
Model Selection and        
multi-model inference

CosmoNest code in action (Mukherjee, Parkinson and Liddle)
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Levels of Bayesian inference

I’ve decided what the 
correct model is.

Now I want to know 
what values of the 
parameters are 
consistent with the 
data.

I can do this using e.g. 
Markov Chain Monte 
Carlo.

Parameter 
Estimation

Model 
Selection

Multi-model 
Inference

Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.

I can do this by 
computing the Bayesian 
Evidence. I can then do 
parameter estimation 
using the best model.

Mmm, I did the model 
selection thing, but there 
wasn’t a single best model.

But I still want to know 
how probable the 
parameter values are.

I can do this by combining 
the parameter likelihoods 
using Bayesian Model 
Averaging, adding them 
together weighted by the 
model probabilities.
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Posterior model 
probability!

P(M|D) =
P(D|M)P(M)

P(D)

The Bayesian evidence
Bayes theorem again

P(θ|D) =
P(D|θ)P(θ)

P(D)

Bayesian evidence

, but conditioned on a model.

⇒ P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)

How do we calculate it?
P(D|M) =

Z
P(D|θ,M)P(θ|M)dθ

E(M) =
Z

L(θ)Pr(θ)dθ
This can be evaluated in a number of ways: we use a 
Monte Carlo integration method called nested sampling.

What does it reward? Model predictiveness
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Bayesian model selection

Choose model: Set of parameters to be varied
                        Prior ranges for those parameters
Compute likelihood function
Obtain posterior parameter distribution

Choose dataset
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Bayesian model selection

Choose model M1:
Set of parameters to be varied

Prior ranges for those parameters
Compute likelihood function

Obtain posterior parameter distribution

......

Choose model M2:
Set of parameters to be varied

Prior ranges for those parameters
Compute likelihood function

Obtain posterior parameter distribution

Assign model probability P(M1) Assign model probability P(M2) ......

Compute model likelihoods, known as the Bayesian evidence
Update prior model probabilities to posterior ones

[option: multi-model inference by Bayesian model averaging]
Interpret

Choose dataset
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Model priors
Bayesian inference requires that the prior probabilities be 
specified, giving the state of knowledge before the data was 
acquired to test the hypothesis.

We now have to choose model priors too. A common choice is 
equal prior model probabilities, but this is not obligatory. The 
important thing is to specify them, so that someone else can see 
the consequence of their different opinion.

A significant concern is that our set of models may not be 
complete. There may be better models we haven’t thought of yet. 
Hence we only get an upper limit on the posterior model 
probability.
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In Bayesian model comparison, there is no 
such thing as a null hypothesis. There are 
only alternate hypotheses, treated on an 

equal footing.

Consequently, the concept of Type I (false positive) and 
Type II (false negative) errors doesn’t exist either; as there 
is no asymmetric hypothesis there is no distinction other 
than correct and incorrect inference.*

*Nevertheless, one may wish to impose asymmetric criteria, being more 
willing to accept a wrong answer of one kind than of another.
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Ultra-Bayesian view of Higgs searches

The only models which exist that have proven a 
satisfactory explanation of particle physics data are those 
that contain a Higgs particle.

Accordingly, the Higgs particle has, in a Bayesian sense, 
already been detected.

Its mass is rather uncertain, mH ≃ (150 ± 20) GeV, but 
future data are expected to narrow the range.

However at no point in the process envisaged can one 
say that the Higgs has `been discovered’.
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A Bayesian model comparison can lend 
support to a simpler (nested) model, by 
disfavouring a more complex alternative 

which is penalized for lack of 
predictiveness.

By contrast, frequentist methods can only impose upper 
limits in such cases, as the more complex model is always 
able to fit the data at least as well as the simpler one.

Terminology: a nested model is one whose parameters 
are a subset of the parameters of a more general model.
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Computing the evidence is often challenging, but feasible 
due to recent algorithm developments. For guidance in 
interpretting the evidence, people usually appeal to the 
Jeffreys’ scale.

Interpretational scale

The most useful divisions are 2.5 (odds 
ratio of 12:1) and 5 (odds ratio of 150:1).

Jeffreys’ Scale: Δ lnE < 1 Not worth more than a bare mention
1< Δ lnE < 2.5 Substantial evidence
2.5< Δ lnE < 5 Strong to very strong evidence

5< Δ lnE Decisive evidence

The evidence ratio between two models is called the Bayes Factor, B01 = E0/E1.
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According to the evidence, the flat model is a better description of the 
data, with odds of about 20:1 against the curved model. Note that this 
assumes flat and curved were thought equally likely before the data 
came along.

A simple example: spatial curvature

WMAP1 said 

This was widely interpretted as supporting the idea of a flat Universe, but 
actually favouring a slightly closed Universe.

Ωtot = 1.02±0.02

Assuming that the density is the only parameter, with a uniform prior 
from 0.1 to 2, and likelihood 

L = L0 exp
(
−(Ω−1.02)2

2×0.022

)

Flat:

Curved: 

Evidence= L(Ω= 1) = 0.6L0

Evidence=
1
1.9

Z
L(Ω)dΩ! 0.03L0
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A simple example: spatial curvature

WMAP1 said 

This was widely interpretted as supporting the idea of a flat Universe, but 
actually favouring a slightly closed Universe.

Ωtot = 1.02±0.02

Assuming that the density is the only parameter, with a uniform prior 
from 0.1 to 2, and likelihood 

L = L0 exp
(
−(Ω−1.02)2

2×0.022

)

Flat:

Curved: 

Evidence= L(Ω= 1) = 0.6L0

Evidence=
1
1.9

Z
L(Ω)dΩ! 0.03L0

Notes: 
1) Even if parameter estimation had given                             the flat case would still have been 
preferred.
2) Someone adamantly insisting before WMAP that the total density was 1.02, to the exclusion 
of all other values, could claim WMAP supported them better than flat.

Ωtot = 1.05±0.02
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Calculating the evidence
The evidence is a multi-dimensional integral, a standard 
numerical problem. However ...

The parameter space may have a high dimensionality (cosmological 
examples typically have 6 to 10 parameters simultaneously varying).

Individual evaluations of the likelihood function may be 
computationally time-consuming (a few seconds each in typical 
cosmology examples, ie one CPU-month per million calculations).

The likelihood function may be sharply peaked, at an unknown 
location.

Finding the 
maximum of a 

function

Mapping a function 
in the vicinity of its 

maximum

Integrating a 
function over its 
entire domain

< <
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Evidence calculations: `Exact’ methods
These are numerical methods which would become exact in the 
limit of infinite computer time, and may be accurate enough for 
practical amounts of computer time.

Thermodynamic integration

A variant on Metropolis-Hastings, where the chain is given an effective 
temperature via the substitution ℒ ↦ ℒ1/T. As T goes to infinity, the 
posterior tends to the prior, and so the whole prior space is explored.

Nested sampling

Introduced by Skilling in 2004, this is the technique my group has 
been using - see next slides.

VEGAS

A multi-dimensional integrator popular with particle physicists, which 
shows promise but has been used only once for model selection so far.
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Nested sampling
Nested sampling is a Monte Carlo method, but not a Markov chain 
one. It computes the evidence by `walking’ a set of points towards 
the maximum.

1. Distribute a set of points 
randomly within the prior, 
evaluating the likelihood at each.

2. Discard the lowest likelihood 
point.

3. Replace with a new point of 
higher likelihood drawn uniformly 
from the prior.

4. Accumulate the evidence as a    
1-D integral over `prior mass’.

5. Once the remaining points are 
close enough to the maximum, 
sum over them.

x
1

L(x)

0

θ2

θ1

LiddleFig03.pdf   3/22/09   8:13:46 PM
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Nested sampling

A toy calculation (a practical one involves several hundred points).

A substantial benefit of nested sampling is that the points it 
generates can be processed into a set of posterior samples 
suitable for parameter estimation, so it carries out both 
inference tasks simultaneously. These points also sample the 
posterior more widely than does Metropolis-Hasting.
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Evidence calculations: Approximate methods
These are methods which may be faster to calculate, but which are 
either approximate or hold only in restricted circumstances.

Laplace approximation

Expand the likelihood as a multi-variate gaussian about its maximum. 
Unfortunately the uncertainty is not under control.

Savage-Dickey density ratio

For nested models, an exact relation gives the evidence in terms of the 
marginalized posterior of the more complex model, evaluated at the 
fixed parameter value(s) of the embedded model. It can be estimated 
from Markov chains, but sampling error can be a problem.

Bayesian Information Criterion (BIC)

BIC = -2 ln ℒmax + k ln N  (k = number of parameters,N = number of data points).

The BIC difference approximates the Bayes factor under certain assumptions.
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Alternatives to Bayesian methods
There are some model comparison alternatives to Bayesian methods, 
principally based on information theory. As with the evidence, a 
number is calculated for each model and used to rank them.

Akaike Information Criterion (AIC)

AIC = -2 ln ℒmax + 2k         (k = number of parameters)

Deviance Information Criterion (DIC)

DIC = -2 ln ℒ(θmean) + 2keff      (keff = parameters constrained   

                                                         by the data).

Minimum message length/minimum description length

These state that the best model offers maximum 
compression of the data, ie model + data residuals can be 
described in the smallest number of bits.
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Some cosmologySome applications
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The main current controversy concerning 
the standard cosmological model is 

whether the spectral index n is a parameter, 
or whether instead the Harrison-Zel’dovich 

choice n = 1 is sufficient.

The argument centres around possible data analysis 
systematics — point source subtraction, WMAP beam profile, 
SZ effect marginalization — and also around methods for 
robust definition of the standard cosmological model.

20



0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

2002 2003 2004 2005 2006 2007 2008 2009 2010

Year

n

Spectral index at 95% confidence

Wang et 
al 2002

WMAP1

WMAP3 WMAP5 
Dunkley

WMAP5 
Komatsu

Rudjord 
et al 2008

Is n different from 1?
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Minimally-parametric power spectrum reconstruction and the evidence for a red tilt 10

Figure 3. Primordial power spectrum P (k) (left) and spectral index ns(k) (right)
reconstructed from WMAPext for the CV-selected optimal penalty. A deviation
from scale invariance consistent with a red-tilted power law form is clearly visible.
The dashed line corresponds to a scale invariant power spectrum: the reconstructed
spectrum is consistent with a scale independent spectral slope and a red tilt.
Throughout, the units of k are Mpc−1.

Figure 4. Primordial power spectrum P (k) reconstructed from WMAP3 (left) and
WMAPext (right) data, without CV penalty. While one may be tempted to interpret
the reconstructed power spectrum as having features, CV shows that they are not
significant, and the recovered optimal P (k) is that shown in Figs. 2 and 3. The units
of k are Mpc−1.

Table 2. Effect on cosmological parameters of the extra freedom in the primordial
power spectrum for WMAPext data, in the same format as Table 1.

WMAPext PL run spline λopt,ext spline λ = 0

Ωbh
2 0.0223± 0.00073 0.021 ± 0.001 0.0221± 0.00075 0.018± 0.0011

Ωch
2 0.103 ± 0.0081 0.114 ± 0.0098 0.106± 0.0071 0.15 ± 0.017

h 0.739± 0.031 0.68 ± 0.04 0.733 ± 0.033 0.55 ± 0.056
σ8 0.739± 0.049 0.77 ± 0.05 0.764 ± 0.042 0.92 ± 0.056

Verde-Peiris 2008

Is n different from 1?

Observational analyses put n = 1 at around the 2 to 3 sigma position.

But is that the right question to ask?
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WMAP3 has been interpretted as ruling out the Harrison-
Zel’dovich nS = 1 spectrum and hence favouring inflation, e.g.  
n = 0.958 ± 0.016.  But this ignores model dimensionality. 
Using our code CosmoNest we find

A model selection example:   
spectral index from WMAP3

Parkinson, Mukherjee and Liddle, PRD, astro-ph/0605003

Datasets Model ln E

WMAP only
HZ

varying n
0.0

0.34 ± 0.26

WMAP+all

HZ
varying n

n and r (uniform on r)
n and r (log on r)

0.0
1.99 ± 0.26
-1.45 ± 0.45
1.90 ± 0.24
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}}
1.  WMAP alone cannot distinguish between HZ and a varying 
spectral index.

}

2.  Adding other datasets starts to prefer varying n, but 
only at odds of about 8:1.

3. However inflation predicts we should include both n and r, 
which is actually disfavoured as compared to HZ...

4. ... unless you use a logarithmic prior for r, which puts you back 
close to the r=0 case.

}

Datasets Model ln E

WMAP only
HZ

varying n
0.0

0.34 ± 0.26

WMAP+all

HZ
varying n

n and r (uniform on r)
n and r (log on r)

0.0
1.99 ± 0.26
-1.45 ± 0.45
1.90 ± 0.24
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(Almost) current dark energy data
Liddle, Mukherjee, Parkinson, and Wang,  PRD, astro-ph/0610126

Dark energy is the most enigmatic part of the current cosmological 
model, its fundamental properties being unknown.

Phenomenologically, it can be described by the equation of state w, that 
relates its pressure to its energy density.

Three models:

Cosmological constant: w = -1.

Constant w, to be found from fitting to data.

Evolving w, w = w0 + (1-a)wa, where a is the scale factor, 
and the parameters w0 and wa are to be fit from data.

In the latter two cases, there are different possible choices of prior 
depending whether or not one wishes to allow w < -1.
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(Almost) current dark energy data
Liddle, Mukherjee, Parkinson, and Wang,  PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

3

TABLE I: The mean ∆ ln E relative to the ΛCDM model together with its uncertainty, the information content H , the minimum
χ2, and the parameter constraints, for each of the models considered and for each of two data combinations. Uncertainties
on H0 are statistical only, and do not include systematic uncertainties. The models differ by virtue of the number of free
parameters, here in the dark energy sector, and/or the priors on those parameters. For reference, lnE for the ΛCDM model
was found to be −20.1 ± 0.1 for the compilation with Riess04 and −52.3 ± 0.1 for that with Astier05.

data used Model

WMAP+SDSS+ ∆ ln E H χ2
min parameter constraints

Model I: Λ

Riess04 0.0 5.7 30.5 Ωm = 0.26 ± 0.03, H0 = 65.5 ± 1.0

Astier05 0.0 6.5 94.5 Ωm = 0.25 ± 0.03, H0 = 70.3 ± 1.0

Model II: constant w, flat prior −1 ≤ w ≤ −0.33

Riess04 −0.1 ± 0.1 6.4 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.4, w < −0.81,−0.70a

Astier05 −1.3 ± 0.1 8.0 93.3 Ωm = 0.24 ± 0.03, H0 = 69.8 ± 1.0, w < −0.90,−0.83a

Model III: constant w, flat prior −2 ≤ w ≤ −0.33

Riess04 −1.0 ± 0.1 7.3 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.5, w = −0.87 ± 0.1

Astier05 −1.8 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w = −0.96 ± 0.08

Model IV: w0–wa, flat prior −2 ≤ w0 ≤ −0.33, −1.33 ≤ wa ≤ 1.33

Riess04 −1.1 ± 0.1 7.2 28.5 Ωm = 0.27 ± 0.04, H0 = 64.1 ± 1.5, w0 = −0.83 ± 0.20, wa = −−b

Astier05 −2.0 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w0 = −0.97 ± 0.18, wa = −−b

Model V: w0–wa, −1 ≤ w(a) ≤ 1 for 0 ≤ z ≤ 2

Riess04 −2.4 ± 0.1 9.1 28.5 Ωm = 0.28 ± 0.04, H0 = 63.6 ± 1.3, w0 < −0.78,−0.60a, wa = −0.07 ± 0.34

Astier05 −4.1 ± 0.1 11.1 93.3 Ωm = 0.24 ± 0.03, H0 = 69.5 ± 1.0, w0 < −0.90,−0.80a, wa = 0.12 ± 0.22

bWhere constraints on w are shown as upper limits only, the values
are 68% and 95% marginalized confidence limits.
cwa is unconstrained in Model IV.

because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe
Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
while showing the same general trends. Subsequently,
our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
earlier dataset (of SNe alone) by Saini et al. [9]. The other
models all show smaller evidences, though none are yet
decisively ruled out. Nevertheless, there is distinct evi-
dence against the two-parameter models, especially from
the compilation including Astier05. Model V has a wider
parameter range than Model IV and fares the worst, re-

LambdaCDM

w0-wa

Constant w{

{
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(Almost) current dark energy data
Liddle, Mukherjee, Parkinson, and Wang,  PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

3

TABLE I: The mean ∆ ln E relative to the ΛCDM model together with its uncertainty, the information content H , the minimum
χ2, and the parameter constraints, for each of the models considered and for each of two data combinations. Uncertainties
on H0 are statistical only, and do not include systematic uncertainties. The models differ by virtue of the number of free
parameters, here in the dark energy sector, and/or the priors on those parameters. For reference, lnE for the ΛCDM model
was found to be −20.1 ± 0.1 for the compilation with Riess04 and −52.3 ± 0.1 for that with Astier05.

data used Model

WMAP+SDSS+ ∆ ln E H χ2
min parameter constraints

Model I: Λ

Riess04 0.0 5.7 30.5 Ωm = 0.26 ± 0.03, H0 = 65.5 ± 1.0

Astier05 0.0 6.5 94.5 Ωm = 0.25 ± 0.03, H0 = 70.3 ± 1.0

Model II: constant w, flat prior −1 ≤ w ≤ −0.33

Riess04 −0.1 ± 0.1 6.4 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.4, w < −0.81,−0.70a

Astier05 −1.3 ± 0.1 8.0 93.3 Ωm = 0.24 ± 0.03, H0 = 69.8 ± 1.0, w < −0.90,−0.83a

Model III: constant w, flat prior −2 ≤ w ≤ −0.33

Riess04 −1.0 ± 0.1 7.3 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.5, w = −0.87 ± 0.1

Astier05 −1.8 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w = −0.96 ± 0.08

Model IV: w0–wa, flat prior −2 ≤ w0 ≤ −0.33, −1.33 ≤ wa ≤ 1.33

Riess04 −1.1 ± 0.1 7.2 28.5 Ωm = 0.27 ± 0.04, H0 = 64.1 ± 1.5, w0 = −0.83 ± 0.20, wa = −−b

Astier05 −2.0 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w0 = −0.97 ± 0.18, wa = −−b

Model V: w0–wa, −1 ≤ w(a) ≤ 1 for 0 ≤ z ≤ 2

Riess04 −2.4 ± 0.1 9.1 28.5 Ωm = 0.28 ± 0.04, H0 = 63.6 ± 1.3, w0 < −0.78,−0.60a, wa = −0.07 ± 0.34

Astier05 −4.1 ± 0.1 11.1 93.3 Ωm = 0.24 ± 0.03, H0 = 69.5 ± 1.0, w0 < −0.90,−0.80a, wa = 0.12 ± 0.22

bWhere constraints on w are shown as upper limits only, the values
are 68% and 95% marginalized confidence limits.
cwa is unconstrained in Model IV.

because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe
Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
while showing the same general trends. Subsequently,
our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
earlier dataset (of SNe alone) by Saini et al. [9]. The other
models all show smaller evidences, though none are yet
decisively ruled out. Nevertheless, there is distinct evi-
dence against the two-parameter models, especially from
the compilation including Astier05. Model V has a wider
parameter range than Model IV and fares the worst, re-

LambdaCDM

w0-wa

Constant w{

{

Conclusion: LambdaCDM currently favoured but all models still alive
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Bayesian model selection provides a rigorous approach to 
the comparison of competing models. 

Such techniques can positively support simpler models, and 
set more stringent conditions for inclusion of new 
parameters.

A variety of techniques exist for calculating the Bayesian 
evidence. The most general can be computationally 
demanding.

Alternatives to the Bayesian methodology do exist, relying 
on ideas from information theory/signal processing.

Conclusions
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