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HEP and data analysis
— General introduction



Particle physics

Bestudeert de natuur op afstanden < 10-15 m

atom                          nucleus

Looking at the smallest constituents of matter à Building a
consistent theory that describe matter and elementary forces 

10-15 m



Newton                               

Maxwell

Einstein                  

Theory of Relativity

Quantum Mechanics

Bohr                     

Zwaartekracht en Electromagnetisme
“zelfde krachten … nieuwe modellen”



High Energy Physics

• Working model: ‘the Standard Model’ (a Quantum Field 
Theory)

– Describes constituents of matter, 3 out of 4 fundamental forces
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The standard model has many open issues
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Temperature fluctuations
in Cosmic Microwave Background

Rotation Curves Gravitational
Lensing

What is 
dark matter?

Link with Astrophysics



Particle Physic today – Large Machines 
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Detail of Large Hadron Collider
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And large experiments underground
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One of the 4 LHC experiments – ATLAS 

Wouter Verkerke, NIKHEF



View of ATLAS during construction
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Collecting data at the LHC
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Data reduction, processing and storage are big issues
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Analyzing the data – The goal
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proton

proton

What we see in the detector Fundamental physics picture

Extremely difficult
(and not possible on an event-by-event basis anyway due to QM)



Analyzing the data – in practice
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Physics simulation 

detector 
simulation

event reconstruction
data analysis

The LHC

ATLAS
detector

?



‘Easy stuff’
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‘Difficult stuff’
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What do we expect to see?

• Very active field of statistical data analysis 

• Methods and details are important – for certain physics 
we only expect a handful of events after years of data 
taking
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Tools for data analysis in HEP

• Nearly all HEP data analysis happens in a single platform

– ROOT (1995-now)

– And before that PAW (1985-1995)

• Large project with many developers, 
contributors, workshops
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Choice of working environment R vs. ROOT

• ROOT has become de facto HEP standard analysis environment
– Available and actively used for analyses in running experiments 

(Tevatron, B factories etc..)

– ROOT is integrated LHC experimental software releases

– Data format of LHC experiments is (indirectly) based on ROOT à Several 
experiments have/are working on summary data format directly usable in 
ROOT 

– Ability to handle very large amounts of data

• ROOT brings together a lot of the ingredients needed for 
(statistical) data analysis
– C++ command line, publication quality graphics 

– Many standard mathematics, physics classes: Vectors, Matrices, Lorentz 
Vectors Physics constants…

• Line between ‘ROOT’ and ‘external’ software not very sharp
– Lot of software developed elsewhere, distributed with ROOT (TMVA, RooFit)

– Or thin interface layer provided to be able to work with external library (GSL, 
FFTW)

– Still not quite as nice & automated as ‘R’ package concept
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(Statistical) software repositories

• ROOT functions as moderated repository for statistical & 
data analysis tools

– Examples TMVA, RooFit

• Several HEP repository initiatives, some contain statistical 
software 

– PhyStat.org (StatPatternRecognition, TMVA,LepStats4LHC)

– HepForge (mostly physics MC generators), 

– FreeHep

• Excellent summary of non-HEP statistical repositories on 
Jim Linnemans statistical resources web page

– From Phystat 2005

– http://www.pa.msu.edu/people/linnemann/stat_resources.html



Roadmap for this course

• Basics of statistics

• Event classification 

• Parameter estimation

• Confidence intervals, limits, significance

• Systematic uncertainties
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Basic Statistics
— Mean, Variance, Standard Deviation
— Gaussian Standard Deviation 
— Covariance, correlations
— Basic distributions – Binomial, Poisson, Gaussian
— Central Limit Theorem
— Error propagation
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Describing your data – the Average

• Given a set of unbinned data (measurements)

{ x1, x2, …, xN}

then the mean value of x is

• For binned data

– where ni is bin count and xi is bin center

– Unbinned average more accurate due to rounding
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Describing your data – Spread

• Variance V(x) of x expresses how much x is liable to 
vary from its mean value x

• Standard deviation
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Different definitions of the Standard Deviation

• Presumably our data was taken from a parent 
distributions which has mean µ and S.F. σ

∑ −=
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xx
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22 )(
1σ is the S.D. of the data sample

x – mean of our sample µ – mean of our parent dist

σ – S.D. of our parent distσ – S.D. of our sample

Beware Notational Confusion!

x

σσσσ σσσσ

µµµµ

Data Sample
Parent Distribution

(from which data sample was drawn)
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Different definitions of the Standard Deviation

• Which definition of σ you use, σdata or σparent,  is matter of 
preference, but be clear which one you mean!

• In addition, you can get an unbiased estimate of σσσσparent from a 
given data sample using 
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More than one variable

• Given 2 variables x,y and a dataset consisting of pairs 
of numbers

{ (x1,y1),  (x2,y2), … (xN,yN) }

• Definition of x, y, σx, σy as usual

• In addition, any dependence between x,y described by 
the covariance

• The dimensionless 
correlation coefficient is defined as
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Visualization of correlation

ρ ρ ρ ρ = 0 ρ ρ ρ ρ = 0.1 ρ ρ ρ ρ = 0.5

ρ ρ ρ ρ = -0.7 ρ ρ ρ ρ = -0.9 ρ ρ ρ ρ = 0.99
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Correlation & covariance in >2 variables

• Concept of covariance, correlation is easily extended to 
arbitrary number of variables

• so that                                 takes the form of 
a n x n symmetric matrix

• This is called the covariance matrix, or error matrix

• Similarly the correlation matrix becomes
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Basic Distributions – The binomial distribution

• Simple experiment – Drawing marbles from a bowl

– Bowl with marbles,  fraction p are black, others are white

– Draw N marbles from bowl, put marble back after each drawing

– Distribution of R black marbles in drawn sample:

Binomial distribution
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Properties of the binomial distribution

• Mean:

• Variance:  

pnr ⋅=

)1()1()( pnppnprV −=⇒−= σ

p=0.1, N=4 p=0.5, N=4 p=0.9, N=4

p=0.1, N=1000 p=0.5, N=1000 p=0.9, N=1000



HEP example – Efficiency measurement

• Example: trigger efficiency

– Usually done on simulated data so that also untriggered events 
are available
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Basic Distributions – the Poisson distribution

• Sometimes we don’t know the equivalent of the number 
of drawings

– Example: Geiger counter

– Sharp events occurring in a (time) continuum

• What distribution to we expect in measurement over 
fixed amount of time?
– Divide time interval λ in n finite chunks,

– Take binomial formula with p=λ/n  and let nà∞
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Properties of the Poisson distribution

λλλλ=0.1 λλλλ=0.5 λλλλ=1

λλλλ=2 λλλλ=5 λλλλ=10

λλλλ=20 λλλλ=50 λλλλ=200
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More properties of the Poisson distribution

• Mean, variance:

• Convolution of 2 Poisson distributions is also a Poisson 
distribution with λab=λa+λb
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HEP example – counting experiment

• Any distribution plotted on data (particularly in case of 
low statistics
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Basic Distributions – The Gaussian distribution

• Look at Poisson distribution in limit of large N
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Properties of the Gaussian distribution

• Mean and Variance

• Integrals of Gaussian
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HEP example – high statistics counting expt

• High statistics distributions from data
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Errors

• Doing an experiment à making measurements

• Measurements not perfect à imperfection quantified in 
resolution or error

• Common language to quote errors

– Gaussian standard deviation = sqrt(V(x))

– 68% probability that true values is within quoted errors

[NB: 68% interpretation relies strictly on Gaussian sampling distribution, 
which is not always the case, more on this later]

• Errors are usually Gaussian if they quantify a result that 
is based on many independent measurements
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The Gaussian as ‘Normal distribution’

• Why are errors usually Gaussian?

• The Central Limit Theorem says

– If you take the sum X of N independent measurements xi, 
each taken from a distribution of mean mi, a variance Vi=σi

2,
the distribution for x

(a) has expectation value

(b) has variance

(c ) becomes Gaussian as N àààà ∞∞∞∞

– Small print: tails converge very slowly in CLT, be careful in assuming 
Gaussian shape beyond 2σ
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Demonstration of Central Limit Theorem

← 5000 numbers taken at random from a 
uniform distribution between [0,1].

– Mean = 1/2, Variance = 1/12

← 5000 numbers, each the sum of 2 
random numbers, i.e. X = x1+x2.

– Triangular shape

← Same for 3 numbers, 
X = x1 + x2 + x3

← Same for 12 numbers, overlaid curve is 
exact Gaussian distribution

N=1

N=2

N=3

N=12
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Central Limit Theorem – repeated measurements

• Common case 1 : Repeated identical measurements
i.e. µi = µ, σi = σ for all i
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Central Limit Theorem – repeated measurements

• Common case 2 : Repeated measurements with
identical means but different errors
(i.e weighted measurements, µi = µ)
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Error propagation – one variable

• Suppose we have

• How do you calculate V(f) from V(x)?

• More general: 

– But only valid if linear approximation is good in range of error

baxxf +=)(

( )
)(

22

)(

)(

2

222

22222

22

22

xVa

xxa

bxabxabxabxa

baxbax

fffV

=

−=

−−−++=

+−+=

−=

xf dx
df

xV
dx
df

fV σσ =






= ;)()(
2

ßßßß i.e. σσσσf = |a|σσσσx



Wouter Verkerke, UCSB

Error Propagation – Summing 2 variables

• Consider

• More general
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only valid in absence of correlations, 
i.e. cov(x,y)=0

But only valid if  linear approximation 
is good in range of error
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Error propagation – multiplying, dividing 2 variables

• Now consider

– Result similar for 

• Other useful formulas
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