Data Analysis

Wouter Verkerke (NIKHEF)

HEP and data analysis

\author{

- General introduction
}

Particle physics

Looking at the smallest constituents of matter \rightarrow Building a consistent theory that describe matter and elementary forces

High Energy Physics

- Working model: 'the Standard Model' (a Quantum Field Theory)
- Describes constituents of matter, 3 out of 4 fundamental forces

THE STANDARD MODEL

The standard model has many open issues

A most basic question is why particles (and matter) have masses (and so different masses)

The mass mystery could be solved with the 'Higgs mechanism' which predicts the existence of a new elementary particle, the 'Higgs' particle (theory 1964, P. Higgs, R. Brout and F. Englert)

Peter Higgs
The Higgs (H) particle has been searched for since decades at accelerators, but not yet found...

The LHC will have sufficient energy to produce it for sure, if it exists

SUSY2009, Northeastern
5-June-09, P Jenni (CERN)

Francois
Englert

Link with Astrophysics

Temperature fluctuations in Cosmic Microwave Background

Gravitational Lensing

Particle Physic today - Large Machines

Detail of Large Hadron Collider

And large experiments underground

One of the 4 LHC experiments - ATLAS

ATLAS superimposed to the 5 floors of building 40

Muon Detectors

ATLAS
 Detector

View of ATLAS during construction

Collecting data at the LHC

Collisions at LHC

Data reduction, processing and storage are big issues

Worldwide LHC Computing Grid (wLCG)

WLCG is a worldwide collaborative effort on an unprecedented scale in terms of storage and CPU requirements, as well as the software project's size

Analyzing the data - The goal

What we see in the detector

Fundamental physics picture

Extremely difficult (and not possible on an event-by-event basis anyway due to QM)

Analyzing the data - in practice

Physics simulation

The LHC

event reconstruction data analysis

Wouter Verkerke, NIKHEF

'Easy stuff'

ATLAS and CMS early "signals": J/ ψ, W, Z, top, the so-called "candles"

'Difficult stuff'

SM Higgs in CMS

5-June-09, P Jenni (CERN)

What do we expect to see?

- Very active field of statistical data analysis
- Methods and details are important - for certain physics we only expect a handful of events after years of data taking

Summary of Higgs discovery potential at the LHC

Examples of Likelihood Analysis

In these examples, a model that relates precision electroweak observables to parameters of the Standard Model was used

- the inference is based only on the likelihood function for data at hand
- there is no prior, so it's not Bayesian. Not a Neyman Construction.
- what is the meaning of this contour if it's not the Neyman Construction?

Tools for data analysis in HEP

- Nearly all HEP data analysis happens in a single platform
- ROOT (1995-now)
- And before that PAW (1985-1995)
- Large project with many developers, contributors, workshops

Choice of working environment R vs. ROOT

- ROOT has become de facto HEP standard analysis environment
- Available and actively used for analyses in running experiments (Tevatron, B factories etc..)
- ROOT is integrated LHC experimental software releases
- Data format of LHC experiments is (indirectly) based on ROOT \rightarrow Several experiments have/are working on summary data format directly usable in ROOT
- Ability to handle very large amounts of data
- ROOT brings together a lot of the ingredients needed for (statistical) data analysis
- C++ command line, publication quality graphics
- Many standard mathematics, physics classes: Vectors, Matrices, Lorentz Vectors Physics constants...
- Line between 'ROOT' and 'external' software not very sharp
- Lot of software developed elsewhere, distributed with ROOT (TMVA, RooFit)
- Or thin interface layer provided to be able to work with external library (GSL, FFTW)
- Still not quite as nice \& automated as ' R ' package concept

(Statistical) software repositories

- ROOT functions as moderated repository for statistical \& data analysis tools
- Examples TMVA, RooFit
- Several HEP repository initiatives, some contain statistical software
- PhyStat.org (StatPatternRecognition, TMVA,LepStats4LHC)
- HepForge (mostly physics MC generators),
- FreeHep
- Excellent summary of non-HEP statistical repositories on Jim Linnemans statistical resources web page
- From Phystat 2005
- http://www.pa.msu.edu/peop7e/7innemann/stat_resources.htm7

Roadmap for this course

- Basics of statistics
- Event classification
- Parameter estimation
- Confidence intervals, limits, significance
- Systematic uncertainties

Basic Statistics

- Mean, Variance, Standard Deviation
- Gaussian Standard Deviation
- Covariance, correlations
- Basic distributions - Binomial, Poisson, Gaussian
- Central Limit Theorem
- Error propagation

Describing your data - the Average

- Given a set of unbinned data (measurements)

$$
\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}
$$

then the mean value of x is

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- For binned data

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} n_{i} x_{i}
$$

- where n_{i} is bin count and x_{i} is bin center
- Unbinned average more accurate due to rounding

Describing your data - Spread

- Variance $V(x)$ of \mathbf{x} expresses how much \boldsymbol{x} is liable to vary from its mean value $\overline{\boldsymbol{x}}$

$$
\begin{aligned}
V(x) & =\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{1}{N} \sum_{i}\left(x_{i}^{2}-2 x_{i} \bar{x}+\bar{x}^{2}\right) \\
& \left.=\frac{1}{N} \sum_{i} x_{i}^{2}-\frac{1}{N} 2 \bar{x} \sum_{i} x_{i}+\frac{1}{N} \bar{x}^{2} \sum_{i} 1\right) \\
& =\frac{x^{2}}{}-2 \bar{x}^{2}+\bar{x}^{2} \\
& =\bar{x}^{2}-\bar{x}^{2}
\end{aligned}
$$

- Standard deviation $\sigma \equiv \sqrt{V(x)}=\sqrt{\overline{x^{2}}-\bar{x}^{2}}$

Different definitions of the Standard Deviation

$$
\sigma=\sqrt{\frac{1}{N} \sum_{i}\left(x^{2}-\bar{x}\right)^{2}} \text { is the S.D. of the data sample }
$$

- Presumably our data was taken from a parent distributions which has mean μ and S.F. σ

Different definitions of the Standard Deviation

- Which definition of σ you use, $\sigma_{\text {data }}$ or $\sigma_{\text {parent, }}$ is matter of preference, but be clear which one you mean!

Data Sample

Parent Distribution
(from which data sample was drawn)

- In addition, you can get an unbiased estimate of $\sigma_{\text {parent }}$ from a given data sample using

$$
\hat{\sigma}_{\text {parent }}=\sqrt{\frac{1}{N-1} \sum_{\bar{i}}\left(x^{2}-\bar{x}\right)^{2}}=\hat{\sigma}_{\text {data }} \sqrt{\frac{N}{N-1}}
$$

$$
\begin{aligned}
& \left(\sigma_{\text {data }}=\sqrt{\frac{1}{N} \sum_{i}\left(x^{2}-\bar{x}\right)^{2}}\right) \\
& \text { Wouter Verkerke, NIKHEF }
\end{aligned}
$$

More than one variable

- Given 2 variables x, y and a dataset consisting of pairs of numbers

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right)\right\}
$$

- Definition of $\bar{x}, \bar{y}, \sigma_{x}, \sigma_{y}$ as usual
- In addition, any dependence between x, y described by the covariance

$$
\begin{aligned}
\operatorname{cov}(x, y) & =\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
& =\frac{(x-\bar{x})(y-\bar{y})}{(x y} \\
& =\overline{x y}-\bar{x} \bar{y}
\end{aligned}
$$

(has dimension $D(x) D(y)$)

- The dimensionless
correlation coefficient is defined as $\rho=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}} \in[-1,+1]$

Visualization of correlation

Correlation \& covariance in >2 variables

- Concept of covariance, correlation is easily extended to arbitrary number of variables

$$
\operatorname{cov}\left(x_{(i)}, x_{(j)}\right)=\overline{x_{(i)} x_{(j)}}-\bar{x}_{(i)} \bar{x}_{(j)}
$$

- so that $V_{i j}=\operatorname{cov}\left(x_{(i)}, x_{(j)}\right)$ takes the form of a $n \times n$ symmetric matrix
- This is called the covariance matrix, or error matrix
- Similarly the correlation matrix becomes

$$
\rho_{i j}=\frac{\operatorname{cov}\left(x_{(i)}, x_{(j)}\right)}{\sigma \sigma} \longrightarrow V_{i j}=\rho_{i j} \sigma_{i} \sigma_{j}
$$

Basic Distributions - The binomial distribution

- Simple experiment - Drawing marbles from a bowl
- Bowl with marbles, fraction p are black, others are white
- Draw N marbles from bowl, put marble back after each drawing
- Distribution of \mathbf{R} black marbles in drawn sample:

Properties of the binomial distribution

- Mean:

$$
\langle r\rangle=n \cdot p
$$

- Variance: $V(r)=n p(1-p) \Rightarrow \sigma=\sqrt{n p(1-p)}$

HEP example - Efficiency measurement

- Example: trigger efficiency
- Usually done on simulated data so that also untriggered events are available

Fitted efficiency

Basic Distributions - the Poisson distribution

- Sometimes we don't know the equivalent of the number of drawings
- Example: Geiger counter
- Sharp events occurring in a (time) continuum
- What distribution to we expect in measurement over fixed amount of time?
- Divide time interval λ in n finite chunks,
- Take binomial formula with $p=\lambda / n$ and let $n \rightarrow \infty$

$$
\begin{array}{r}
P(r ; \lambda / n, n)=\frac{\lambda^{r}}{n^{r}}\left(1-\frac{\lambda}{n}\right)^{n-r} \frac{n!}{r!(n-r)!} \text { 刁 } \lim _{n \rightarrow \infty} \frac{n!}{r!(n-r)!}=n^{r}, \\
P(r ; \lambda)=\frac{e^{-\lambda} \lambda^{r}}{r!} \quad \text { \&Poisson distribution }
\end{array}
$$

Properties of the Poisson distribution

More properties of the Poisson distribution $P(r ; \lambda)=\frac{e^{-\lambda} \lambda^{r}}{r!}$

- Mean, variance: $\langle r\rangle=\lambda$

$$
V(r)=\lambda \Rightarrow \sigma=\sqrt{\lambda}
$$

- Convolution of 2 Poisson distributions is also a Poisson distribution with $\lambda_{a b}=\lambda_{a}+\lambda_{b}$

$$
\begin{aligned}
P(r) & =\sum_{r_{A}=0}^{r} P\left(r_{A} ; \lambda_{A}\right) P\left(r-r_{A} ; \lambda_{B}\right) \\
& =e^{-\lambda_{A}} e^{-\lambda_{B}} \sum \frac{\lambda_{A}^{r_{A}} \lambda_{B}^{r-r_{A}}}{r_{A}!\left(r-r_{A}\right)!} \\
& =e^{-\left(\lambda_{A}+\lambda_{B}\right)} \frac{\left(\lambda_{A}+\lambda_{B}\right)^{r}}{r!} \sum_{r_{A=0}}^{r} \frac{r!}{\left(r-r_{A}\right)!}\left(\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}\right)^{r_{A}}\left(\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}}\right)^{r-r_{A}} \\
& =e^{-\left(\lambda_{A}+\lambda_{B}\right)} \frac{\left(\lambda_{A}+\lambda_{B}\right)^{r}}{r!}\left(\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}+\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}}\right)^{r} \\
& =e^{-\left(\lambda_{A}+\lambda_{B}\right)} \frac{\left(\lambda_{A}+\lambda_{B}\right)^{r}}{r!}
\end{aligned}
$$

HEP example - counting experiment

- Any distribution plotted on data (particularly in case of low statistics

Wouter Verkerke, NIKHEF

Basic Distributions - The Gaussian distribution

- Look at Poisson distribution in limit of large N

$$
\begin{aligned}
P(r ; \lambda)= & e^{-\lambda} \frac{\lambda^{r}}{r!} \quad \ddots \quad \text { Take log, substitute, } r=\lambda+x_{1} \\
\ln (P(r ; \lambda)) & =-\lambda+r \ln \lambda-(r \ln r-r)-\ln \sqrt{2 \pi r} \\
& =-\lambda+r\left[\ln \lambda-\ln \left(\lambda\left(1+\frac{x}{\lambda}\right)\right)\right]+(\lambda+x)-\ln \sqrt{2 \pi \lambda} \\
& \approx x-(\lambda-x)\left(\frac{x}{\lambda}+\frac{x^{2}}{2 \lambda^{2}}\right)-\ln (2 \pi \lambda) \\
& \approx \frac{-x^{2}}{2 \lambda}-\ln (2 \pi \lambda)
\end{aligned}
$$

$$
P(x)=\frac{e^{-x^{2} / 2 \lambda}}{\sqrt{2 \pi \lambda}}
$$

Familiar Gaussian distribution;
(approximation reasonable for $\mathrm{N}>10$)

$$
\lambda=1
$$

Properties of the Gaussian distribution

$$
P(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

- Mean and Variance

$$
\begin{aligned}
\langle x\rangle & =\int_{-\infty}^{+\infty} x P(x ; \mu, \sigma) d x=\mu \\
V(x) & =\int_{-\infty}^{+\infty}(x-\mu)^{2} P(x ; \mu, \sigma) d x=\sigma^{2} \\
\sigma & =\sigma
\end{aligned}
$$

68.27% within 1σ	$90 \% \rightarrow 1.645 \sigma$
95.43% within 2σ	$95 \% \rightarrow 1.96 \sigma$
99.73% within 3σ	$99 \% \rightarrow 2.58 \sigma$
	$99.9 \% \rightarrow 3.29 \sigma$

HEP example - high statistics counting expt

- High statistics distributions from data

Errors

- Doing an experiment \rightarrow making measurements
- Measurements not perfect \rightarrow imperfection quantified in resolution or error
- Common language to quote errors
- Gaussian standard deviation $=\operatorname{sqrt}(\mathrm{V}(\mathrm{x})$)
- 68% probability that true values is within quoted errors
[NB: 68\% interpretation relies strictly on Gaussian sampling distribution, which is not always the case, more on this later]
- Errors are usually Gaussian if they quantify a result that is based on many independent measurements

The Gaussian as 'Normal distribution'

- Why are errors usually Gaussian?
- The Central Limit Theorem says
- If you take the sum X of N independent measurements $X_{i,}$ each taken from a distribution of mean m_{i}, a variance $V_{i}=\sigma_{i}{ }^{2}$, the distribution for x
(a) has expectation value $\langle X\rangle=\sum_{i} \mu_{i}$
(b) has variance $V(X)=\sum_{i} V_{i}=\sum_{i} \sigma_{i}^{2}$
(c) becomes Gaussian as $\mathrm{N} \rightarrow \infty$
- Small print: tails converge very slowly in CLT, be careful in assuming Gaussian shape beyond 2σ

Demonstration of Central Limit Theorem

$\leftarrow 5000$ numbers taken at random from a uniform distribution between [0,1].

- Mean $=1 / 2$, Variance $=1 / 12$
$\leftarrow 5000$ numbers, each the sum of 2 random numbers, i.e. $X=x_{1}+x_{2}$.
- Triangular shape
\leftarrow Same for 3 numbers, $X=x_{1}+x_{2}+x_{3}$
\leftarrow Same for 12 numbers, overlaid curve is exact Gaussian distribution

Central Limit Theorem - repeated measurements

- Common case 1 : Repeated identical measurements i.e. $\mu_{\mathrm{i}}=\mu, \sigma_{\mathrm{i}}=\sigma$ for all i

C.L.T

$$
\langle X\rangle=\sum_{i} \mu_{i}=N \mu \Rightarrow\langle\bar{x}\rangle=\frac{X}{N}=\mu
$$

$$
V(\bar{x})=\sum_{i} V_{i}(\bar{x})=\frac{1}{N^{2}} \sum_{i} V_{i}(X)=\frac{N \sigma^{2}}{N^{2}}=\frac{\sigma^{2}}{N}
$$

$$
\sigma(\bar{x})=\frac{\sigma}{\sqrt{N}} \leftarrow \text { Famous sqrt(N) law }
$$

Central Limit Theorem - repeated measurements

- Common case 2 : Repeated measurements with identical means but different errors (i.e weighted measurements, $\mu_{\mathrm{i}}=\mu$)

$$
\bar{x}=\frac{\sum x_{i} / \sigma_{i}^{2}}{\sum 1 / \sigma_{i}^{2}} \quad \text { Weighted average }
$$

$$
V(\bar{x})=\frac{1}{\sum 1 / \sigma_{i}^{2}} \Rightarrow \sigma(\bar{x})=\frac{1}{\sqrt{\sum 1 / \sigma_{i}^{2}}}
$$

'Sum-of-weights' formula for error on weighted measurements

Error propagation - one variable

- Suppose we have $f(x)=a x+b$
- How do you calculate $\mathrm{V}(\mathrm{f})$ from $\mathrm{V}(\mathrm{x})$?

$$
\begin{aligned}
V(f) & =\left\langle f^{2}\right\rangle-\langle f\rangle^{2} \\
& =\left\langle(a x+b)^{2}\right\rangle-\langle a x+b\rangle^{2} \\
& =a^{2}\left\langle x^{2}\right\rangle+2 a b\langle x\rangle+b^{2}-a\langle x\rangle^{2}-2 a b\langle x\rangle-b^{2} \\
& =a^{2}\left\langle\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right) \\
& =a^{2} V(x) \quad \leftarrow \text { i.e. } \sigma_{\mathrm{f}}=|\mathrm{a}| \sigma_{\mathrm{x}}
\end{aligned}
$$

- More general: $\quad V(f)=\left(\frac{d f}{d x}\right)^{2} V(x) \quad ; \quad \sigma_{f}=\left|\frac{d f}{d x}\right| \sigma_{x}$
- But only valid if linear approximation is good in range of error

Error Propagation - Summing 2 variables

- Consider $f=a x+b y+c$

$$
\begin{aligned}
V(f) & =a^{2}\left(\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right)+b^{2}\left(\left\langle y^{2}\right\rangle-\langle y\rangle^{2}\right)+2 a b(\langle x y\rangle-\langle x\rangle\langle y\rangle) \\
& =a^{2} V(x)+b^{2} V(y)+\underbrace{2 a b \operatorname{cov}(x, y)}
\end{aligned}
$$

- More general

$$
\begin{aligned}
V(f) & =\left(\frac{d f}{d x}\right)^{2} V(x)+\left(\frac{d f}{d y}\right)^{2} V(y)+2\left(\frac{d f}{d x}\right)\left(\frac{d f}{d y}\right) \operatorname{cov}(x, y) \\
\sigma_{f}^{2} & =\left(\frac{d f}{d x}\right)^{2} \sigma_{x}^{2}+\left(\frac{d f}{d y}\right)^{2} \sigma_{y}^{2}+2\left(\frac{d f}{d x}\right)\left(\frac{d f}{d y}\right) \rho \sigma_{x} \sigma_{y}
\end{aligned}
$$

But only valid if linear approximation The correlation coefficient is good in range of error

Error propagation - multiplying, dividing 2 variables

- Now consider $f=x \cdot y$

$$
\begin{gathered}
V(f)=y^{2} V(x)+x^{2} V(y) \\
\left(\frac{\sigma_{f}}{f}\right)^{2}=\left(\frac{\sigma_{x}}{x}\right)^{2}+\left(\frac{\sigma_{y}}{y}\right)^{2}
\end{gathered}
$$

- Result similar for $f=x / y$
- Other useful formulas

$$
\frac{\sigma_{1 / x}}{1 / x}=\frac{\sigma_{x}}{x} \quad ; \quad \sigma_{\ln (x)}=\frac{\sigma_{x}}{x}
$$

Relative error on $x, 1 / x$ is the same

Error on log is just fractional error

