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Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Multi-model 
Inference

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.

I can do this by 
computing the Bayesian 
Evidence. I can then do 
parameter estimation 
using the best model.

Mmm, I did the model 
selection thing, but there 
wasn’t a single best model.

But I still want to know 
how probable the 
parameter values are.

I can do this by combining 
the parameter likelihoods 
using Bayesian Model 
Averaging, adding them 
together weighted by the 
model probabilities.
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Posterior

Likelihood
Prior

Parameters from Bayes’ Theorem

We assume that we have a dataset D, plus a model with 
parameter vector θ which which we can extract predictions for 
the data, in the form of the likelihood L(θ) ≣ P(D|θ).

P(θ|D) =
P(D|θ)P(θ)

P(D) θ = parameter value
D = data

Our aim is to apply Bayes’ Theorem to update our prior 
knowledge P(θ) to the posterior P(θ|D). 

The prior knowledge must be specified, and could represent 
purely theoretical expectation, or the outcome from some 
previous experiment, or both.
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Obstacles to parameter estimation
So, we just have to find the region(s) in parameter space where 
the posterior probability is high. However

The parameter space may have a high dimensionality (cosmological 
examples typically have 6 to 10 parameters simultaneously varying).

Individual evaluations of the likelihood function may be 
computationally time-consuming (a few seconds each in typical 
cosmology examples, ie one CPU-month per million calculations).

The likelihood function may be sharply peaked, at an unknown 
location, and it may have several maxima masquerading as the true 
maximum.

There may be parameter degeneracies, where the likelihood varies 
only weakly, or not at all, along some direction in parameter space.
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Grid evaluation

The simplest approach is evaluation of the posterior on a grid 
within parameter space.

This will be fine if the dimensionality 
is small, but becomes inefficient if it 
is not, since 10 or 20 evaluations per 
direction is the almost certainly 
necessary.

θ1

θ2

In 6 dimensions at 10 evaluations per dimension, and a few 
seconds per evaluation, we need a CPU-month to get our result.
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Instead ... Monte Carlo methods
Instead of grid-based methods, Monte Carlo is the 
method of choice for parameter estimation, 
particularly Markov Chain Monte Carlo.
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Monte Carlo methods
Rather than attempting to map out the shape of the posterior 
probability distribution directly, we instead seek to obtain a 
large set of points sampled from the distribution.

Monte Carlo methods are a 
class of computational 
algorithms that rely on 
repeated random sampling 
to compute their results.

Wikipedia
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Markov Chain Monte Carlo (MCMC) methods
Markov Chain Monte Carlo methods are a subset of Monte 
Carlo methods which rely on constructing a Markov chain.

Markov Chain: 
A sequence of random variables in which the distribution of each 
random variable depends only on the value of its predecessor.

Image credit: NASA
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Image credit: Wikimedia Commons
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The Metropolis-Hastings algorithm
The simplest, and often most effective, 
algorithm for constructing a Markov Chain 
is the Metropolis-Hastings algorithm.

1) Choose a starting point in parameter space θold, and 
compute its posterior probability Pold.

2) Make a random jump to a new point θnew, and compute 
its posterior Pnew.

3) If Pnew > Pold, then accept the jump. Otherwise, accept 
the jump with probability Pnew/Pold. Add the new point to 
the chain if accepted, otherwise add a duplicate of the 
old point.

4) Go back to step 2 and repeat until satisfied.
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The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is designed so 
that the points in the chain correspond to samples 

from the posterior probability distribution.
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The Metropolis-Hastings algorithm

Considerations:

1) How to jump?

This is done by a proposal function, from which a jump is randomly 
selected. Eg it might be a Gaussian centred at the current point. A 
proposal function must satisfy detailed balance, meaning we are as 
likely to jump from point A to B as from point B to A.

2) How to tune the proposal function?

Jumps should be neither too big (too hard to find the maximum) or 
too small (takes too long to reach the maximum). A test run may be 
used to optimize the size and orientation of the proposal function. 

12



The Metropolis-Hastings algorithm

Considerations:

3) When to start?

The initial phase of finding the high-likelihood region depends on 
the start point. This phase, the burn-in, should be discarded as 
unrepresentative of the posterior.

4) When to stop?

Convergence tests on the chain can be carried out, eg by splitting 
into separate sections and comparing. The Gelman-Rubin test is a 
popular such diagnostic. It is usually a good idea to run several 
chains from different start points (eg on a parallel computing 
platform) in case one gets hung up in a false maximum.
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   0.2000000E+01   0.5851608E+04   0.2015806E-01   0.1056880E+00   0.1052353E+01   0.1572130E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9654508E+00   0.0000000E+00   0.0000000E+00   0.3046525E+01   0.0000000E+00   0.0000000E+00   0.7791765E+00   0.1357033E+02   0.2208235E+00   0.7946533E+00   0.1775950E+02   0.0000000E+00   0.7549133E+02
   0.1000000E+01   0.5847794E+04   0.2015806E-01   0.1056880E+00   0.1052353E+01   0.1572130E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9742470E+00   0.0000000E+00   0.0000000E+00   0.3056430E+01   0.0000000E+00   0.0000000E+00   0.7791765E+00   0.1357033E+02   0.2208235E+00   0.8014988E+00   0.1775950E+02   0.0000000E+00   0.7549133E+02
   0.1000000E+01   0.5843263E+04   0.2010433E-01   0.1014225E+00   0.1047609E+01   0.1655797E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9702829E+00   0.0000000E+00   0.0000000E+00   0.3045888E+01   0.0000000E+00   0.0000000E+00   0.7877861E+00   0.1368099E+02   0.2122139E+00   0.7744952E+00   0.1822450E+02   0.0000000E+00   0.7567444E+02
   0.1000000E+01   0.5827815E+04   0.2010433E-01   0.1014225E+00   0.1047609E+01   0.1655797E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9612351E+00   0.0000000E+00   0.0000000E+00   0.3043113E+01   0.0000000E+00   0.0000000E+00   0.7877861E+00   0.1368099E+02   0.2122139E+00   0.7705776E+00   0.1822450E+02   0.0000000E+00   0.7567444E+02
   0.2000000E+01   0.5827671E+04   0.2005007E-01   0.9967086E-01   0.1047475E+01   0.1679666E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9610596E+00   0.0000000E+00   0.0000000E+00   0.3040069E+01   0.0000000E+00   0.0000000E+00   0.7947711E+00   0.1367524E+02   0.2052289E+00   0.7615068E+00   0.1835000E+02   0.0000000E+00   0.7637756E+02
   0.1000000E+01   0.5823237E+04   0.2062331E-01   0.9755769E-01   0.1048439E+01   0.1589623E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9725500E+00   0.0000000E+00   0.0000000E+00   0.3020521E+01   0.0000000E+00   0.0000000E+00   0.8064781E+00   0.1357294E+02   0.1935219E+00   0.7447448E+00   0.1726400E+02   0.0000000E+00   0.7814636E+02
   0.1000000E+01   0.5810297E+04   0.2062331E-01   0.9755769E-01   0.1048439E+01   0.1589623E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9778811E+00   0.0000000E+00   0.0000000E+00   0.3030873E+01   0.0000000E+00   0.0000000E+00   0.8064781E+00   0.1357294E+02   0.1935219E+00   0.7502713E+00   0.1726400E+02   0.0000000E+00   0.7814636E+02
   0.1000000E+01   0.5804656E+04   0.2062801E-01   0.8928808E-01   0.1047195E+01   0.1529961E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9788681E+00   0.0000000E+00   0.0000000E+00   0.2981949E+01   0.0000000E+00   0.0000000E+00   0.8358389E+00   0.1352269E+02   0.1641611E+00   0.6901900E+00   0.1643250E+02   0.0000000E+00   0.8182678E+02
   0.1000000E+01   0.5749039E+04   0.2062801E-01   0.8928808E-01   0.1047195E+01   0.1529961E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9413199E+00   0.0000000E+00   0.0000000E+00   0.2973182E+01   0.0000000E+00   0.0000000E+00   0.8358389E+00   0.1352269E+02   0.1641611E+00   0.6764783E+00   0.1643250E+02   0.0000000E+00   0.8182678E+02
   0.2000000E+01   0.5749209E+04   0.2061104E-01   0.8939423E-01   0.1047172E+01   0.1515630E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9407399E+00   0.0000000E+00   0.0000000E+00   0.2970405E+01   0.0000000E+00   0.0000000E+00   0.8353964E+00   0.1352616E+02   0.1646036E+00   0.6760311E+00   0.1634000E+02   0.0000000E+00   0.8174988E+02
   0.1000000E+01   0.5748409E+04   0.2072671E-01   0.8786918E-01   0.1048379E+01   0.1491505E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9446303E+00   0.0000000E+00   0.0000000E+00   0.2962835E+01   0.0000000E+00   0.0000000E+00   0.8426777E+00   0.1346236E+02   0.1573223E+00   0.6660739E+00   0.1603800E+02   0.0000000E+00   0.8308289E+02
   0.3000000E+01   0.5710965E+04   0.2072671E-01   0.8786918E-01   0.1048379E+01   0.1491505E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9447833E+00   0.0000000E+00   0.0000000E+00   0.2983899E+01   0.0000000E+00   0.0000000E+00   0.8426777E+00   0.1346236E+02   0.1573223E+00   0.6731693E+00   0.1603800E+02   0.0000000E+00   0.8308289E+02
   0.1000000E+01   0.5702064E+04   0.2162730E-01   0.7827552E-01   0.1049630E+01   0.1234248E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9633905E+00   0.0000000E+00   0.0000000E+00   0.2902750E+01   0.0000000E+00   0.0000000E+00   0.8760756E+00   0.1321413E+02   0.1239244E+00   0.5933253E+00   0.1335250E+02   0.0000000E+00   0.8978638E+02
   0.1000000E+01   0.5686054E+04   0.2162730E-01   0.7827552E-01   0.1049630E+01   0.1234248E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9805061E+00   0.0000000E+00   0.0000000E+00   0.2928784E+01   0.0000000E+00   0.0000000E+00   0.8760756E+00   0.1321413E+02   0.1239244E+00   0.6056091E+00   0.1335250E+02   0.0000000E+00   0.8978638E+02
   0.2000000E+01   0.5680245E+04   0.2151910E-01   0.7507140E-01   0.1046657E+01   0.1286617E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9768334E+00   0.0000000E+00   0.0000000E+00   0.2919222E+01   0.0000000E+00   0.0000000E+00   0.8824201E+00   0.1325722E+02   0.1175799E+00   0.5828394E+00   0.1363850E+02   0.0000000E+00   0.9063599E+02
   0.7000000E+01   0.5676884E+04   0.2012698E-01   0.6586596E-01   0.1044043E+01   0.9536330E-01   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9467331E+00   0.0000000E+00   0.0000000E+00   0.2792258E+01   0.0000000E+00   0.0000000E+00   0.9052024E+00   0.1327366E+02   0.9479761E-01   0.4926153E+00   0.1125100E+02   0.0000000E+00   0.9524292E+02
   0.1000000E+01   0.5670625E+04   0.2012698E-01   0.6586596E-01   0.1044043E+01   0.9536330E-01   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9425158E+00   0.0000000E+00   0.0000000E+00   0.2797389E+01   0.0000000E+00   0.0000000E+00   0.9052024E+00   0.1327366E+02   0.9479761E-01   0.4929855E+00   0.1125100E+02   0.0000000E+00   0.9524292E+02
   0.3000000E+01   0.5669518E+04   0.2020259E-01   0.6691369E-01   0.1043785E+01   0.1044381E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9444320E+00   0.0000000E+00   0.0000000E+00   0.2820847E+01   0.0000000E+00   0.0000000E+00   0.9022123E+00   0.1329783E+02   0.9778772E-01   0.5054021E+00   0.1197700E+02   0.0000000E+00   0.9438599E+02
   0.2000000E+01   0.5669907E+04   0.2020259E-01   0.6691369E-01   0.1043785E+01   0.1044381E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9403662E+00   0.0000000E+00   0.0000000E+00   0.2818038E+01   0.0000000E+00   0.0000000E+00   0.9022123E+00   0.1329783E+02   0.9778772E-01   0.5038149E+00   0.1197700E+02   0.0000000E+00   0.9438599E+02
   0.1000000E+01   0.5656928E+04   0.2020259E-01   0.6691369E-01   0.1043785E+01   0.1044381E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9468315E+00   0.0000000E+00   0.0000000E+00   0.2849296E+01   0.0000000E+00   0.0000000E+00   0.9022123E+00   0.1329783E+02   0.9778772E-01   0.5131708E+00   0.1197700E+02   0.0000000E+00   0.9438599E+02
   0.2000000E+01   0.5655742E+04   0.2015999E-01   0.6764988E-01   0.1043429E+01   0.1221102E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9476981E+00   0.0000000E+00   0.0000000E+00   0.2887990E+01   0.0000000E+00   0.0000000E+00   0.8999174E+00   0.1332733E+02   0.1000827E+00   0.5283710E+00   0.1336300E+02   0.0000000E+00   0.9366821E+02
   0.2000000E+01   0.5652584E+04   0.2060524E-01   0.6537398E-01   0.1042378E+01   0.1267854E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9562625E+00   0.0000000E+00   0.0000000E+00   0.2890769E+01   0.0000000E+00   0.0000000E+00   0.9053195E+00   0.1327033E+02   0.9468052E-01   0.5137574E+00   0.1342500E+02   0.0000000E+00   0.9529419E+02
   0.1000000E+01   0.5647807E+04   0.2047238E-01   0.8164196E-01   0.1041798E+01   0.8982697E-01   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9417917E+00   0.0000000E+00   0.0000000E+00   0.2877844E+01   0.0000000E+00   0.0000000E+00   0.8553504E+00   0.1359470E+02   0.1446496E+00   0.6052601E+00   0.1120800E+02   0.0000000E+00   0.8402039E+02

A bit of a chain (from WMAP)

   0.2000000E+01   0.5851608E+04   0.2015806E-01   0.1056880E+00   0.1052353E+01   0.1572130E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9654508E+00   0.0000000E+00   
0.0000000E+00   0.3046525E+01   0.0000000E+00   0.0000000E+00   0.7791765E+00   0.1357033E+02   0.2208235E+00   0.7946533E+00   0.1775950E+02   0.0000000E+00   0.7549133E+02

   0.1000000E+01   0.5847794E+04   0.2015806E-01   0.1056880E+00   0.1052353E+01   0.1572130E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9742470E+00   0.0000000E+00   
0.0000000E+00   0.3056430E+01   0.0000000E+00   0.0000000E+00   0.7791765E+00   0.1357033E+02   0.2208235E+00   0.8014988E+00   0.1775950E+02   0.0000000E+00   0.7549133E+02

   0.1000000E+01   0.5843263E+04   0.2010433E-01   0.1014225E+00   0.1047609E+01   0.1655797E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9702829E+00   0.0000000E+00   
0.0000000E+00   0.3045888E+01   0.0000000E+00   0.0000000E+00   0.7877861E+00   0.1368099E+02   0.2122139E+00   0.7744952E+00   0.1822450E+02   0.0000000E+00   0.7567444E+02

   0.1000000E+01   0.5827815E+04   0.2010433E-01   0.1014225E+00   0.1047609E+01   0.1655797E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9612351E+00   0.0000000E+00   
0.0000000E+00   0.3043113E+01   0.0000000E+00   0.0000000E+00   0.7877861E+00   0.1368099E+02   0.2122139E+00   0.7705776E+00   0.1822450E+02   0.0000000E+00   0.7567444E+02
   0.2000000E+01   0.5827671E+04   0.2005007E-01   0.9967086E-01   0.1047475E+01   0.1679666E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9610596E+00   0.0000000E+00   
0.0000000E+00   0.3040069E+01   0.0000000E+00   0.0000000E+00   0.7947711E+00   0.1367524E+02   0.2052289E+00   0.7615068E+00   0.1835000E+02   0.0000000E+00   0.7637756E+02
   0.1000000E+01   0.5823237E+04   0.2062331E-01   0.9755769E-01   0.1048439E+01   0.1589623E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9725500E+00   0.0000000E+00   
0.0000000E+00   0.3020521E+01   0.0000000E+00   0.0000000E+00   0.8064781E+00   0.1357294E+02   0.1935219E+00   0.7447448E+00   0.1726400E+02   0.0000000E+00   0.7814636E+02
   0.1000000E+01   0.5810297E+04   0.2062331E-01   0.9755769E-01   0.1048439E+01   0.1589623E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9778811E+00   0.0000000E+00   
0.0000000E+00   0.3030873E+01   0.0000000E+00   0.0000000E+00   0.8064781E+00   0.1357294E+02   0.1935219E+00   0.7502713E+00   0.1726400E+02   0.0000000E+00   0.7814636E+02
   0.1000000E+01   0.5804656E+04   0.2062801E-01   0.8928808E-01   0.1047195E+01   0.1529961E+00   0.0000000E+00   0.0000000E+00  -0.1000000E+01   0.9788681E+00   0.0000000E+00   
0.0000000E+00   0.2981949E+01   0.0000000E+00   0.0000000E+00   0.8358389E+00   0.1352269E+02   0.1641611E+00   0.6901900E+00   0.1643250E+02   0.0000000E+00   0.8182678E+02

Part of a chain containing tens of thousands of elements.
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What to do with a chain
With a chain of samples, many things can be done.

1) Find the best fit, by identifying the highest-likelihood point.

2) Find confidence ranges for parameters simply by discarding 
information on all the other parameters and ordering the points in 
parameter value.

3) Make two-dimensional parameter constraint plots by plotting 
points in 2D (possibly with extra information conveyed by colour) 
or by plotting the point density onto a grid.

15
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Combining cosmological data 

The microwave background alone provides tight 

constraints on many cosmological parameters. 

However it is also has significant parameter 

degeneracies: there are several important 

parameter combinations that can be changed 

without affecting the CMB. This is particularly 

relevant for studies of dark energy, where the 

!"#$%& '()*+%+on constraint is on an overall 

angular diameter distance; the distance could be 

the result of many different possible evolution 

histories, so the direct information about dark 

energy is rather limited. Various key 

cosmological parameters are also subject to 

degeneracies, for example the figure (generated 

using my CosmoMC code) shows constraints on 

the matter density, Hubble parameter and 

spectral index from simulated Planck data. The 

parameter combination Omega_m h^3 is 

measured to high precision, but Omega_m/h^3 is constrained many times worse, corresponding to the 

degeneracy line shown in the figure. External data that can constrain different parameter combinations can 

break this degeneracy, leading to much better overall combined parameter constraints. Making robust joint 

data analyses is therefore essential to make the best of cosmological observations. The work in theme 1 

would make available the theoretical predictions and new techniques necessary to do a joint analysis of 

Planck combined with other data for theme 3. 

Combining Planck data with other CMB experiments requires careful treatment of correlations: all 

observations are looking at the same sky. To exploit additional high-resolution observations probing further 

into the damping tail, a new likelihood code must be constructed that account for the overlap over observed 

sky areas and ranges of scales. ,-&+%&./%0&/+1)/2&-0&3)&4)*)%%.(2&-0&5)4)(./+6)&!0%70"!$%&-().-7)4-&08&!"#&

datasets to deal with multiple frequencies, with physicals signals (e.g. SZ) having distinct frequency 

dependence. 

Galaxy lensing is a promising probe of the universe at redshift z<2, providing constraints on the growth of 

structure and geometry, essential levers for understanding dark energy. PDRA 1 would integrate my work on 

the CAMB sources code to calculate lensing and number count power spectra into CosmoMC, along with 

their non-linear evolution and dark energy models, allowing a consistent analysis for general cosmological 

models in an integrated way. We would investigate appropriate models for residual systematics, currently a 

significant issue with weak-lensing data. The final code should allow us to separate various possible forms of 

the dark energy, levering the joint power of Planck and weak lensing to probe different combinations of 

parameters.  

New avenues 

I have focussed this proposal on various pressing issues of high importance. However any new dataset may 

bring new and unanticipated surprises, potentially leading to whole new avenues of research. Actively 

working with the latest data I would be in a prime position to take a leading role investigating any surprises, 

and m2&'(0'0%./&+%&+4-)49)9&-0&3)&8/):+3/);&<=)4&+4&->)&.3%)4*)&08&4)?&%@('(+%)%A&72&4)?&5(0@'$%&()%).(*>&

should provide valuable insights into the nature of the universe, informing the next generation of theoretical 

Figure by Antony Lewis
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What to do with a chain
With a chain of samples, many things can be done.

1) Find the best fit, by identifying the highest-likelihood point.

2) Find confidence ranges for parameters simply by discarding 
information on all the other parameters and ordering the points in 
parameter value.

3) Make two-dimensional parameter constraint plots by plotting 
points in 2D (possibly with extra information conveyed by colour) 
or by plotting the point density onto a grid.

4) Importance sample: if you change your mind about your prior, or 
if new data comes along of known likelihood, you can reweight 
your samples without needing to recompute a chain.

5) Bayesian complexity: this quantity estimates how many 
parameters are actually constrained by your data, and can be 
computed from a chain.

17



Marginalisation
Marginalization is the process of averaging over uninteresting 
(nuisance) parameters. This is something traditionally difficult 
in frequentist methods, and relatively easy in Bayesian ones.

P(θ1) =
Z

Domain
P(θ1,θ2)dθ2

As an integral:

With samples:

Just ignore the θ2 column in the chains and histogram 
the θ1 column!
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– 13 –

Fig. 4.— Constraints from the five-year WMAP data on ΛCDM parameters (blue), showing marginalized
one-dimensional distributions and two-dimensional 68% and 95% limits. Parameters are consistent with the
three-year limits (grey) from Spergel et al. (2007), and are now better constrained.

From WMAP5: Dunkley et al
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Parameters of the standard 
cosmological model

The currently-favoured cosmology is a ΛCDM model,  

in a spatially-flat Universe, with initial conditions of the 
form expected from simple inflation models.

Baryon density

Dark matter density

Cosmological constant

Spectral index

Optical depth

Perturbation amplitude

20 1. The Cosmological Parameters

Table 1.2: Parameter constraints reproduced from Dunkley et al. [2] and Komatsu
et al. [3], with some additional rounding. All columns assume the ΛCDM cosmology
with a power-law initial spectrum, no tensors, spatial flatness, and a cosmological
constant as dark energy. Above the line are the six parameter combinations actually
fit to the data; those below the line are derived from these. Two different data
combinations are shown to highlight the extent to which this choice matters. The
first column is WMAP5 alone, while the second column shows a combination
of WMAP5 with BAO and SNe data as described in Ref. 3. The perturbation
amplitude ∆2

R is specified at the scale 0.002 Mpc−1. Uncertainties are shown at
68% confidence, and caution is needed in extrapolating them to higher significance
levels due to non-Gaussian likelihoods and assumed priors.

WMAP5 alone WMAP5 + BAO + SN

Ωbh2 0.0227± 0.0006 0.0227± 0.0006

Ωcdmh2 0.110± 0.006 0.113± 0.003

ΩΛ 0.74± 0.03 0.726± 0.015

n 0.963+0.014
−0.015 0.960± 0.013

τ 0.087± 0.017 0.084± 0.016

∆2
R × 109 2.41± 0.11 2.44± 0.10

h 0.72± 0.03 0.705± 0.013

σ8 0.80± 0.04 0.81± 0.03

Ωmh2 0.133± 0.006 0.136± 0.004

1.4. Bringing observations together

Although it contains two ingredients—dark matter and dark energy—which have not
yet been verified by laboratory experiments, the ΛCDM model is almost universally
accepted by cosmologists as the best description of the present data. The basic ingredients
are given by the parameters listed in Sec. 1.1.4, with approximate values of some of
the key parameters being Ωb ≈ 0.04, Ωcdm ≈ 0.21, ΩΛ ≈ 0.74, and a Hubble constant
h ≈ 0.72. The spatial geometry is very close to flat (and usually assumed to be precisely
flat), and the initial perturbations Gaussian, adiabatic, and nearly scale-invariant.

The most powerful single experiment is WMAP5, which on its own supports all these
main tenets. Values for some parameters, as given in Dunkley et al. [2] and Komatsu
et al. [3], are reproduced in Table 1.2. These particular results presume a flat Universe.

September 28, 2009 10:47
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Other sampling algorithms
Although Metropolis-Hastings is the most popular option at 
present, other more sophisticated choices exist that may be 
superior in the right circumstances.

Slice sampling

This method allow the proposal function to change during the 
calculation, tuning to an appropriate scale, by making steps in one 
parameter direction at a time.

Gibbs sampling

This obtains a proposal step by sampling from conditional 
probabilities P(θ1|θ2) etc.

Hamiltonian sampling

This uses an analogy with Hamiltonian dynamics to define a 
momentum from derivatives of the likelihood. This enables large 
proposal steps to be taken along trajectories of constant `energy’.
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Machine learning/classification
A somewhat related topic to parameter estimation is machine 
learning, which for instance seeks to classify objects in a large 
dataset by training on a subset.

Bayesian classifiers

Define outcome probabilities using training set 
data in a probabilistic framework.

Artificial neural networks

These connect a set of nodes and train the 
coefficients.

Support vector machines

Hyperplanes are defined within the parameter 
space to segregate points with different 
classifications.

23



Classification of genetic damage in fish

A novel population health approach: Using fish retinoblastoma gene profiles as a
surrogate for humans☆

Jeanette M. Rotchell a,d,⁎, Frances A. du Corbier a, Grant D. Stentiford b, Brett P. Lyons b,
Andrew R. Liddle c, Gary K. Ostrander d

a Department of Biology and Environmental Science, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
b Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK
c Department of Physics and Astronomy, School of Science and Technology, University of Sussex, Falmer, Brighton, BN1 9QH, UK
d Pacific Biomedical Research Center, University of Hawai'i at Manoa, 1993 East-West Road, Honolulu, Hawai'i, HI96822, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 30 May 2008
Received in revised form 11 September 2008
Accepted 11 September 2008
Available online xxxx

Keywords:
Rb gene
Tumor suppressor
Cancer
Fish
Retinoblastoma
Eco-epidemiology

Retinoblastoma, a tumor suppressor gene, is frequently mutated in diverse types of human tumors. We have
previously shown that two types of fish tumor, eye and liver, also possess mutant Rb genes. Our aim is to
determine if the Rb allele status is linked to environmentally-induced cancer and whether this information in
fish can be used to predict future phenotype. This is a proof-of-concept investigation to elucidate if fish may
act as surrogates in assessing pollution-induced tumor incidence and inform regulatory authorities of
potential long-term population health consequences. Marine flatfish, Limanda limanda, that display either
normal liver histopathology, liver adenoma or liver hepatocellular carcinoma were analysed for the presence
of Rb gene alterations. Several Rb alterations were detected in the fish displaying adenoma and carcinoma,
and not in the surrounding normal tissue from the same individuals. The profile is similar to that reported in
humans in that they spread across the gene, particularly exons 8–23, and a functionally important region of
the protein. This Rb allele data was then used to build statistical classifier sets, linking Rb status with tumor
pathology. Further flatfish caught from coastal-water areas of differing contaminant burden around the UK
were subsequently analysed for the presence of Rb alterations. Using novel pattern matching statistics of the
classifier sets compared with the coastal samples, the coastal fish were considered more similar to the
characterised disease phenotype than the normal phenotype. Preliminary data suggests that using a
statistical approach, based on classifying sets of histopathologically-defined tumor states, makes it possible
to predict the phenotype of wild fish based on the status of the Rb allele. Since the Rb gene is orthologous,
fish populations could act as surrogates for human populations in an eco-epidemiological investigation of the
combined roles of genetics and environmental exposures in the tumorigenesis process.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Tumorigenesis is a multi-step, gradual process for which the
underpinning molecular steps and role of environmental exposure are
often not known. In medical research, several fish species have
become well-established models for studying human diseases and
tumorigenesis specifically (Ostrander and Rotchell, 2005). Examples
include Xiphophorus sp., and zebrafish (Danio rerio) used in the study
of melanoma and Fanconi anemia respectively (Butler et al., 2007;
Titus et al., 2006). Laboratory-based investigations using aquaria-held

fish have involved controlled dose exposure to initiating and/or
promoting agents, induction of a tumor state, and subsequent
investigations of the molecular etiology. Relating controlled labora-
tory experimental regimes to the environment represents more of a
challenge: for instance, environmental exposures are often at much
lower dose levels and also vary over time. Molecular-level markers of
genetic alterations allow the opportunity to detect relevant early
stages of malignancy, and can subsequently inform surveillance and
remediative action. Ideally, an approach that integrates molecular-
level biological effects, or ‘micro-events’, into well-designed eco-
epidemiological studies (March and Susser, 2006) is required to relate
the sub-cellular effects to population-level health repercussions.

Several aquatic wildlife populationsworldwide display such health
repercussions in the form of various epizootics that are also of
relevance to humans. They are often subject to high environmental
contaminant burdens, exhibiting tumors that possess a similar
histopathology (Ostrander and Rotchell 2005). Examples where an
aquatic wildlife for human surrogate approach has been successfully
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 Predictive classification of cancer incidence in 
marine organisms based on Rb tumour-suppressor 
gene mutation status.                                         
[Here with the goal of developing early-warning 
indicators of  pollution-induced tumour incidence.]
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Classification of genetic damage in fish

(IMS) for subsequent histological confirmation of the lesion type. In
addition, samples of the same liver tumor (adenoma or carcinoma)
and of surrounding non-tumor tissue (normal) were resected and
frozen immediately in liquid nitrogen and stored at −80 °C for the
isolation of RNA and analysis of Rb gene status.

2.2. Histopathology

Fixed samples were processed to wax in a vacuum infiltration
processor using standard protocols (Feist et al., 2004). Sections were
cut at 3–5 µm on a rotary microtome and resulting tissue sections
were mounted onto glass slides before staining with haematoxylin
and eosin (H & E). Stained sections were analysed by light microscopy
(Eclipse E800, Nikon, UK) and diagnosis of liver tumor type followed
the ICES guidelines as detailed in Feist et al., (2004) for tumors of the
flatfish liver. Digital images of histological features were obtained
using the Lucia™ Screen Measurement System (Nikon, UK).

2.3. Sample set characterisation and nomenclature

For the initial classifier exercise the sample sets were as follows.
The ‘normal’ fish liver samples (n=10) were fish caught from the Isle of

Man (IOM) and Off Humber (OH) sample sites and characterised by
histopathological examination (Section 2.2) as not having liver lesions.
These ‘normal’ fish serve as controls for our study, they are
environmentally-exposed but they show no signs of liver disease
(and there are no laboratory-reared dab available). Both the ‘adenoma’
(n=5) and ‘carcinoma’ (n=6) samples were laser micro-dissected liver
samples fromhistopathologically characterised tumor tissues. The fish
providing these laser micro-dissected tumor tissues came from
various sample sites around the UK coast (Liverpool Bay, LB; Cardigan
Bay, ICB & SCB; and Rye). At the same time as the adenoma or
carcinoma tumor tissue laser micro-dissection procedure, an accom-
panying ‘normal’ sample was micro-dissected from apparently
histopathologically normal tissue in the vicinity of the adenoma
(n=5) or carcinoma (n=6) tumor tissue from the same liver/fish. There
are thus two categories of ‘normal’ tissue which merits careful
explanation: one category relates to fish that exhibited no histo-
pathological signs of liver lesions, and the other category is from
normal histopathological liver tissue, in the vicinity of a tumor, from
the same fish bearing that tumor. The latter category of normal
samples is labelled 1N–5N for adenoma, and 1N–6N for carcinoma,
respectively (as opposed to 1A–5A for adenoma tumor tissues and 1C–
6C for carcinoma tissues respectively, in Table 1).

Table 1
Summary of Rb gene status (within exons 11–23) in histologically-normal, adenoma, and carcinoma liver tissues from L. limanda

As described in Section 2.3, the table contains two categories of ‘normal’ tissue. The first category is from fish that exhibited no evidence of histopathological liver lesions and, in the
absence of laboratory-reared L. limanda, these serve as the control group. The second category, those labelled as ‘XN’, are histopathologically-determined, laser micro-dissected,
‘normal’ liver tissue taken from the vicinity of a tumor, in the same fish bearing that tumor. Sample site abbreviations: IOM—Isle of Man, OH—Off Humber, LB—Liverpool Bay, ICB—
Inner Cardigan Bay, SCB—South Cardigan Bay.
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used includeMya arenaria and gonadal neoplasms (Kelley et al., 2001),
fish and mercury (Porvari, 1995; Klaper et al., 2006), and wildlife
tumor incidence and genotoxicity in the Great Lakes St. Lawrence
Basin (Fox, 2001). We are concerned with liver tumor incidence and
etiology, adopting an integrated approach using micro-events (gene
profiles) combined with biometric and chemical history data.

Polycyclic aromatic hydrocarbons (PAHs) have been implicated in
the etiology of carcinogenesis of fish liver and are a known initiator
and promoter of tumors in humans. Sediment PAH levels have been
correlated with the induction of detoxification enzymes such as
cytochrome P450s (Stegeman and Kloepper-Sams, 1987; Varanasi
et al., 1987; Stegeman and Lech, 1991), DNA adducts (Malins et al.,
1985) and also incidence of liver tumors (Varanasi et al., 1989; Myers
et al., 1991, 1994). The mechanism of PAH metabolism is well defined
in mammalian models and biotransformation is mediated by the
cytochrome P450/epoxide hydrolase-containing detoxification sys-
tems tomore reactivemetabolites which can spontaneously formDNA
adducts. These adducts can then result in mutations within specific
regions of DNA, such as cancer-involved genes, often producing a
characteristic profile or ‘fingerprint.’

The genes most often implicated in human tumorigenesis are the
ras oncogene and the p53 and retinoblastoma (Rb) tumor suppressor
genes. Combined, the mutational activation or inactivation respec-
tively of such cancer genes is observed in more than half of all human
tumors (Adjei, 2001; Greenblatt et al., 1994; Hanahan and Weinberg,
2000). Ras genes encode proteins that play a central role in cell growth
signaling cascades and are evolutionarily conserved (Rotchell et al.,
2001a). A large proportion andwide variety of experimentally induced
or environmentally-induced vertebrate tumors, including liver tumors
in fish, possess mutant forms of ras (DeFromentel et al., 1992). The p53
gene is an important negative regulator of cell cycle progression and is
conserved across species including trout (O. mykiss) and medaka
(Oryzias latipes) (DeFromentel et al., 1992; Krause et al., 1997).
Conservation of specific functional domains suggests that the p53
protein plays similar functional roles in vertebrates as diverse as fish
and humans (Soussi et al., 1990). However, a preliminary investigation
of carcinogen-induced tumors in the aquaria fish O. latipes has
revealed no p53 mutations (Soussi et al., 1990). Results, following an
investigation of ultraviolet light induced stabilisation of O. latipes p53,
also suggest that the p53 protein has a different function in lower
vertebrates compared with humans (Chen et al., 2001). Consequently,
interest has shifted to alternate tumor suppressor genes, particularly
Rb, in the development of tumors in fish.

The Rb gene was the first tumor suppressor gene to be
characterized (Friend et al., 1986). In vertebrates, the Rb gene product
is a nuclear phosphoprotein that regulates normal cell cycle progres-
sion (Weinberg, 1995). In humans, the loss of function of the Rb gene
occurs by mutation or deletion and results in a diverse set of cancers
including hepatocellular carcinoma (Zhang et al., 1994). To date, Rb
cDNAs have been isolated from three freshwater fish; trout (O. mykiss),
medaka (O. latipes), Xiphophorus sp., and recently from an estuarine
species, mummichog (Fundulus heteroclitus) and a marine species dab
(Brunelli and Thorgaard, 1999; Rotchell et al., 2001b; Merson et al.,
unpublished; du Corbier et al., 2005). In previous works we have
reported structural alterations in the coding region of the Rb gene in
methylene chloride-induced O. latipes and in environmentally-
induced liver tumors (Rotchell et al., 2001c; du Corbier et al., 2005).
These alterations include point mutations and a deletion. Such results
suggest that the molecular etiology of fish hepatocellular carcinoma is
similar to that reported in humans.

The teleost, L. limanda, therefore provides a non-traditional model
for studies of Rb gene status in environmentally-induced tumors.
Furthermore, the Centre for Environment, Fisheries and Aquaculture
Science (CEFAS) has a considerable bank of archived material (with
supporting biometric, histopathological and chemistry data) available
for analysis that can be employed in a population health investigation.

This article describes a proof-of-concept study, where we present
profiles for the fish homolog of the human Rb gene and integrate that
information with other eco-epidemiological parameters.

In the highly conserved structure of the fish, L. limanda, Rb gene
relative to the corresponding human gene suggests that theymay have
similar functions and that similar mutations result in a similar loss of
function. In previous works we have established that the gene is
mutated infish liver and eye tumormaterial and that this can occur as a
result of controlled laboratory and environmental exposure. Here, Rb
status is investigated in L. limanda normal liver tissue, adenomic and
carcinomic liver tissues and additional L. limanda liver samples from
sample sites around the UK coast with different known exposure
histories. This approach includes two levels: firstly, the building of
classifier sets to use for statistical modelling/prediction, and secondly,
an implementation of a statistical program to determine if it is possible
to predict pathological status/phenotype from Rb allele information
derived from UK coastal fish. The aim is thus twofold, to determine if
Rb allele status is linked with a cancer endpoint in L. limanda, and to
investigate whether this information in fish can be used to predict
future phenotype.

2. Materials and methods

2.1. Sample collection

Dab (Limanda limanda (Pleuronectidae, Pleuronectiformes)) were
captured at the UK National Marine Monitoring Programme (NMMP)
sites (Fig. 1) during June and July of 2002 and 2004 using 30-min tows
of a standard Granton trawl. Upon landing, dab were immediately
removed from the catch and placed into flow-through tanks contain-
ing aerated seawater. The sex, size (total length) and presence of
external signs of disease were recorded for each fish using
methodology specified by the International Council for the Explora-
tion of the Sea (ICES) (Anon, 1999). Following external disease
assessment, fish were sacrificed by a blow to the head, followed
immediately by severing of the spinal chord. Upon opening of the
body cavity, the liver was assessed for the presence of visible liver
nodules according to the guidelines set out by Feist et al. (2004). Liver
nodules were then resected and fixed for 24 h in 10% neutral buffered
formalin (NBF) before transfer to 70% industrial methylated spirit

Fig. 1. Map of sampling sites.
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Markov chain Monte Carlo is the method of choice for 
parameter estimation. 

Its advantages include computational efficiency and easy 
marginalization over uninteresting parameters.

A variety of sampling methods can be brought into play. 
Metropolis-Hastings is typically sufficient but some 
circumstances may require specialist methods. In 
particular Hamiltonian sampling may be suited to 
deploying in models of very high dimensionality 
(thousands or even millions of parameters).

Conclusions
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