
Inference
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Purpose of data analysis

Fit the present data acceptably.

Have the ability to make predictions for future data.

A model is a physical/mathematical construct intended to represent 
some aspects of the real world. The predictions of the model 
normally depend on some unknown parameters. Most commonly, 
the aim of data analysis is to work out what values of those 
parameters are compatible with the data. More ambitiously, one may 
ask what choice of parameters is indicated by the data.

Useful models should

Be predictable by the models we aim to test.

Have modelable intrinsic randomness and experimental error.

Useful data should
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What is inference?
We are interested in a particular 
branch of inference (inductive 
inference) which is inference in the 
presence of uncertainty. This forces us 
to adopt notions of probability.

Inference: a conclusion reached on the 
basis of evidence and reasoning.

Oxford American Dictionary

1) Prior assumptions
2) Experimental/observational data
3) Inferential calculations

Characteristically, any inductive conclusion will involve

If any of these three items proves to be incorrect, the inference 
may fail to match reality.

Logic: The art of thinking and reasoning in strict accordance with the 
limitations and incapacities of the human misunderstanding. 

Ambrose Bierce, The Devil’s Dictionary
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Probability
Typically, both theoretical predictions and observational outcomes 
may be subject to uncertainty, but in such a way that the uncertainty 
can be modelled in terms of a probability of different outcomes.

Simple example: toss of a coin
Here a theoretical prediction of the outcome 
can only be in terms of probability.       
However the actual experimental outcome can 
presumably be precisely stated.

Another example: gene mutation rates in populations
Here there are several sources of possible error, eg an 
inevitable error from only being able to measure mutation in a 
finite number of organisms, possible errors in individual 
determinations, possible bias in sample selection, etc.
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Posterior

Likelihood
Prior

What is Bayesian inference?
Bayesian inference is a system of logical deduction which assigns 
probabilities to all quantities of interest. The probabilities are updated 
in light of new information according to a set of mathematical rules 
centred around Bayes’ theorem (published in 1763).

In 1946, Cox showed that Bayesian inference is the unique 
consistent generalization of Boolean algebra.

P(B|A) =
P(A|B)P(B)

P(A)
P(θ|D) =

P(D|θ)P(θ)
P(D) θ = parameter value

D = data
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What is Bayesian inference?

It can also be derived from a set of `requirements’:

Degrees of plausibility are real-valued.

An increase in the plausibility of A results in a decrease in 
the plausibility of not-A.

Plausibility depends only on the data and not on the order 
that the data are taken.

The joint plausibility of A and B is related in a sensible way 
to the plausibility of A and B.
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Terminology:
              
Parameters are quantities that can be varied in an 
attempt to best fit the data to hand.

A model is a choice of the set of parameters to be varied.

7



Posterior versus likelihood
Failure to distinguish posterior and likelihood, 
instead identifying them as equal, is one of 
the most common errors in inference.

For example,  P(pregnant|female) is about 0.03,
but                 P(female|pregnant) is 1.

Another example:
You’ve been to the doctor’s with a broken wrist. She decides 
to give you a blood test. It comes back indicating you are 
HIV-positive. The doctor tells you the test is 95% reliable. 
What is your chance of having HIV?

P(θ|D) =
P(D|θ)P(θ)

P(D)

Subsidiary question:
How would your answer change had you been to the doctor’s 
because of swollen lymph glands?
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Parameter estimation
If we have decided what parameters we want 
to constrain from the data, the task in front of 
us is parameter estimation.

We need to decide our prior information P(θ), and we need 
to compute the likelihood P(D|θ). We can ignore P(D) which 
just gives an irrelevant overall normalization.

P(θ|D) =
P(D|θ)P(θ)

P(D)

The next lecture explains 
some ways to go about this.
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Priors!!
Bayesian inference requires that the prior probabilities be 
specified, giving the state of knowledge before the data 
was acquired to test the hypothesis.

Priors are to be chosen. Different people may not agree 
on their choice.

Priors are where physical intuition comes in.

In my view, one shouldn’t seek a single `right’ prior. 
Rather, one should test how robust the conclusions are 
under reasonable variation of the priors.

Eventually, sufficiently good data will overturn incorrect 
choice of prior.

If you don’t know enough to set a prior, why did you 
bother getting the data?
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Basic model structure
Model 
inputs: 

Model 
structure

Known 
parameters

Unknown 
parameters

Predictions:
Predictions for 

observables

Observations: Measurements of observables, 
with uncertainties

Likelihood:  P(D|θ)

θ

D

Prior
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Prior information versus information from data
Bayes theorem breaks up your final answer, the 
posterior, into the part from your prior assumptions 
and the part from the data. If you are wise, you will 
check how much comes from each one. P(θ|D) =

P(D|θ)P(θ)
P(D)

θ

Prior

Likelihood

Good
θ

Prior

   Likelihood

Not good
θ

Prior

 Likelihood

Either terrible, or 
earthshaking new 

scientific discovery.
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Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.

How am I going to do 
that?
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Posterior model 
probability!

P(M|D) =
P(D|M)P(M)

P(D)

The Bayesian evidence
Bayes theorem again

P(θ|D) =
P(D|θ)P(θ)

P(D)

Bayesian evidence

, but conditioned on a model.

⇒ P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)

How do we calculate it? P(D|M) =
Z

P(D|θ,M)P(θ|M)dθE(M) =
Z

L(θ)Pr(θ)dθ

This can be evaluated in a number of ways: in my group we 
use a Monte Carlo integration method called nested sampling.

What does it reward? Model predictiveness
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On predictiveness
Consider two different models, let’s say a linear fit to a set of data. In one 
model, we consider the gradient of the line to be a free parameter, adjustable 
to give the best fit. In the other, we decide based on some prior intuition that 
the gradient should be one.

The fits turn out to be nearly 
identical. Which model do 
you think is better?

x

y

Most people would feel the model with fixed gradient is better, as it is 
simpler and fits the data well. The person who devised it seemed to 
have good intuition as to how the data would turn out. But of course it 
is the more general model which fits the data (marginally) better. We 
like the fixed gradient model because it is predictive.
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Predictiveness and evidence

x

yThe Bayesian evidence is the average likelihood 
over the prior space. It answers the question 
“Over the parameter values which I thought 
were reasonable before the data came along, 
what was the average likelihood?”

E(M) =
Z

L(θ)Pr(θ)dθ

Three possibilities:

Model doesn’t fit the data for any parameter value, hence low evidence.

Model fits the data well for some parameter choice.

Model is predictive; then the likelihood will remain high across much 
of its parameter space.

Model is not predictive; then the evidence will be pulled down by 
regions where the predictions are different and hence the fit is poor.
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Computing the evidence is often challenging, but feasible 
due to recent algorithm developments. For guidance in 
interpretting the evidence, people usually appeal to the 
Jeffreys’ scale.

Interpretational scale

The most useful divisions are 2.5 (odds 
ratio of 12:1) and 5 (odds ratio of 150:1).

Jeffreys’ Scale: Δ lnE < 1 Not worth more than a bare mention
1< Δ lnE < 2.5 Substantial evidence
2.5< Δ lnE < 5 Strong to very strong evidence

5< Δ lnE Decisive evidence
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Applications of Bayesian model selection

Analysis of data

What does existing data tell us about our various 
models?

Model selection forecasting

How well will a future experiment answer questions 
of model selection type?

Bayesian survey design

How can I maximize the chances of my experiment 
generating a successful model selection outcome?
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Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Multi-model 
Inference

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.

I can do this by 
computing the Bayesian 
Evidence. I can then do 
parameter estimation 
using the best model.

Mmm, I did the model 
selection thing, but there 
wasn’t a single best model.

But I still want to know 
how probable the 
parameter values are.

I can do this by combining 
the parameter likelihoods 
using Bayesian Model 
Averaging, adding them 
together weighted by the 
model probabilities.
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Multi-model inference: philosophy
The top level of inference is deciding the models to be compared 
with data, i.e. what different choices of parameter sets are we 
interested in.

There is a conceptual difference between a model where a quantity 
is fixed at some value, versus a model where that quantity can vary 
and its value just happens to have that particular value. Although for 
that parameter value the predictions are identical, overall the model 
predictiveness is different. Model selection compares models, not 
specific parameter values.

Computing the evidence tells us how the probability of each model 
has been modified by the data.

If only one model survives, proceed to standard parameter 
estimation.

If several models survive, use multi-model inference, e.g. Bayesian 
model averaging.
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Statistical fluke: By definition important only if people do their 
error analysis wrongly (actual errors, incorrectly modelled systematics, 
error distributions not Gaussian, etc).

Publication bias: Only positive results get published, enhancing 
their apparent statistical significance (recognised as a major problem in 
clinical trials).

Ioannidis (2005) actually claims a proof that most published results are false.

Inappropriate “a posteriori” reasoning: choosing 
“interesting” features from the data and assessing their significance via 
Monte Carlo analyses.

Neglect of model dimensionality: using parameter 
estimation rather than model selection.

Something like 95% of all 95% confidence 
“detections” turn out to be wrong. Why?
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1   1   6   4   2   6   1   2   3   6   
6   2   1   5   1   6   3   4   4   6   
1   1   4   4   3   5   3   5   1   6   
2   3   2   3   6   1   2   2   4   2   
4   5   5   3   2   2   4   6   6   6

Some data

Eleven 6s and only five 5s. How unlikely is that?

A Monte Carlo of 100,000 sets of 50 dice throws 
indicates that we get 11 or more 6s and 5 or less 5s 
only 4% of the time. Does that mean the numbers 
aren’t random?

     count = 0
      do 50 k=1,100000
         fives=0
         sixes=0
         do 60 j=1,50
            throw = 1+int(ran1(iseed)*6.)
            if (throw.eq.5) fives=fives+1
            if (throw.eq.6) sixes=sixes+1
 60         continue
         if ((fives.le.5).and.(sixes.ge.11)) count=count+1
 50      continue
      write(6,*) count

22



A more serious example is the various alignment anomalies in 
the large-angle CMB, whose significance is very difficult to assess.
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Textbooks

24



25


