Inference




Purpose of data analysis

A model is a physical/mathematical construct intended to represent
some aspects of the real world. The predictions of the model
normally depend on some unknown parameters. Most commonly,
the aim of data analysis is to work out what values of those
parameters are compatible with the data. More ambitiously, one may
ask what choice of parameters is indicated by the data.

Useful models should
“ Fit the present data acceptably.
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What is inference?

We are interested in a particular Inference: a conclusion reached on the
branch of inference (inductive basis of evidence and reasoning.
. - 5T - Oxford American Dictionary
inference) which is inference in the

presence of uncertainty. This forces us

to adopt notions of probability.

Characteristically, any inductive conclusion will involve
1) Prior assumptions
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Probability

Typically, both theoretical predictions and observational outcomes
may be subject to uncertainty, but in such a way that the uncertainty
can be modelled in terms of a probability of different outcomes.

Simple example: toss of a coin

7 ~ Acoin
Here a theoretical prediction of the outcome toss is a
can only be in terms of probability. r)— binomial
However the actual experimental outcome can \ -

" variable

presumably be

precisely stated.

‘- ST v
3 " = ot A
- b -
s skl b y
3 e Rl WS N, 1

FANE SRS y

A




What is Bayesian inference?

Bayesian inference is a system of logical deduction which assigns
probabilities to all quantities of interest. The probabilities are updated
in light of new information according to a set of mathematical rules
centred around Bayes’ theorem (published in 1763).

Likelihood

Prior

O = parameter value
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What is Bayesian inference?

It can also be derived from a set of "requirements’:

m  Degrees of plausibility are real-valued.

= An increase in the plausibility of A results in a decrease in
the plausibility of not-A.
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Terminology:

Parameters are quantities that can be varied in an
attempt to best fit the data to hand.




Posterior versus likelihood

Failure to distinguish posterior and likelihood,

instead identifying them as equal, is one of P(8|D) = P(D|6)P(6)
the most common errors in inference. P(D)

For example, P(pregnant|female) is about 0.03,
but P(female|pregnant) is 1.

Another example:
You’ ve been to the doctor s with a broken wrlst She deCIdes

- to give you a blood test. It comes back indicating (OLISHECEES okt s it




Parameter estimation

If we have decided what parameters we want
to constrain from the data, the task in front of P(8|D) = P(D[0)P(8)
us Is parameter estimation. P(D)

We need to decide our prior information P(8), and we need

to compute the likelihood P(D|0). We can ignore P(D) which
just gives an irrelevant overall normalization.
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Priors!!
Bayesian inference requires that the prior probabilities be
specified, giving the state of knowledge before the data
was acquired to test the hypothesis.

m  Priors are to be chosen. Different people may not agree
on their choice.

@ Priors are where physical intuition comes in.

In my view, one shouldn’t seek a single “right” prior.
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Basic model structure

Model _
. Prior
inputs: \ ™ i




Prior information versus information from data

Bayes theorem breaks up your final answer, the
posterior, into the part from your prior assumptions

and the part from the data. If you are wise, you will
check how much comes from each one. P(8|D) = P(D|6)P(8)
P(D)
1 t  Prior
Likelihood

Prior

Likelihood ‘Lali
IKEIINOO Likelihood
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Not good Either terrible, or
earthshaking new

scientific discovery.



Levels of Bayesian inference
Model

Parameter

Selection

Estimation

I've decided what the Now | think about it, |

correct model is. don’t actually know what
the correct model is. It

Now | want to know could be one of several.

what values of the

parameters are Now | want to know

consistent with the what the best model is.

data.

| can do this using e.g.  How am | going to do

Markov Chain Monte that?
Gailo:




The Bayesian evidence

Bayes theorem again, but conditioned on a model.

P(D 0|M)

P(D\M)

P(O|D) = © (lﬁ?l))’; O = o, =

Posterior model Bayesian evidence

probability!
’PW LD

Model predictivene




On predictiveness

Consider two different models, let’s say a linear fit to a set of data. In one
model, we consider the gradient of the line to be a free parameter, adjustable
to give the best fit. In the other, we decide based on some prior intuition that

the gradient should be one.

The fits turn out to be nearly T
identical. Which model do
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Predictiveness and evidence

The Bayesian evidence is the average likelihood Y1 I
over the prior space. It answers the question T
“Over the parameter values which | thought
were reasonable before the data came along,
what was the average likelihood?” I

E(M) = / L(0) Pr(6)d®

Three possibilities:
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Interpretational scale

Computing the evidence is often challenging, but feasible
due to recent algorithm developments. For guidance in

interpretting the evidence, people usually appeal to the
Jeffreys’ scale.

Jeffreys” Scale: AInE < 1 Not worth more than a bare mention

l <AInE <2.5 Substantial evidence

2.5 < AlnE <5 Strong to very strong evidence
5<AlnE Decisive evidence




Applications of Bayesian model selection

m Analysis of data

What does existing data tell us about our various
models?

® Model selection forecasting

How
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Levels of Bayesian inference

Parameter Model Multi-model
Estimation Selection Inference
I've decided what the Now | think about it, | Mmm, | did the model
correct model is. don’t actually know what | selection thing, but there
the correct model is. It wasn't a single best model.
Now | want to know could be one of several.
what values of the But | still want to know
parameters are Now | want to know now probable the
consistent with the what the best model is. parameter values are.
data.
| can do this by | can do this by combining
| can do this using e.g.  computing the Bayesian  the parameter likelihoods
Markov Chain Monte Evidence. | can then do using Bayesian Model
Carlo. parameter estimation Averaging, adding them
using the best model. together weighted by the

model probabilities.



Multi-model inference: philosophy

m  The top level of inference is deciding the models to be compared
with data, i.e. what different choices of parameter sets are we
interested in.

m  There is a conceptual difference between a model where a quantity
is fixed at some value, versus a model where that quantity can vary
and its value just happens to have that particular value. Although for
that parameter value the predictions are identical, overall the model
predictiveness is different. Model selection compares models, not
specific parameter values.
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Statistical fluke: By definition important only if people do their

error analysis wrongly (actual errors, incorrectly modelled systematics,
error distributions not Gaussian, etc).

Publication bias: Only positive results get published, enhancing

their apparent statistical significance (recognised as a major problem in
clinical trials).

Inappropriate “a posteriori’ reasoning: choosing

“interesting” features from the data and assessing their significance via
Monte Carlo analyses.

Neglect of model dimensionality: using parameter
estimation rather than model selection.



do 50 k=1,100000

A Monte Carlo of 10 fives=0

sixes=0

> : do 60 j=1,50
'ndlcates tqat we get 1.:hrcj>w = 1+int(ran}(isee<51)*6.)
only 4% of the time. e () AT
aren’t random? °0 ey

if ((fives.le.5).and.(sixes.ge.ll)) count=count+1l
50 continue

write(6,*) count




A more serious example is the various alignment anomalies in
the large-angle CMB, whose significance is very difficult to assess.



Textbooks

PHIL GREGORY
Bayesian Logical
Data Analysis
for the Physical Sciences Information Theory, Inference,

s Sepstati i and Learning Algorithms

24






