixDecayE

A

RooPolynomialE

RooHistPdf: I—-l

RooArgusBG |

RooGaussian

Loveal i linns
275.28 5.29 51.:

[ I
g8 o

EEREN RN .
4 6 F q

RooAddPdf




Model building — (Re)using standard components

e Most physics models can be composed from *basic’ shapes

RooBMixDecayE; /\

RooPolynomialE
RooHistPdf [—]
RooGaussian
EEREENTEE PN
RooLandau ¢ 6 8
[T N .
T8 B

Yo"~ 35 30 35 40 45 B0 &6 &0

RooFFTConvPdf




Model building — (Re)using standard components

e Most physics models can be composed from *basic’ shapes

RooBMixDecay

RooPolynomial

RooHistPdf:

RooArgusBG |

RooGaussian

275.285.29 Sl.:i

RooProdPdf

=
-




Model building — (Re)using standard components

e Building blocks are
— Function variables can be functions themselves
— Just plug in you like

— Universally supported by core code
(PDF classes don't need to implement special handling)

of pagpmeterized mean

%.04—
d§35-—
ol
n§25_—
-
> & | il
0.015 .I b
oml- !I ,{i\%. % .
[I.[IIZIﬁ-— *&\%
J""ufs""4""13""5""2.‘5"“; L R R R R
g(x;m,s)
RooPolyVar “*‘m”,y,RooArgList (a0,al)) ;

RooGaussian g(“g”,”gauss” ,x,m,s) ;
Wouter Verkerke, UCSB



Model building — Expression based components

— Interpreted real-valued function
— Based on ROOT TFormula class

— Ideal for modifying parameterization of existing compiled PDFs

g2
ez

RooBMixDecay(t,tau,w,...)

RooFormulaVar w(*w”,”1-2*D",D) ;

IIIII

=
]
=
N
T

0 vl b Lo oo W be o b bun 1y
-0 -8 6 -4 -2 0 2 4 6 & c?tl]

— Interpreted PDF
— Based on ROOT TFormula class

— User expression doesn’t
need to be normalized

RooGenericPdf f£("f","1l+sin(0.5*x)+abs (exp(0.1*x) *cos (-1*x))", x)



Using models - Overview

» All RooFit models provide vniversal and complete
fitting and Toy Monte Carlo generating functionality

— Model complexity only limited by available memory and CPU power

e models with >16000 components, >1000 fixed parameters
and>80 floating parameters have been used (published physics result)

— Very easy to use — Most operations are one-liners

Fitting Generating

i data = gauss.generate(x,1000)

RooAbsPdf

- <§/

gauss.fitTo (data)

* &
ﬁ* 4 RooDataSet

RooAbsData Wouter Verkerke, UCSB
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sing models — Toy MC Generation

“Toy” Monte Carlo samples from

Sampling method used by default, but PDF components can ad
alternative (more efficient) generator methods

4
discrete-valued dimensions also supported

data=pdf.generate (x,y,1000)

g
{f

é’-‘m'f’o"n'*’ﬁ I
e

ST A
Ty ,:ﬁ;%ﬁ}”%’m:&
3

e
|:> data=pdf.generate (x, ydata)
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P =

s 1 (
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ool 55
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-
-
1500} ol
-

1000} -
so0)- s

Subset of variables can be taken from a

vertise

e E.g. to more accurately model the statistical fluctuations in a particular sample.

e Correlations with prototype observables correctly taken into ags

ogf'e?t\/erkerke, ucsB




Using models - Plotting

e RooPlot - of >1 datasets/PDFs projected on the
40[-
S I Curve always to last
iasz— plotted dataset in frame
P ﬁL
= -
330
Ll L
251 T For multi-dimensional PDFs:
201 h
:_ J-F(X, y)dy
15 Projection[ F'](x) = N - -
mil * | F(x, 5)dxcy
l i
-u-l ~~...‘
5 ‘l' }
(]:IIII|IIII|IIII|IIlnjqu'II|IIII|IIII|IIII|IIIIIIII
5.2 5.215.225.23 5.24 5.255.26 5.27 5.28 5.29 5.3
m(ES) to achieve 1%o0 precision,
regardless of data binning
errors on
histogram

Wouter Verkerke, UCSB



Many default solutions for standard problems

e Unbinned ML fit of efficiency curves

- Example: trigger threshold

e Template interpolation

Data (all, accepted)

. , Events /(1)
HMHIIQIIII!TII
_Hi
—

M ﬁ* 1142

| | il Ly
00-2468101214181820

— Example: morph polynomial into Gaussian

— Realistic use case:
interpolate full MC Higgs
signal between masses of
e.g. 160 GeV and 180 GeV

A RooPlot of "x"

Fitted efficiency

effmax = 0.845=0.038

Eﬂ‘iglency of cut=accept
£ L o
T

mean = 4.80+0.28

+.LT width = 1.70 £ 0.37
1
HH
HH

IW

vl b Lo bia b Loy
8 10 12 14 16 18 20
X

A RooPlot of "x

Bost

i

P

0.04f
0.03f

o.n1 B

0 15 -10 -5 5 10 15 20
x

-
<

S
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Persisting models in the workspace

e Using both model & p.d.f from file

Make plot

of data =

and p.d.f

Construct
likelihood
% profile LH

Draw
profile LH

=

TFile f(“myresults.root”) ;
RooWorkspace* w = f.Get(“w”) ;

w->data(“d”)->plotOn(xframe) ;
\lW—>pdf(“g”)—>p7ot0n(xframe) ;

o=

<

~

pll.plotOn(mframe) ;

_ mframe->Draw()

™ RooPlot* xframe = w->var(“x”)->frame() ;

1=
Eile Edit View Options |nspect Glasses Help
A RooPlot of "x"
~'100[—
=] -
£ wof
S 80—
Z r
60—
40—
20—
L I " iy A . " )
-10 -8 E ] -4 -2 1] 2 4 [] 8 1
X

RooPlot* mframe = w->var(“m”)->frame(-1,1) ;

-

RooNLLVar nl1(“n11”,”nl1”, *w->pdf(“g”), *w->data(“d”)) ;
_ RooProfilelLL pl11(“pl117,”p11”, nll,*w->var(“m”)) ;

e
Help

File Edit View Options Inspect Classes

A RooPlot of "m"

of profile likelihood

Projection
> a2 N W A ot & N ™
TTITT[TT T[T I II T TTTIT[TTTTI[TTTIT

ME T Ty T oy Ty e Ty T T
01 -0.08 -006 -0.04 -0.02 0 002 004 006 008 01
m




Advanced features - Task automation

e Support for routine task automation, e.g. goodness-of-fit study

Accumulate

Input model Generate toy MC Fit model fit statistics

:m7 {HH %:: Z mean = -0.9956 + 0.03 g:: {{HH

= A £

R -

00— #F‘F ﬁﬁ 100 wl *EF #&

°r 1,#;** &"'-' o “r i‘ﬂ‘;* kS

Y VA 2 w

Distribution of

- parameter values
Rep eat - parameter errors
N times - parameter pulls

// Instantiate MC study manager
RooMCStudy mgr (inputModel) ;

// Generate and fit 100 samples of 1000 events
mgr .generateAndFit (100,1000) ;

// Plot distribution of sigma parameter

mgr .plotParam(sigma)—->Draw () Wouter Verkerke. UCSB



