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Experimental forecasting

Forecasting is the quantification of how well future 
experiments can answer particular science questions. This 
might, for instance, be interesting to funding agencies that 
wish to compare competing proposals.

This is achieved by defining Figures of Merit that can be 
associated to each proposed experiment. There are a variety 
of different options that can be used, some based on 
parameter estimation and some on model selection.

First, we ought to decide what question we hope to answer.
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Some possible questions

I’m happy with my model, which features a parameter θ. How 
well will my experiment measure θ? 

I’ve got a few uncertain parameters, and I’d like to learn more 
about all of them. How well will I do with this experiment?

I’m not sure whether effect A is relevant to my data, but if it is, I 
need to include a new parameter θA. Will my data be able to 
confirm that I need to include this parameter?

Or, alternatively, suppose I suspect that effect A is irrelevant. 
Will the data be able to confirm my suspicion, if it is correct?

I’ve got two competing models to explain my data. Will I be 
able to exclude one of them?

3



FoMs: parameter estimation
I’m happy with my model, which features a parameter θ. How 
well will my experiment measure θ? 

I’ve got a few uncertain parameters, and I’d like to learn more 
about all of them. How will I do?

Here obviously we want to predict the size of the 
uncertainties we will obtain. I assume that we have some 
way of modelling the proposed experiment which yields an 
estimate of the expected likelihood  (otherwise forecasting 
is impossible).
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Taylor expand the log likelihood around the Maximum Likelihood 
parameter values (θML):

Taking the expectation of L over many data realizations, we replace 
the Maximum Likelihood with the fiducial parameter value.

The Fisher matrix is defined as the expectation of the Hessian:

€ 

lnL(θ) ≈ lnL(θML ) + 1
2 (θi −θi

ML )t Hij
ij
∑ (θ j −θ j

ML )

€ 

Hij =
∂ lnL
∂θi

∂ lnL
∂θ j θ ML

€ 

Fij ≡ Hij

Fisher matrix approach
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The determinant of the Fisher matrix, |F| (often called               
D–optimality), which is inversely proportional to the square of 
the parameter volume enclosed by the posterior. 

A common variation is to use the logarithm of the determinant, 
ln |F|. 

The trace of the Fisher matrix, trF, or its logarithm:   this is 
proportional to the sum of the variances, and is often called      
A–optimality.
The information gain H from performing the experiment (also 
often called Kullback-Leibler divergence), between the prior and 
posterior.

Figures of Merit (aka Utility)
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Constraining the equation of state, w, 
and its evolution in time is seen as the 
primary goal.

The DETF created a Figure of Merit to 
compare different surveys and 
approaches (Albrecht et al. 2006).

It is the inverse of the 95% confidence 
contour in the w0, wa plane (D-optimal).

Often quoted as [σ(wa) × σ(wp)]-1, 
which is in fact sqrt(det[FDE]) where [FDE] 
is the marginalized 2×2 Fisher matrix for 
the dark energy parameters w0 and wa.

Dark Energy Task Force 
Figure of Merit
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The errors on w (and hence 
the FoM) of a survey depends 
on the fiducial cosmology.

And even the conclusions that 
you draw from the data may 
change with the cosmology.

Effectiveness
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FoMs: model selection

To explore these questions, we have to decide which model 
is to be taken as true, simulate observational data (possibly 
across its parameter space), and assess the value of the 
Bayesian evidence that our experiment will generate.

I’m not sure whether effect A is relevant to my data, but if it is, I 
need to include a new parameter θA. Will my data be able to 
confirm that I need to include this parameter?

Or, alternatively, suppose I suspect that effect A is irrelevant. 
Will the data be able to confirm my suspicion, if it is correct?

I’ve got two competing models to explain my data. Will I be 
able to exclude one of them?
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Forecasts for dark energy
Parameter estimation question: 
Suppose dark energy is described by a two-
parameter model with w0 = -1 and wa = 0. 
How tight do I expect my constraints on 
those parameters to be?
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Model selection questions: 
If the dark energy model is right, will my 
experiment support it over ΛCDM?
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between quintessence and modified gravity 
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Red: Λ mildly favoured
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White: DE favoured

Mukherjee, Parkinson, Corasaniti, Liddle, 
Kunz, MNRAS, astro-ph/0512484
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(Almost) current dark energy data
Liddle, Mukherjee, Parkinson, and Wang,  PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

3

TABLE I: The mean ∆ ln E relative to the ΛCDM model together with its uncertainty, the information content H , the minimum
χ2, and the parameter constraints, for each of the models considered and for each of two data combinations. Uncertainties
on H0 are statistical only, and do not include systematic uncertainties. The models differ by virtue of the number of free
parameters, here in the dark energy sector, and/or the priors on those parameters. For reference, lnE for the ΛCDM model
was found to be −20.1 ± 0.1 for the compilation with Riess04 and −52.3 ± 0.1 for that with Astier05.

data used Model

WMAP+SDSS+ ∆ ln E H χ2
min parameter constraints

Model I: Λ

Riess04 0.0 5.7 30.5 Ωm = 0.26 ± 0.03, H0 = 65.5 ± 1.0

Astier05 0.0 6.5 94.5 Ωm = 0.25 ± 0.03, H0 = 70.3 ± 1.0

Model II: constant w, flat prior −1 ≤ w ≤ −0.33

Riess04 −0.1 ± 0.1 6.4 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.4, w < −0.81,−0.70a

Astier05 −1.3 ± 0.1 8.0 93.3 Ωm = 0.24 ± 0.03, H0 = 69.8 ± 1.0, w < −0.90,−0.83a

Model III: constant w, flat prior −2 ≤ w ≤ −0.33

Riess04 −1.0 ± 0.1 7.3 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.5, w = −0.87 ± 0.1

Astier05 −1.8 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w = −0.96 ± 0.08

Model IV: w0–wa, flat prior −2 ≤ w0 ≤ −0.33, −1.33 ≤ wa ≤ 1.33

Riess04 −1.1 ± 0.1 7.2 28.5 Ωm = 0.27 ± 0.04, H0 = 64.1 ± 1.5, w0 = −0.83 ± 0.20, wa = −−b

Astier05 −2.0 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w0 = −0.97 ± 0.18, wa = −−b

Model V: w0–wa, −1 ≤ w(a) ≤ 1 for 0 ≤ z ≤ 2

Riess04 −2.4 ± 0.1 9.1 28.5 Ωm = 0.28 ± 0.04, H0 = 63.6 ± 1.3, w0 < −0.78,−0.60a, wa = −0.07 ± 0.34

Astier05 −4.1 ± 0.1 11.1 93.3 Ωm = 0.24 ± 0.03, H0 = 69.5 ± 1.0, w0 < −0.90,−0.80a, wa = 0.12 ± 0.22

bWhere constraints on w are shown as upper limits only, the values
are 68% and 95% marginalized confidence limits.
cwa is unconstrained in Model IV.

because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe
Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
while showing the same general trends. Subsequently,
our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
earlier dataset (of SNe alone) by Saini et al. [9]. The other
models all show smaller evidences, though none are yet
decisively ruled out. Nevertheless, there is distinct evi-
dence against the two-parameter models, especially from
the compilation including Astier05. Model V has a wider
parameter range than Model IV and fares the worst, re-

LambdaCDM

w0-wa

Constant w{

{

Conclusion: LambdaCDM currently favoured but all models still alive
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Future forecasts informed by current data
Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang,  astro-ph/0610126

Bayesian philosophy: continual updating of probabilities                       
as new data comes in.
⇒ Use current probabilities to forecast future experiment outcomes

If LambdaCDM is right, are upcoming 
experiments (eg DES, WFMOS, SNAP) 
good enough to favour it decisively?

What is the probability that upcoming 
experiments will robustly detect dark 
energy evolution?

If future experiments are still inconclusive, 
how tight will be the limits they can impose 
on dark energy properties?
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Future forecasts informed by current data
Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang,  astro-ph/0610126

If LambdaCDM is right, are upcoming 
experiments (eg DES, WFMOS, SNAP) 
good enough to favour it decisively?

What is the probability that upcoming 
experiments will robustly detect dark 
energy evolution?

If future experiments are still inconclusive, 
how tight will be the limits they can impose 
on dark energy properties?

Under particular prior assumptions we made (the effect of 
whose variation is readily tested), the answers are ...

About 25%

YES

Tighter than 
you expect!
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Model selection forecasts for Planck
Pahud, Liddle, Mukherjee, and Parkinson, PRD, astro-ph/0605004

We can also do model selection forecasts for the Planck 
satellite. For the spectral index it looks like this:
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Model selection forecasts for Planck
Pahud, Liddle, Mukherjee, and Parkinson, MNRAS, astro-ph/0701481

Or with both the spectra index nS and running α ...
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Α
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n
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Red: HZ model 
          preferred
Green: power-law 
          model preferred
Blue: running model 
          preferred
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Survey optimization
Optimization refers to the tuning of surveys to maximize 
their ability to answer particular science questions. This 
might, for instance, be interesting to collaborations hoping 
to maximize their chance of persuading a funding agency 
to favour their proposal.

Rather then specify a predetermined experimental 
configuration, as before, we now allow the experimental 
setup to depend on a number of parameters, usually subject 
to some constraints (eg maximum permitted cost, fixed 
telescope observing time, etc.
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Supernovae - repeated imaging with spectroscopic follow-up

– Current: SNLS, ESSENCE, SDSS-II

– Next gen: Pan-STARRS, DES

– 3rd gen: LSST, JDEM

Baryonic Acoustic Oscillations - large scale redshift survey

– Current: WiggleZ, SDSS-II

– Next gen: BOSS (SDSS-III), DES (photo-z), HETDEX (high-z), 
WFMOS, Hydrogen Sphere Survey (radio)

– 3rd gen: LSST, JDEM, SKA (radio)

Weak Lensing - large scale, high quality imaging survey

– Next gen: DES, Pan-STARRS, HSC

– 3rd gen: DUNE, JDEM, LSST 

Future dark energy surveys
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How do we optimize a survey to maximize its 
performance in constraining the dark energy?

What survey strategy should we take; ie.

What type of objects should we target? 

At which redshifts should we take measurements?

Should it survey a wide area at low redshift, or a 
small number of thin ‘pencil beam’ surveys going to 
a greater depth (or a mixture of the two)?

And how do we quantify the performance of 
the survey? 

Survey design
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Select Random Survey Geometry

Compute FoM

Compare to previous survey

Find Survey Geometry to Maximise FoM

Optimization Process
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Survey optimization
We can perform the search, for instance, by Monte Carlo 
methods. We have a function 

                                FoM(αi) 
where αi are parameters describing the survey.

We can for instance pretend that the FoM is like a 
likelihood, and use something like Metropolis-Hastings. 
Because the FoM shape may be complex, but we are 
interested primarily only in the maximum, we don’t have to 
worry about detailed balance and can use various 
techniques to explore around the configuration space, 
        e.g. a thermal annealing schedule
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An example: WFMOS

WFMOS: Wide-field Fibre-fed Multi-Object Spectrograph

A now-defunct proposal to install a massive spectrograph, with 
thousands of fibres, on an 8m telescope (Gemini/Subaru).

Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 8 September 2009 (MN LATEX style file v2.2)

Optimizing baryon acoustic oscillation surveys II:
curvature, redshifts, and external datasets
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ABSTRACT
We extend our study of the optimization of large baryon acoustic oscillation (BAO)
surveys to return the best constraints on the dark energy, building on Paper I of this
series (Parkinson et al. 2007). The survey galaxies are assumed to be pre-selected
active, star-forming galaxies observed by their line emission with a constant number
density across the redshift bin. Star-forming galaxies have a redshift desert in the re-
gion 1.6 < z < 2, and so this redshift range was excluded from the analysis. We use the
Seo & Eisenstein (2007) fitting formula for the accuracies of the BAO measurements,
using only the information for the oscillatory part of the power spectrum as distance
and expansion rate rulers. We go beyond our earlier analysis by examining the effect
of including curvature on the optimal survey configuration and updating the expected
‘prior’ constraints from Planck and SDSS. We once again find that the optimal sur-
vey strategy involves minimizing the exposure time and maximizing the survey area
(within the instrumental constraints), and that all time should be spent observing in
the low-redshift range (z < 1.6) rather than beyond the redshift desert, z > 2. We
find that when assuming a flat universe the optimal survey makes measurements in
the redshift range 0.1 < z < 0.7, but that including curvature as a nuisance parameter
requires us to push the maximum redshift to 1.35, to remove the degeneracy between
curvature and evolving dark energy. The inclusion of expected other data sets (such as
WiggleZ, BOSS and a stage III SN-Ia survey) removes the necessity of measurements
below redshift 0.9, and pushes the maximum redshift up to 1.5. We discuss consid-
erations in determining the best survey strategy in light of uncertainty in the true
underlying cosmological model.

Key words: cosmological parameters – large-scale structure of universe – surveys

1 INTRODUCTION

The discovery of the accelerating universe, driven by some
mysterious dark energy, has motivated the conceptualization
and design of a number of future surveys that will seek to dis-
cover its nature. These include, but are not limited to: Wide-
field Fiber-fed Multi-Object Spectrograph (WFMOS), the
Dark Energy Survey (DES), Panoramic Survey Telescope &
Rapid Response System (Pan-STARRS), Baryon Oscillation
Spectroscopic Survey (BOSS), Large Sky Area Multi-Object
Fibre Spectroscopic Telescope (LAMOST), Hubble Sphere

! drp21@sussex.ac.uk

Hydrogen Survey (HSHS), Square Kilometre Array (SKA),
Large Synoptic Survey Telescope (LSST), Euclid and the
Joint Dark Energy Mission (JDEM). These will deploy an
array of methods to probe the dark energy, such as baryon
acoustic oscillations (BAO), weak lensing, cluster number
counts, and type-Ia supernovae (SN-Ia).

In such a crowded marketplace it is important to have
a compelling product by demonstrating effective use of re-
sources. In previous papers some of the present authors have
examined the application of design principles to the con-
struction of new surveys, by optimizing the surveys to give
the best science return (Bassett 2005; Bassett, Parkinson &
Nichol 2005a). Also, recently a team commissioned by the

c© 0000 RAS

Aim: to carry out a large galaxy redshift to use 
galaxy clustering (baryon acoustic oscillations) 
to test for dark energy evolution.
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An example: WFMOS

These define the survey parameters, which can be 
varied, and the constraint parameters which are fixed.

2 Parkinson et al.

US NSF (the Dark Energy Task Force or DETF) laid out a
‘roadmap’ of how dark energy experiments may develop into
the future (Albrecht et al. 2006), and similar studies have
been undertaken by UK and European funding agencies.

This paper is a continuation of our previous work
(Parkinson et al. 2007, hereafter P07), in which we con-
sidered optimizing a BAO survey similar to the WFMOS
design.1 The conceptual design for the WFMOS dark energy
survey is to conduct a large area survey of the sky, measur-
ing the redshifts of order millions of galaxies. The power
spectrum of these galaxies traces the power spectrum of the
underlying matter density, and this contains the imprint of
the primordial sound waves in the photon–baryon plasma
(the BAO). These ‘wiggles’ in the power spectrum can be
used as standard rulers to measure the angular-diameter dis-
tance (dA) from those modes transverse to the line of sight,
and the Hubble rate at that redshift (H(z)) from the radial
modes. For a description of WFMOS, see Bassett, Nichol
& Eisenstein (2005b). Very similar surveys have been pro-
posed for LAMOST (Wang et al. 2009) and the 4-m Mayall
telescope (BigBOSS; Schlegel et al. 2009b).

In P07 we set out the basics of our optimization method-
ology, defining the concepts of a Figure of Merit (FoM), very
similar to the one proposed by the DETF but now as a
function of survey strategy, and a survey parameter space,
where a particular survey configuration is defined in terms of
time, area and redshift. When these survey parameters are
combined with information about the instrument, we can
predict the number of galaxies that will be observed, the
accuracy with which the BAO will be measured, and the
resulting FoM. By plotting how the FoM varies with sur-
vey parameters, we can find the optimal survey. We found
that the optimization preferred the surveys to be as large in
area as possible, limiting the exposure time to be as small
as possible, to beat down the shot noise from limited galaxy
numbers.

In this paper we address the issues of the survey red-
shift ranges in the high and low-redshift regimes, and the
time spent observing in each of them. We see how these sur-
vey parameters are affected by the cosmological parameters
being considered, and by the other surveys that are included
as priors in the analysis.

In Section 2 we briefly review the details of our previous
optimization, before describing the details of how our anal-
ysis has been updated. In Section 3 we state the optimal
configurations for a WFMOS-like survey by itself. In Sec-
tion 4 we look at the effect on the optimal survey design of
adding in other experimental data as ‘prior’ measurements.
In Section 5 we outline our conclusions.

2 OPTIMIZATION PROCEDURE

2.1 Survey definition

We perform our optimization as described in P07. We con-
sider a set of allowed survey geometries, described by the

1 As of May 2009 the original WFMOS project has been termi-
nated through lack of sufficient available funding via the Gemini
Observatory, but our methodology and qualitative conclusions are
generally applicable to any similar future proposals.

Area

dz

z zmin max

redshift

Figure 1. A schematic illustrating how the survey parameters
are defined. The survey volume is defined by the area on the sky
and the minimum and maximum redshifts. The redshift range is
subdivided into a number of slices of fixed width dz for computing
the FoM. The number density is fixed by the density in the final
redshift slice (the shaded region) for a given exposure time.

Table 1. List of survey parameters in each redshift regime. See
Parkinson et al. (2007) for detailed explanations. Note that we
no longer vary the number of redshift bins, but instead divide up
the redshift ranges into thin slices for the FoM calculation.

Survey Parameter Symbol

Survey time τlow, τhigh

Area covered Alow, Ahigh

Minimum of redshift bin zlow (min), zhigh (min)
Maximum of redshift bin zlow (max), zhigh (max)

Number of pointings np(low), np(high)

parameters listed in Table 1, and illustrated by a schematic
in Figure 1. A general survey is divided into low- and high-
redshift components, the former corresponding to z < 1.6
and the latter z > 2, separated by the redshift desert within
which ground-based surveys cannot effectively obtain red-
shifts due to the lack of galaxies emitting in the optical wave-
lengths. The terminology ‘low’ and ‘high’ has this meaning
throughout.

The survey parameters are limited by some constraints,
listed in Table 2. These are the same as in P07, with the
exception of the limits on the redshift bins (zmin, zmax),
which have been relaxed as we now include a more reason-
able model of the efficiency/response of the WFMOS spec-
trograph to light at different wavelengths. The details of
this wavelength throughput are not public, but can be taken
to be very similar to that of the Sloan Digital Sky Survey
(SDSS) spectrographs.2

Having established the details of the survey, we com-
pute the total number of galaxies that will be measured. We
assume a pre-existing source catalogue of photometrically
selected galaxies, from which we can effectively target ei-
ther line-emission active star-forming galaxies or passively-
evolving continuum emission galaxies. These details have
not changed from the previous paper. Since we found in P07
that the active star-forming galaxies, whose redshifts are to
be obtained by measuring the O[II] emission line doublet at

2 Details of the SDSS spectrographs can be found at
http://www.astro.princeton.edu/PBOOK/spectro/spectro.htm

c© 0000 RAS, MNRAS 000, 000–000
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Table 2. List of constraint parameters.

Constraint Parameter Value

Total observing time 1500 hours
Field of view 1.5o diameter

nfibres 3000
Aperture 8m

Fibre diameter 1 arcsec
Overhead time between exposures 10 mins

Minimum exposure time 15 mins
Maximum exposure time 10 hours

Wavelength response Priv. comm with AAO
Width of redshift slices, dz 0.05

low redshift and Lyman-α at high redshift, are the preferred
targets, we adopt these as standard for all the analysis in
this paper. We also set a somewhat arbitrary lower limit of
15 minutes for the exposure time, representing a reasonable
compromise when taking into account a rather pessimistic
estimate of a 10 minute overhead time between exposures.
We further assume that the galaxies are targeted so as to
generate a sample of uniform number density across each
redshift bin.

We also include an estimate of the bias of these galaxies,
and its evolution with redshift. At low redshift we take Wake
et al. (2008) as our guide, assuming the bias (weakly) tracks
the linear growth function, using the following formula

b(zlo) = 1 + (b(zhi − 1)D(zhi)/D(zlo) , (1)

where D(z0 is the growth function. Here we take zhi = 0.55
and b(zhi) = 1.3 At high redshift we use the result of Myers
et al. (2007) that the bias grows as (1 + z)2.

Once the redshift ranges and number of galaxies have
been determined, the cosmological parameter analysis can
proceed. Here we slice the redshift bins into a number of
sub-bins, where the width of these sub-bins is fixed and the
number is determined by the redshift range (as shown in
Figure 1). We take the width of the redshift slices to be con-
stant, dz = 0.05, with the redshift range always being an
integer number of these slices and the minimum and maxi-
mum redshifts discretized in the same units.

In computing the BAO errors on each slice, we do not
include the possible correlations between slices that may be
caused by large-scale modes in the power spectrum. Our
slice width dz is chosen to be fairly wide to reduce such cor-
relations. These will have the effect of decreasing the con-
straining power of the survey and so lowering the FoM. We
do not necessarily expect including these effects to change
the optimal survey, as they will not change the redshifts at
which the measurements are being made, only the accuracy
of the measurements.

2.2 Figure of Merit (FoM)

Once the area, redshift range and slices, and galaxy num-
ber of the survey have been determined, we can use fitting
formulae to estimate how well the BAO will be measured,
and what distance information will be returned. In Rassat et
al. (2008) a comparison was made between different meth-
ods for extracting information from a future galaxy survey.
Here, following on from P07, we only use the oscillatory

part of the power spectrum (the ’wiggles’), as we consider
this the most robust source of distance information that can
be extracted. The full power spectrum is degenerate with
primordial power spectrum parameters (tilt, running) and
also details of the growth of structure on large scales (non-
linear bias, non-linear growth). The anisotropy of the power
spectrum can be used as an Alcock–Paczynski (AP) test,
but this require details of the non-linear behavior of the
redshift-space distortions.

In P07 we used the formula published by Blake et al.
(2006), but this has been superseded by those of Seo &
Eisenstein (2007). We use the formula derived from a Fisher
matrix approach, using a 2-D approximation of only the os-
cillatory part of the power spectrum (equation 26 in their
paper). These fitting formula estimate the errors in the po-
sition of the baryonic features along and across the line of
sight, as well as the correlation between them. They also
have the added advantage that they can simulate the effect
of ‘reconstruction’ of the linear oscillations in the non-linear
regime (though we do not use reconstruction in this paper).
This can lead to increased accuracy at lower redshifts, where
non-linear effects on the power spectra are present at the
same scales as the BAO. The accuracies of the BAO mea-
surements leads to the calculation of the FoM.

In P07, as in the DETF report, the CPL parameteriza-
tion (Chevallier & Polarski 2001; Linder 2003) of the dark
energy equation of state was used, given by

w(a) = w0 + wa(1 − a) , (2)

where w0 and wa are adjustable constants. The FoM we
used in the previous paper was the D-optimal criterion, the
inverse of the determinant of the (w0, wa) covariance matrix,
i.e.

FoMold = det−1(C) =
1

σ2
w0w0σ2

wawa
− σ4

w0wa

(3)

Here we have switched to the square root of the inverse of
the determinant, bringing us into line with the DETF FoM,

FoMnew =
1

(σwa
σwp)

=
1

√

σ2
w0w0σ2

wawa
− σ4

w0wa

, (4)

where wp is the equation of state at the ‘pivot’ redshift.
Hence our new FoM is the square root of our old FoM. We
use this new definition of the FoM throughout.

The FoM is computed using a Fisher matrix approach.
Details are laid out in Appendix A.

2.3 Adding curvature

We have expanded our cosmological parameter space from
P07, by including the effect of curvature on our analysis. The
importance of doing so has been emphasized by Clarkson,
Cortes & Bassett (2007), who showed than even a small
curvature can seriously bias dark energy measurements. Our
cosmological parameter space (Θ) is now defined to be

Θ = {w0, wa, ΩDE, Ωk, h,Ωbh2, ns} . (5)

The fiducial values for these parameters are given in Table 3.
Additional parameters not allowed to vary are the radiation
energy density Ωr and the matter spectrum normalization
σ8. Note that the ‘wiggles-only’ method of BAO does not
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Figure 4. The 68% error ellipse on the w0 and wa parameters,
with marginalization over curvature, for the standard WFMOS
survey (grey), and the optimized one (red). Also shown (yellow)
is the error ellipse were the survey optimized for a flat Universe
(but the errors have been computed here marginalizing over cur-
vature). The difference between the largest ellipse and the two
smaller ones shows the improvement due to optimizing the sur-
vey for measuring the dark energy parameters, while the differ-
ence between the smaller ellipses is due to different cosmological
models (flat or non-flat) used for the optimization. These con-
straints are calculated including prior information from Planck
and SDSS.

Having established the importance of optimization,
what considerations determine the optimal survey strategy?
The principal uncertainty here is the form of the true cos-
mological model. This is what we are trying to determine,
and there must clearly be competing possibilities for the ex-
periment to be interesting. As the optimal strategy depends
on the (unknown) true cosmological model, there will in-
evitably be choices to be made which have both costs and
benefits. In the context of the models considered in this pa-
per, the decision is whether to assume a flat Universe or to
allow for curvature; there will be a cost if the assumption
made in optimization turns out to be inappropriate once the
data are obtained and analyzed.

For the models we have considered here, the basic sur-
vey decisions are independent of the assumed cosmological
model. The first is that high-redshift observations are un-
necessary — all survey time should be spent at low redshift
(z < 1.6). The second is that the exposures should be as
short as possible, as this is already sufficient to obtain the
desired redshifts, and hence achieves maximal survey area.
Finally, the low-redshift limit can be taken as starting at
some suitably low value such as 0.1.

The remaining decision to be made is the upper limit
of the low-redshift bin. As we have already seen, the upper
redshift limit is different depending whether we assume flat-
ness or not. Table 5 gives the survey parameters for each
case.

Table 6 shows the FoMs, now with the extra informa-
tion of the FoM that is returned if the true cosmology does
not match the assumption made in optimizing. Naturally,
for a given survey configuration, we get more accurate con-

Table 6. Optimal survey Figure of Merit calculated in flat and
curved cases, where the optimization has been undertaken under
two different assumptions, either that Ωk is left out or included
as a nuisance parameter. The FoM in computed including prior
information from Planck and SDSS.

Survey optimization without Ωk with Ωk

FoM (Ωk set to zero) 57 48
FoM (Ωk allowed to vary) 15 32
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Figure 5. The FoM as a function of the upper redshift limit of
the survey, for both the flat case and for the case including cur-
vature. All surveys use zmin = 0.1 and a minimal exposure time
of 15 minutes, as discussed in the text. Measuring the curvature
requires targeting a larger redshift range.

straints if we assume a flat Universe than if we allow for
curvature, as the extra parameter in the Fisher matrix di-
lutes the constraining power on dark energy. However, we
can now see the losses due to non-optimality. For example,
if the Universe really is flat, but we optimized to allow for
curvature, our FoM is degraded from 57 to 48. If we end up
needing to allow for curvature, having not optimized for it,
the degradation is from 32 to 15 (the corresponding error
ellipses for this case are shown in Figure 4).

Figure 5 shows the FoMs as a function of the upper
redshift limit of the survey (reproduced from Figures 2 and
3), showing the peaks at zmax ∼ 0.7 in the flat case and
zmax ∼ 1.35 in the curved one. There is no optimal way
to deal with this tension, as one’s opinions as to how likely
the model assumptions are governs whether the benefits of
a particular choice are likely to outweigh the costs. In this
particular case existing evidence tends to support a flat Uni-
verse (Vardanyan, Trotta & Silk 2009) suggesting that the
potential loss of accuracy in the flat case outweighs the abil-
ity to measure curvature. If we were considering different
dark energy models/parameterizations, the choice may be
less clear cut.
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vey for measuring the dark energy parameters, while the differ-
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models (flat or non-flat) used for the optimization. These con-
straints are calculated including prior information from Planck
and SDSS.

Having established the importance of optimization,
what considerations determine the optimal survey strategy?
The principal uncertainty here is the form of the true cos-
mological model. This is what we are trying to determine,
and there must clearly be competing possibilities for the ex-
periment to be interesting. As the optimal strategy depends
on the (unknown) true cosmological model, there will in-
evitably be choices to be made which have both costs and
benefits. In the context of the models considered in this pa-
per, the decision is whether to assume a flat Universe or to
allow for curvature; there will be a cost if the assumption
made in optimization turns out to be inappropriate once the
data are obtained and analyzed.

For the models we have considered here, the basic sur-
vey decisions are independent of the assumed cosmological
model. The first is that high-redshift observations are un-
necessary — all survey time should be spent at low redshift
(z < 1.6). The second is that the exposures should be as
short as possible, as this is already sufficient to obtain the
desired redshifts, and hence achieves maximal survey area.
Finally, the low-redshift limit can be taken as starting at
some suitably low value such as 0.1.

The remaining decision to be made is the upper limit
of the low-redshift bin. As we have already seen, the upper
redshift limit is different depending whether we assume flat-
ness or not. Table 5 gives the survey parameters for each
case.

Table 6 shows the FoMs, now with the extra informa-
tion of the FoM that is returned if the true cosmology does
not match the assumption made in optimizing. Naturally,
for a given survey configuration, we get more accurate con-

Table 6. Optimal survey Figure of Merit calculated in flat and
curved cases, where the optimization has been undertaken under
two different assumptions, either that Ωk is left out or included
as a nuisance parameter. The FoM in computed including prior
information from Planck and SDSS.

Survey optimization without Ωk with Ωk

FoM (Ωk set to zero) 57 48
FoM (Ωk allowed to vary) 15 32
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Figure 5. The FoM as a function of the upper redshift limit of
the survey, for both the flat case and for the case including cur-
vature. All surveys use zmin = 0.1 and a minimal exposure time
of 15 minutes, as discussed in the text. Measuring the curvature
requires targeting a larger redshift range.

straints if we assume a flat Universe than if we allow for
curvature, as the extra parameter in the Fisher matrix di-
lutes the constraining power on dark energy. However, we
can now see the losses due to non-optimality. For example,
if the Universe really is flat, but we optimized to allow for
curvature, our FoM is degraded from 57 to 48. If we end up
needing to allow for curvature, having not optimized for it,
the degradation is from 32 to 15 (the corresponding error
ellipses for this case are shown in Figure 4).

Figure 5 shows the FoMs as a function of the upper
redshift limit of the survey (reproduced from Figures 2 and
3), showing the peaks at zmax ∼ 0.7 in the flat case and
zmax ∼ 1.35 in the curved one. There is no optimal way
to deal with this tension, as one’s opinions as to how likely
the model assumptions are governs whether the benefits of
a particular choice are likely to outweigh the costs. In this
particular case existing evidence tends to support a flat Uni-
verse (Vardanyan, Trotta & Silk 2009) suggesting that the
potential loss of accuracy in the flat case outweighs the abil-
ity to measure curvature. If we were considering different
dark energy models/parameterizations, the choice may be
less clear cut.
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Model selection forecasting is a powerful tool for 
experimental design and comparison, and is readily applied 
to dark energy and other experiments.

Survey optimization offers significant potential for improved 
scientific and financial efficiency, certainly in an 
astronomical context.

Conclusions
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