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HEP and data analysis

— General introduction
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Particle physics
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atom nucleus

Looking at the smallest constituents of matter - Building a
consistent theory that describe matter and elementary forces
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Einstein




High Energy Physics

e Working model: ‘the Standard Model’ (a Quantum Field
Theory)

— Describes constituents of matter, 3 out of 4 fundamental forces

THE STANDARD MODEL

SJaUIED 32104

*Yet to be confirmed Source: AAAS Wouter Verkerke, NIKHEF



The standard model has many open issues

A most basic question is why particles (and
matter) have masses (and so different masses)

The mass mystery could be solved with the ‘Higgs mechanism’
which predicts the existence of a new elementary particle, the
‘Higgs' particle (theory 1964, P. Higgs, R. Brout and F. Englert)
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Link with Astrophysics
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M33 rotation curve |
(fig. 1)
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Particle Physic today - Large Machines

e LhC machine B =
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@t The Larg
=== /s a 27 km long collider ring
: housed in a tunnel about 100 m
underground near Geneva




Detail of Large Hadron Collider

The most challenging components are the
1232 high-tech superconducting dipole magnets

Magnetic field: 8.4 T

Operation temperature: 1.9 K (pressurized superfiuid helium)
Dipole current: 11700 A

Stored energy: 7 MJ

Dipole weight: 34 tons

7600 km of Nb-Ti superconducting cable

LHC construction




And large experiments underground
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One of the 4 LHC experiments — ATLAS
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Collecting data at the LHC

Collisions at LHC

Proton-Proton

Protons/bunch 10"

Beam energy 7 TeV (7x10™ eV)
Luminosity 10* cm? g

Event rate:

Proton N=Lxo (pp)= 10° interactions/s
Mostly soft (low p;) events
Parton 4——— |nteresting hard (high-p;) events are rare

(quark, gluon)

- lmm : =
Particle - Selection of 1in
10,000,000,000,000
jet
SLSA0N, Hntiirasiem LHC Entering Operation - 'H’Efy'pﬂwerfUI dEtE(:tﬂl‘SﬂE&dEd

S-lune-09, P Jenni (CERMN)



Data reduction, processing and storage are big issues

Worldwide LHC Computing Grid (wLCG)

. Balloon
¥ (30 km)
WLCG is a worldwide '
collaborative effort on T
an unprecedented scale 1 year LHC data!
in terms of storage and (~ 20 Km)

CPU requirements, as ;\
well as the software
project’s size

Concorde
(15 Km)

GRID computing developed
to solve problem of data storage
and analysis

LHC data volume per year:
10-15 Petabytes

One CD has ~ 600 Megabytes R 50 CD-ROM
1 Petabyte = 109 MB = 10%5Byte i
=35GB

Mt. Blanc

(Note: the WWW is from CERN...



Analyzing the data — The goal

What we see in the detector Fundamental physics picture

¥{cm)

Extremely difficult
(and not possible on an event-by-event basis anyway due to QM)
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Analyzing the data - in practice

event reconstruction
data analysis

detector
simulation 8000 R
L | How
2 7ooof
5
E 8000 Higgs signal
z

5000 F
4000
S P R & m—
Physics simulation ] My (e
_ detector
B
S Shad,
A :
The LHC
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‘Easy stuff’

ATLAS and CMS early “signals™: Jiy, W, Z, top, the so-called “candles”

Z > ee, 14 TeV, 50 pb-'

Vs =10 TeV, after cuts:

-
%aﬂuu e Sﬁhég:‘a:mmd Backaround —j ~200Z 5> ee,puperdayat L= 1031
fi2500- mmoconcssts0) | ~ 40000 events 50 pb-
e — Muon Spectrometer alignment, EM calo
1500 uniformity, energy/momentum scale of full detector,
1000 lepton trigger and reconstruction efficiency, ...
500 =

DU' 20 40 B0 a8b 100 120 !‘;fU 'IEliﬂ 180 EDU
Invariant Mass Mee (GaV) e At \;5 = 10 TE'V
£ . .

— after simple cuts:
tt —» bW bW — blv bjj ~ 1200 events 100 pb-"

5 &

3 jets pr> 40 GeV
1 jets pr> 20 GeV

ATLAS ]
14 TeV, 100 pb! | -

2
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Mumber of events [ 10.0 GeV/
2
I

=
TT I T
|

i =
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M, [GeV]

1 lepton p;> 20 GeV

=

" | mcontain most physics objects: leptons, jets, E;™ss, b-jets
m background to ~ all searches
— when top measured, experiment is ready for discovery phase

E,™iss > 20 GeV




‘Difficult stuff’
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What do we expect to see?

e Very active field of statistical data analysis

e Methods and details are important — for certain physics
we only expect a handful of events after years of data

taking

Summary of Higgs discovery potential at the LHC

With
1 fb1: 95% C.L. exclusion
5 fb': 5o discovery

over full allowed mass range
Final word about Higgs mechanism by end 2012 ?
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Examples of Likelihood Analysis @

In these examples, a model that relates precision electroweak observables
to parameters of the Standard Model was used

» the inference is based only on the likelihood function for data at hand
* there is no prior, so it’s not Bayesian. Not a Neyman Construction.
- what is the meaning of this contour if it’s not the Neyman Construction?

6 My = 144 GeV
Bl Theory uncertaintyl ; | L ) B R B B
ﬁmﬂd: B 1 —LEP1 and SLD
5 B N
—0.02758+0.00035 [f : 80.5- -— LEP2 and Tevatron (prel.)
B P ER 0.02749+0.00012 ff ; . 68% CL
4 - -+ incl. low Q° data | — _
o 3
= 87 T ©. 5041
2- 1 £
17 1 7 80.3-
0 | Exclludl " v PFE"fﬂiﬂaf}*_ | ]
30 100 300 150 175 200
m,, [GeV] m, [GeV]

Kyle Cranmer (NYLU) CERN Academic Training, Feb 2-5, 2009 14



Tools for data analysis in HEP

e Nearly all HEP data analysis happens in a single platform
— ROOT (1995-now)
— And before that PAW (1985-1995)

e Large project with many developers,
contributors, workshops

i@:A ROOT Team tOday (Interes’rjng talks

H (1]
(working 50% or more) about all these

topics

(I CORE: Fons Rademakers, Leo Franco, Diego Marcos
U DICT: Axel Naumann, Philippe Canal, (Stefan Roiser)
U 1/O: Philippe Canal(50%), Paul Russo

U MATH: Lorenzo Moneta, (Anna Kreshuk)

J GEOM: Andrei Gheata, Mihaela Gheata

L GUI: llka Antcheva, Bertrand Bellenot,

' htt )l t h ( | ")
5 sf/root.cern.c
workshop Topes. & " p e o L GRAF: Olivier Couet, Timur Potcheptsov, Matev

i o Tadel(50%)
! 1 PROOF: Fons, Gerri Ganis, Jan lwaszkiewicz
. PYROOT: Wim Lavrijsen:(%X%:) 5

vvouter verkerke, NIKHEF



Choice of working environment R vs. ROOT

e ROOT has become de facto HEP standard analysis environment

Available and actively used for analyses in running experiments
(Tevatron, B factories etc..)

ROOT is integrated LHC experimental software releases

Data format of LHC experiments is (indirectly) based on ROOT - Several

experiments have/are working on summary data format directly usable in
ROOT

Ability to handle very large amounts of data

e ROOT brings together a lot of the ingredients needed for
(statistical) data analysis

C++ command line, publication quality graphics

Many standard mathematics, physics classes: Vectors, Matrices, Lorentz
Vectors Physics constants...

e Line between 'ROOT’ and ‘external’ software not very sharp

Lot of software developed elsewhere, distributed with ROOT (TMVA, RooFit)

Or thin interface layer provided to be able to work with external library (GSL,
FFTW)

Still not quite as nice & automated as ‘R’ package concept
Wouter Verkerke, NIKHEF



(Statistical) software repositories

ROOT functions as moderated repository for statistical &
data analysis tools

— Examples TMVA, RooFit

Several HEP repository initiatives, some contain statistical
software

— PhyStat.org (StatPatternRecognition, TMVA,LepStats4LHC)
— HepForge (mostly physics MC generators),
— FreeHep

Excellent summary of non-HEP statistical repositories on
Jim Linnemans statistical resources web page

— From Phystat 2005

- http://www.pa.msu.edu/people/1innemann/stat_resources.html

Wouter Verkerke, NIKHEF



Roadmap for this course

e Basics of statistics

e Event classification

e Parameter estimation

e Confidence intervals, limits, significance

e Systematic uncertainties

Wouter Verkerke, NIKHEF



Basic Statistics

— Mean, Variance, Standard Deviation

— Gaussian Standard Deviation

— Covariance, correlations

— Basic distributions — Binomial, Poisson, Gaussian
— Central Limit Theorem

— Error propagation

Wouter Verkerke, NIKHEF



Describing your data - the Average
e Given a set of data (measurements)

{ x1, XZ, Enny XN}

then the mean value of x is

.
= Xl
N i=1
e For data
.| & ?
.x —_ nlxl ni....|....|....|...‘|.m|u.wu.m \Ii
Nl=1 5 4 3 -2 14 0 1 2 3 4 5

- where n; is bin count and x; is bin center

— Unbinned average more accurate due to rounding
Wouter Verkerke, NIKHEF



Describing your data — Spread

of X expresses how much x is liable to
vary from its mean value x

V(x) = %Z(xi-x)z
= iZ(x?—zximfcz)
= —Zx ——2x2x +— Zl)

= x—2x +x°

S e el
= X —X

V(x) :\/P—)_cz

Wouter Verkerke, NIKHEF



Different definitions of the Standard Deviation

o = iZ(xz —x)> isthe S.D. of the data sample
N 5

e Presumably our data was taken from a parent
distributions which has mean p and S.F. o

Parent Distribution

Data Sample (from which data sample was drawn)

w
[a]

i ﬂ% E.uzs_
. ¥

Events /(0.2)
W
3

X — mean of our sample u — mean of our parent dist

c — S.D. of our sample =) c — S.D. of our parent dist

Beware Notational Confusion!yy, icr Verkerke, NIKHEF



Different definitions of the Standard Deviation

e Which definition of ¢ you US€, Gysts OF Gparents 1S Matter of
preference, but be clear which one you mean!

Parent Distribution

Data Sample (from which data sample was drawn)

Events /{0.2)

3 n (]
) 8 g
I I
:.;jﬁ':
==~
e,
—a—
=
==}
et
e
m»—H
=
Projesti f gaussian PDF
2 8
o @
I L
>

100 ; @ } &&# 0.01 I
I E 0.005

0
0 8 6 4 =2 0 2 4 & 8 10 40 8 % 4 2 0 2 4 & 8 M0
X

e In addition, you can get an from a
given data sample using
A L . = N L SIS
O parent = \/N _IZ (X _x) = O gata N —1 [O-d"“a :\/ﬁz,-“(x %) J

. .
- .
--------
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More than one variable

Given and a dataset consisting of pairs
of numbers

{ (X].IY]_)I (XZIYZ)I (XNIYN) }

Definition of x, y, oy, 5, as usual

In addition, any described by
the
1 _ _
cov(x,y) = WZ(X,- —x)(y;, =)
=(x=X)(y—Y)
=Xy — )_Cy (has dimension D(x)D(y))
The dimensionless cov(x, y)

e[-1,+1]

is defined as p =
.0,

Wouter Verkerke, NIKHEF



Visualization of correlation

p=0 p=0.1 p= 0.5
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o -] [ ] [ ]
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2F 3 ap ] 2} =
af = af - ] f ]
Fr Lo b bt b b b L] :IIII|III-I|III.I|IIII|IIII|IIII|IIII|IIII: :II.I.I|IIII|III.IllllI-I|IIII|IIII|IIII|IIII:
4 - - - [] 1 2 3 4 -'!d - - - [] 1 2 3 4 _‘-d - - - [i] 1 2 3 4
p=-0.7 p=-0.9 5= 0.99

A 4 T e 4 P e
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4—4 - - - [] 1 2 3 4 -.!i - - - [] 1 2 3 4 _‘-i - - - [}] 1 2 3 4




Correlation & covariance in >2 variables

e Concept of covariance, correlation is easily extended to
arbitrary number of variables

COV(X )5 X)) = XX jy = Xy Xy

e sothat V,=cov(x,,X ) takes the form of
a
e This is called the , Or

e Similarly the correlation matrix becomes

covixy x )
- @2 ) V.= p.00

OO

Wouter Verkerke, NIKHEF



Basic Distributions — The binomial distribution

e Simple experiment — Drawing marbles from a bowl
- Bowl with marbles, fraction p are black, others are white

- Draw N marbles from bowl, put marble back after each drawing

— Distribution of R black marbles in drawn sample:

Probability of a Number of equivalent
specific outcome permutations for that
e.g. '‘BBBWBWW'’ outcome
A A
4 N\ A
!
] R N—-R N
R!(N —R)!
o~ _0.51 Binomial distribution
Q -= E
o~ E
rf O —
n o.0s —§

Wouter Verkerke, UCSB



Properties of the binomial distribution

e Mean: <r>=n-p

e Variance: V(r)=np(l-p) = O'=\/np(1—p)

p=0.1, N=4 p=0.5, N=4

MR AR RS LR RS L RN LR RN LALRS

0oe
0.s
0.4
03

LRES
0.2 F

0.1

0005115225335445! o 05 1 15 2 25 3 35 4 45 5 o 05 1 15 2 25 3 35 4 45 5

p 0 1 N 1000 p=0.5, N=1000 p=0.9, N=1000

AR RN L L LR R LR IR L .: n_m:'"'I""I""I'"'I""I'"'I""I""I""I"": :'"'I""I""I'"'I""I""I""I""I""I"":

007 f
0.05F

0.03f




HEP example — Efficiency measurement

e Example: trigger efficiency

— Usually done on simulated data so that also untriggered events
are available

Fitted efficiency

-
o B o
o
o L
15 B
3 08
5 B
E -
2 B
£ B
T1]
0.4— f. l
- b
02—
u .II|IIII|IIII|IIII|IIII|IIII|IIII|IIII
0 10 20 30 40 50 60 70 80 90 100

X



Basic Distributions — the Poisson distribution

e Sometimes we don’t know the equivalent of the number
of drawings

- Example: Geiger counter

— Sharp events occurring in a (time) continuum

e What distribution to we expect in measurement over
fixed amount of time?

— Divide time interval A in n finite chunks,

— Take binomial formula with p=i/n and let n2>wx

A Ao n!
P(r;A/n,n)=—0-—)" .. y
n n r'(n—r)! '\ fim_,—% =n
\ rl(n—r)!
I Aonr -
e 'l ,/ lim, ., (1= =™

Pr i) =

r! &Poisson distribution



Properties of the Poisson distribution

Wouter Verkerke, UCSB



e N

r!

More properties of the Poisson distribution p(;1)=

e Mean, variance: <r> —

Vin=4 = o=+4

e Convolution of 2 Poisson distributions is also a Poisson
distribution with A=A +A,

P(r)= Zr:P(rA;ZA)P(r— rods)

r4=0

Fo AT—T4
—eheh Y A4

r\(r—r)!

e Fatis) (ﬂ +ﬂ'3) Z A’A ’ ﬂ'B -
r! o (r— rA)‘ A+ A A+ Ay

_ ey G+ Ag)’ [ A K j
r! A+ Ay A+ A,
_ i At Ap)
r! Wouter Verkerke, UCSB




HEP example — counting experiment

e Any distribution plotted on data (particularly in case of
low statistics

ha
on

Events / ( 0.8 )

ha
=

10

7]
:IIII|III

s
=2
M
o
=
oo
-
=
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Basic Distributions — The Gaussian distribution

e Look at Poisson distribution in limit of /arge

P(r:A)=e" i

rlo-,
~. Take log, substitute, r = 1 + x
ianduse In(r)=rinr—r+In~27r

‘0
y

In(P(r;A)=—-A+rinA—(rinr—r)—In~27zr

= A+ r[lnz —In(A(1+ %))} +(A+x)-In~272

X x2 j :: ln(1+z)zz—z2/2

~x—(A- x)(z + 2 |—In@rd)

2
— X

Q

—In(274
2 (274)

i

P,

Take exp

K P(x)=

27 (approximation reasonable for N>10) °

Wouter Verkerke,

Familiar Gaussian distribution, "-....;,

L]
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]

uCcsB




Properties of the Gaussian distribution

1 —(x—p)* 1207

P(x,pu,0)=—F—c¢
27To

and
+00

<x> = .xP(x;,u,O')dx = U

o0
o0

V() = [(x=w)?P(x; pt,0)dx = &

........
-----------
...........
LS
............
-------

68.279% within 1c 90% - 1.6450c

95.43% within 2¢ 95% - 1.96¢6

99.73% within 3c 99% > 2.58¢

99.9% - 3.29¢




HEP example - high statistics counting expt

e High statistics distributions from data

: 2

Events /(0.B )

=k IIII|IIII|IIII| II|IIII|IIII|IIII|IIII|IIII|II
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Errors

e Doing an experiment > making measurements

e Measurements not perfect 2> imperfection quantified in
resolution or error

e Common language to quote errors
= sqrt(V(x))

— 68% probability that true values is within quoted errors

[NB: 68% interpretation relies strictly on Gaussian sampling distribution,
which is not always the case, more on this later]

e Errors are usually Gaussian if they quantify a result that
is based on many independent measurements

Wouter Verkerke, UCSB



The Gaussian as ‘Normal distribution’

e Why are errors usually Gaussian?

e The Central Limit Theorem says

— If you take the sum X of N independent measurements x;,
each taken from a distribution of mean m,, a variance V,=c;?,
the distribution for x

(a) has expectation value <X> = Z,ul.
i
. 2
(b) has variance V(X)) = ZVl = Zai
i i
(c ) becomes Gaussian as N 2 «

- Small print: tails converge very slowly in CLT, be careful in assuming
Gaussian shape beyond 2o

Wouter Verkerke, UCSB



Demonstration of Central Limit Theorem

N N NN RN EER R R R IR RRR) T

ha
&
TT

< 5000 numbers taken at random from a
uniform distribution between [0,1].

EEEEE
-

- Mean = 1/,, Variance = 1/,,

wh
] R e @B @

el 2 B 2 =
TSP

< 5000 numbers, each the sum of 2
random numbers, i.e. X = X;+X5.

- - ha [ =3
E B B B B
T e T

— Triangular shape

< Same for 3 numbers,
X=Xy + X, + X3

- - ha ha [~ =) 3
E B B B B B E o 2
T T T T T T T

i « Same for 12 numbers, overlaid curve is
exact Gaussian distribution

- [ 73 - L (-3 - o ™
o= R 2 E F E R ER B _a =2
L .
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Central Limit Theorem - repeated measurements

e Common case 1 : Repeated identical measurements
i.e. w = yw,o;=c forallj

C.L.T
........................................... e
(X)=2.m =Np = (x)="=u
V() =ZV(7€)§=LZV(X) _No® o
- i N2 ; i N2 N e

*
.
.
.
e
uns®
---------------------------------------------------------------------------------------------------------------------
sn
wn®
.
.
.
.

‘e
3
2%
0]
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Central Limit Theorem - repeated measurements

e Common case 2 : Repeated measurements with
identical means but different errors

(i.e weighted measurements, u;, = n)

Yo

X = leo_; Weighted average

. = o(x) = .

2 o} S1/o?

‘Sum-of-weights’ formula for
error on weighted measurements

V(x)=

Wouter Verkerke, UCSB



Error propagation — one variable

e Suppose we have f(x)=ax+b

e How do you calculate V(f) from V(x)?
V) =(f)-(f)
<ax+b) > <ax+b>2
=a E >+2ab<x —|—b2 —a<x>2 —2ab<x>—b2

)

:az\/(x) & i.e. o; = |a]o,
. . df . |
More general: V(f)= (dx] Vix) ; o,= Ix O,

- But only valid if linear approximation is good in range of error



Error Propagation — Summing 2 variables

e Consider f=ax+by+c

V(f)= a2(<x2> —<x>2)+ b2(<y2> — <y>2)+ 2ab(<xy> — <x><y>)

=a’V(x)+ b’V (y)+2abcov(x, y)

Familiar ‘add errors in quadrature’
only valid in absence of correlations,
i.e. cov(x,y)=0

.
-----
-----

e More general

2

(4 df df \ df
V(f)= 0 V(x)+£dy] V( )+2(dxj[dyjcov(x V)

0']% = Z—f 0§+(;lfj 0y+2[dfj(dfjp0'0'
X y X

But only valid if /inear approximation The correlation coefficient
is good in range of error p [-1,+1] is O if x,y uncorrelated




Error propagation — multiplying, dividing 2 variables
e Now consider f=x-y

V() =y V(x)+xV(y)

()

— Result similar for f =x/ y

(math omitted)

e Other useful formulas

O-l/x e O-x . o e O-x
N ’ In(x)
1y ¥
Relative error on Error on log is just
X,1/x is the same fractional error

Wouter Verkerke, UCSB



