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CosmoNest code in acotion (Mukherjee, Parkinson and Liddle)

Model Selection and

multi-model inference
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Levels of Bayesian inference

Parameter Model Multi-model
Estimation Selection Inference
I've decided what the Now | think about it, | Mmm, | did the model
correct model is. don’t actually know what | selection thing, but there
the correct model is. It wasn't a single best model.
Now | want to know could be one of several.
what values of the But | still want to know
parameters are Now | want to know now probable the
consistent with the what the best model is. parameter values are.
data.
| can do this by | can do this by combining
| can do this using e.g.  computing the Bayesian  the parameter likelihoods
Markov Chain Monte Evidence. | can then do using Bayesian Model
Carlo. parameter estimation Averaging, adding them
using the best model. together weighted by the

model probabilities.



The Bayesian evidence

Bayes theorem again, but conditioned on a model.
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Bayesian model selection

Choose dataset

Choose model: Set of parameters to be varied
Prior ranges for those parameters

Compute likelihood function

Obtain posterior parameter distribution

YR SO i i v R o Bl Rt i oy F kP K L Y : Y = . S8 Y - 2:4 S . L. e :
s e L L =g b oy SR S i d 1% fn o iy Ak 5 g PR ) i 3 )
e PeL . RS P o . -, o LN J . N L 4 e £ . p o (]
'v‘ - :.. ..o- :’ H ek 4 . = k] . *1, ---‘ K o™ .I s i) A ‘. E - ..‘ o ..:_ ‘-1- ~._‘ -t :I ‘.‘ -,., ] .l- ) "N Ay ""‘ " ol



Bayesian model selection

Choose dataset

Choose model M: Choose model My:
Set of parameters to be varied Set of parameters to be varied
Prior ranges for those parameters Prior ranges for those parameters ...
Compute likelihood function Compute likelihood function
Obtain posterior parameter distribution Obtain posterior parameter distribution
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Model priors

Bayesian inference requires that the prior probabilities be
specified, giving the state of knowledge before the data was

acquired to test the hypothesis.

We now have to choose model priors too. A common choice is
equal prior model probabilities, but this is not obligatory. The
important thing is to specify them, so that someone else can see
the consequence of their different opinion.
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In Bayesian model comparison, there is no
such thing as a null hypothesis. There are

only alternate hypotheses, treated on an
equal footing.

Consequently, the concept of Type | (false positive) and
Type Il (false negative) errors doesn’t exist either; as there
is no asymmetric hypothesis there is no distinction other
than correct and incorrect inference.*

*Nevertheless, one may wish to impose asymmetric criteria, being more
willing to accept a wrong answer of one kind than of another.



Ultra-Bayesian view of Higgs searches

he only models which exist that have proven a
satisfactory explanation of particle physics data are those
that contain a Higgs particle.

Accordingly, the Higgs particle has, in a Bayesian sense,
already been detected.

Its mass is rather uncertain, my = (150 + 20) GeV, but
future data are expected to narrow the range.

However at no point in the process envisaged can one
say that the Higgs has "been discovered’.




A Bayesian model comparison can lend
support to a simpler (nested) model, by

disfavouring a more complex alternative
which is penalized for lack of
predictiveness.

By contrast, frequentist methods can only impose upper
limits in such cases, as the more complex model is always
able to fit the data at least as well as the simpler one.

Terminology: a is one whose parameters
are a subset of the parameters of a more general model.




Interpretational scale

Computing the evidence is often challenging, but feasible
due to recent algorithm developments. For guidance in

interpretting the evidence, people usually appeal to the
Jeffreys’ scale.

Jeffreys” Scale: AInE < 1 Not worth more than a bare mention

l <AInE <2.5 Substantial evidence

2.5 < AlnE <5 Strong to very strong evidence
5<AlnE Decisive evidence




A simple example: spatial curvature

WMAP1 Said Qtot — 102 1 002

This was widely interpretted as supporting the idea of a flat Universe, but
actually favouring a slightly closed Universe.

Assuming that the density is the only parameter, with a uniform prior
from 0.1 to 2, and likelihood (Q—1.02)°
L = Lgexp
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A simple example: spatial curvature

WMAP1 Said Qtot — 102 1 002

This was widely interpretted as supporting the idea of a flat Universe, but
actually favouring a slightly closed Universe.

Assuming that the density is the only parameter, with a uniform prior
from 0.1 to 2, and likelihood (Q—1.02)°
L = Lgexp
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Calculating the evidence

The evidence is a multi-dimensional integral, a standard
numerical problem. However ...

The parameter space may have a high dimensionality (cosmological
examples typically have 6 to 10 parameters simultaneously varying).

Individual evaluations of the likelihood function may be
computationally time-consuming (a few seconds each in typical
cosmology examples, ie one CPU-month per million calculations).

The likelihood function may be sharply peaked, at an unknown
location.

Finding the

Mapping a function
in the vicinity of its &<l function over its
maximum entire domain

Integrating a

maximum of a
function
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Fvidence calculations: Exact’ methods

These are numerical methods which would become exact in the

limit of infinite computer time, and may be accurate enough for
practical amounts of computer time.

® Thermodynamic integration

A variant on Metropolis-Hastings, where the chain is given an effective
temperature via the substitution £ » £V7. As T goes to infinity, the
posterior tends to the prior, and so the whole prior space is explored.
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Nested sampling

Nested sampling is a Monte Carlo method, but not a Markov chain
one. It computes the evidence by "walking” a set of points towards
the maximum.

1. Distribute a set of points
randomly within the prior,
evaluating the likelihood at each.

2. Discard the lowest likelihood

point.

3. Replace with a new point of

nigher likelihood drawn uniformly
from the prior.

4. Accumulate the evidence as a
1-D integral over “prior mass’.

5. Once the remaining points are
close enough to the maximum,
sum over them.




Nested sampling
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A substantial benefit of nested sampling is that the points it
generates can be processed into a set of posterior samples
suitable for parameter estimation, so it carries out both
inference tasks simultaneously. These points also sample the
posterior more widely than does Metropolis-Hasting.



Evidence calculations: Approximate methods

These are methods which may be faster to calculate, but which are
either approximate or hold only in restricted circumstances.

m [aplace approximation

Expand the likelihood as a multi-variate gaussian about its maximum.
Unfortunately the uncertainty is not under control.

m Savage-Dickey density ratio

For nested models, an exact relation gives the evidence in terms of the
- marginalized posterior of the more complex model, v‘eAI, Hiaaasa
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Alternatives to Bayesian methods

There are some model comparison alternatives to Bayesian methods,
principally based on information theory. As with the evidence, a
number is calculated for each model and used to rank them.

B Akaike Information Criterion (AIC)

AlIC = -2 In Lmax + 2k (k = number of parameters)

B Deviance Information Criterion (DIC)

DIC = -2 In £(Omean) + 2keff (ke = parameters constrained
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Is n different from 17

Spectral index at 95% confidence
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Is n different from 17

Verde-Peiris 2008
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Observational analyses put n = 1 at around the 2 to 3 sigma position.

But is that the right question to ask?




A model selection example:
spectral index from WMAP3

Parkinson, Mukherjee and Liddle, PRD, astro-ph/0605003

WMAP3 has been interpretted as ruling out the Harrison-
Zel’dovich ns = 1 spectrum and hence favouring inflation, e.g.
n=0.958 + 0.016. But this ignores model dimensionality.
Using our code CosmoNest we find

Datasets Model In E

HZ 0.0

WMARP only varying n 0.34 £ 0.26

HZ 0.0

varying n .99 + 0.26
Ve n and r (uniform on r) -1.45 + 0.45

nand r (log on r) .90 + 0.24




Datasets Model In E

HZ 0.0
varying n 0.34 + 0.26

WMAP only

HZ 0.0
varying n .99 + 0.26
n and r (uniform on r) -1.45 £ 0.45
nand r (log on r) .90 + 0.24

WMAPHall

1. WMAP alone cannot distinguish between HZ and a varying
spectral index.

2. Adding other datasets starts to prefer varying n, but
only at odds of about 8:1.

3. However inflation predicts we should include both n and r,
which is actually disfavoured as compared to HZ...

4. ... unless you use a logarithmic prior for r, which puts you back
close to the r=0 case.



(Almost) current dark energy data

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

Dark energy is the most enigmatic part of the current cosmological
model, its fundamental properties being unknown.

Phenomenologically, it can be described by the equation of state w, that
relates its pressure to its energy density.

Three models:




(Almost) current dark energy data

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

WMAP-+SDSS+ Aln E H X2 parameter constraints

_ Model I: A

Riess04 5.7 30.5 Qm =0.26 £0.03, Hp =65.5+1.0
Astier05 . 6.5 94.5 Qm =0.25£0.03, Ho =703+ 1.0

LambdaCDM

| ModelI:constantw, flatprior -1 <w< 08
Riess04 —0.1+0.1 64 286 Qm = 0.27 +0.04, Hy = 64.0 + 1.4, w < —0.81, —0.70"
Astier05 ~13+0.1 80 93.3 O = 0.24 +0.03, Hy = 69.8 + 1.0, w < —0.90, —0.83"
OIBERMYRY | = 0| 200 ModelIlcomstantw flatprio 2<w< 033 |
Riess04 ~1.0+0.1 7.3 286 Qm = 0.27 +0.04, Ho = 64.0 + 1.5, w = —0.87 £ 0.1
Astier05 ~1.8+0.1 82 933 Qm = 0.25 + 0.03, Ho = 70.0 + 1.0, w = —0.96 & 0.08
] Model TV: wo—wa, flat prior —2 < wo < —0.33, —1.33 < w, < 1.33
Riess04 11401 7.2 285 O =027+004, Hy = 64.1 + 1.5, wo = —0.83 + 0.20, w, = ——"
W0-Wa Astier05 —20+0.1 82 933  ,=025+003, Hy=70.0+ 1.0, wo = —0.97 + 0.18, w, = ——"
_ Model V: wo—wq, —1 < w(a) <1 for 0 <2 <2

Riess04 —244+01 91 285 Qun=0.28=+0.04, Hy = 63.6 + 1.3, wo < —0.78, —0.60%, we = —0.07 = 0.34
Astier05 —41+01 11.1 93.3 Qum =0.24 +0.03, Ho = 69.5 & 1.0, wo < —0.90, —0.80%, wq = 0.12 =& 0.22




(Almost) current dark energy data

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

WMAP4SDSS+ AlnFE

LambdaCDM

Astier05 1

Astier05

Constant W {

Astier05

Astier05 ‘

Wo-W3

Astier05

Conclusion: LambdaCDM currently favoured but all models still alive
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Conclusions

m Bayesian model selection provides a rigorous approach to
the comparison of competing models.

m Such techniques can positively support simpler models, and
set more stringent conditions for inclusion of new
parameters.
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