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Real life problems
Systematic errors

— What are systematic uncertainties
— How to deal with systematic uncertainties



Real-life problems

• Exact calibration of p-values/Z-values possible for counting 
experiment with background that is exactly known.

• Real-life problems are often more difficult
– Result is (ML) fit to distribution in >=1 dimensions, 

with model shape uncertainties

– Background estimate has uncertainty

• Correct calculation of significance no longer guaranteed!
– Q: Is that a problem?

– A: Yes. If your (naïve) calculation says Z=5, but it is really Z=3, there 
is a substantial chance your discovery is fake

– If ATLAS and CMS use different methods one experiment may claim 
discovery of e.g. Higgs with only half the data of the other because of 
differences in significance calculation

• Systematic errors
– What are systematic errors

– How to incorporate them in measurement

– Nuisance parameters in limits and intervals
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Systematic errors vs statistical errors

• Definitions 

Statistical error = any error in measurement due to
statistical fluctuations in data

Systematic errors = all other errors

Systematic uncertainty ≡ Systematic error

• But Systematic error ≠ Systematic mistake!

– Suppose we know our measurement needs to be 
corrected by a factor of 1.05 ± 0.03

– Not correcting the data by factor 1.05 introduces 
a systematic mistake

– Right thing to do: correct data by factor 1.05 
and take uncertainty on factor (0.03) as a systematic error



Classification of systematic errors

• Classification by Pekko Sinerva (PhyStat 2003)

• Good, Bad and Ugly
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Source of systematic errors – ‘Good’ and ‘Bad’ errors

• ‘Good’ errors arise from clear causes and can be evaluated

– Clear cause of error

– Clear procedure to identify and quantify error

– Example: Calibration constants, 
efficiency corrections from simulation

• ‘Bad’ errors arise from clear causes, but can not be evaluated

– Still clear cause

– But no unambiguous procedure to quantify uncertainty

– Example: theory error: 

• Given 2 or more choices of theory model you get 2 or more different answers. 

• What is the error? 
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Sources of systematic errors – ‘Ugly’ errors

• ‘Ugly’ errors arise from sources that have been overlooked
– Cause unknown à error unquantifiable

• ‘Ugly’ errors are usually found through failed sanity checks
– Example: measurement of CP violation on a sample of events that is 

known to have no CP-violation: You find ACP=0.10 ± 0.01

– Clearly something is wrong – What to do?

– 1) Check your analysis

– 2) Check your analysis again

– 3) Phone a friend

– 4) Ask the audience
…

– 99) Incorporate as systematic error 
as last and desperate resort!
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What about successful sanity checks?

• Do not incorporate successful checks in your systematic 
uncertainty

– Infinite number of successful sanity checks would otherwise lead 
to infinitely large systematic uncertainty. Clearly not right! 

• Define beforehand if a procedure is a sanity check
or an evaluation of an uncertainty
– If outcome of procedure can legitimately be different from zero, it 

is a systematic uncertainty evaluation

– If outcome of procedure can only significantly different from zero 
due to mistake or unknown cause, it is a sanity check
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• Two values – corresponding to use of two (theory) models A,B
– What is a good estimate for your systematic uncertainty?

• I) If A and B are extreme scenarios, and the truth must 
always be between A and B
– Example: fully transverse and fully longitudinal polarization

– Error is root of variance with uniform distribution with width A-B

– Popular method because sqrt(12) is quite small, but only justified if A,B are 
truly extremes!

• II) If A and  B are typical scenarios
– Example: JETSET versus HERWIG (different Physics simulation packages)

– Error is difference divided by sqrt(2)
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Common scenarios in evaluating systematic errors

• Two variations of the analysis procedure on the same data

– Example: fit with two different binnings giving A ± σA and B ± σB

– Clearly, results A,B are correlated so                is not a good measure 
of smallness of error 

• Generally difficult to calculate, but can estimate 
uppper,lower bound on systematic uncertainty

– Where σA>σB and σ0 is the Minimum Variance Bound.

– If the better technique (B) saturates the MVB the range reduces to

– If MVB is not saturated (e.g. you have low statistics) you will need to 
use a toy Monte Carlo technique to evaluate σA-B
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Common scenarios in evaluating systematic errors

• Common scenario in HEP analysis: 
you need to assign systematic uncertainty to shape of 
distribution obtained from simulated events

– Measuring data in range [30,90]. Correct for acceptance effect by 
dividing by efficiency measured from simulated data.

– Ndata[30,90] = 750

– effMC = 7300/10000 = 0.73

– What is uncertainty on Ntotal from MC simulation uncertainty?

Ntotal = 750 / 0.73 = 1027

‘simulation’ ‘data’
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Common scenarios in evaluating systematic errors

• Popular but wrong technique: ‘Cut variation’

– Procedure: vary each of your cuts by a little bit. For each change, 

1) Measure new yield on data 

2) Correct with new MC efficiency. 

3) Difference between efficiency corrected results is systematic 
uncertainty.

– Example, for a nominal cut in x at ‘p’ you find N(data)=105, with 
a MC efficiency εMC=0.835 so that N(corrected)=125.8

• Bad thing to do à
error can be dominated by low stats in variation range

N(data) ε(MC) N(corrected)

p+∆p 110 0.865 127.2

p-∆p 100 0.803 124.5
4.12/)5.1242.127( =−=p

sysσ

4.18.125 ±=x
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Common scenarios in evaluating systematic errors

• Warning I: Cut variation does not give an precise 
measure of the systematic uncertainty due data/MC 
disagreement!

– Your systematic error is dominated by a potentially large statistical 
error from the small number of events in data between your two 
cut alternatives

• This holds independent of your MC statistics

– You could see a large 
statistical fluctuation
à error overestimated

– You could see no change due 
to a statistical fluctuation 
à error underestimated
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Data and Simulation
give same efficiency
for nominal and
alternate cut, sp 

Zero systematic 
is evaluated 
(in limit Nàààà∞)

Even though data and
MC are clearly different

Common scenarios in evaluating systematic errors

• Warning II: Cut variation doesn’t catch all types of 
data/MC discrepancies that may affect your analysis

– Error may be fundamentally underestimated

– Example of discrepancy missed by cut variation:

Data
Simulation

Nominal cut

Alternate cut

Cut variation is a good sanity check, 
but not necessarily a good estimator for systematic uncertainty
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Systematic errors and correlations

• Pay attention to correlation between systematic errors

• If error uncorrelated, ρ=0

– Add in quadrature

• If error 100% correlated, then ρ=1. 

– E.g. tracking efficiency uncertainty per track for 6 tracks,

σ3trk = σtrk+σtrk+σtrk = 3⋅σtrk (not √3 ⋅σtrk)

• If errors 100% anti-correlated, then ρ=-1

– This can really happen!

– Example BF(D*0 à D0π0) =67%  and  BF(D*0àD0γ) =33%
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Combining statistical and systematic uncertainty

• Systematic error and statistical error are independent 

– In ‘simple measurements’ can be added in quadrature to obtain 
combined error

– Nevertheless always quote (also) separately.

– Also valid procedure if systematic error is not Gaussian: 
Variances can be added regardless of their shape

– Combined error usually approximately Gaussian anyway (C.L.T)

• You can also incorporate systematic uncertainties 
directly into a ML of χ2 fit

– Advantage: automatic and correct error propagation 
(including correlations)

– For ML fit simply multiply your pdf in the parameters with a pdf
that describes you systematic uncertainty



Adding uncertainties to a likelihood

• Example: Gaussian signal plus flat background

– Mean of Gaussian, fraction of signal are parameters

• Case I : Width of Gauss is known exactly

• Case II: Width of Gaussian is known with 10% uncertainty

– NB: ‘10% uncertainty’ is ambiguous, choose Gaussian error blow
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Adding uncertainties to a likelihood

• Example 1 – Width known exactly

• Example 2 – Gaussian uncertainty on width



Adding uncertainties to likelihood

• Can in principle also systematic uncertainties of type  
‘HERWIG simulation’ vs ‘PYTHIA simulation’ directly in 
likelihood using ‘morphing transformation’

– Several algorithms available in e.g. RooFit

– Construct –log(L) with FAB and let α float in fit

– Optionally, add (Gaussian) constraint term on parameter α

FA(x;p) FB(x;q) FAB(x;αααα,p,q)



Parameters of interest vs. nuisance parameters

• Typical (likelihood) fit yields many parameters

– Not all are of ‘physics interest’

• Terminology to distinguish parameters
– Parameter(s) of interest à Physics we intend to publish (NHiggs)

– Nuisance parameters à The others (detector resolution etc…)

• Goal: incorporate uncertainty from nuisance parameters 
into parameters of interest.

• Each of the three main classes of constructing intervals 
(Bayesian, likelihood ratio, Neyman confidence intervals) 
has a way to incorporate the uncertainty on the nuisance 
parameters in the parameters of interest. But this remains 
a subject of frontier statistics research.

• Next: introduce methods and their problems
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Dealing with nuisance parameters in Bayesian intervals

• Elimination of nuisance parameters in Bayesian interval
– Construct a multi-D prior pdf P(parameters) 

for the space spanned by all parameters; 

– Multiply by P(data|parameters) for the data obtained; 

– Integrate over the full subspace of all nuisance parameters; 

– You are left with the posterior pdf for the parameter of interest. The 
math is now reduced to the case of no nuisance parameters.

• Issues
– The multi-D prior pdf is a problem for both subjective and non-

subjective priors. 

– In HEP there is almost no use of the favored non-subjective priors 
(reference priors of Bernardo and Berger), so we do not know how well 
they work for our problems. 

– In case of many nuisance parameters, the high-D numeric integral can 
be a technical problem (use of Markov Chain Monte Carlo)
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Illustration of nuisance parameters in Bayesian intervals

• Example: data with Gaussian model (mean,sigma)

××××∫ =

MLE fit fit data-logLR(mean,sigma)

LR(mean,sigma) prior(mean,sigma) posterior(mean)



Dealing with nuisance parameters in Frequentist intervals

• (Full) Neyman construction: 

– The goal is that the parameter of interest should be covered at 
the stated confidence for every value of the nuisance 
parameter

– if there is any value of the nuisance parameter which makes the 
data consistent with the parameter of interest, that parameter 
point should be considered:

– eg. don’t claim discovery if any background scenario is compatible 
with data

• Issues

– Significant over coverage common
problem

– Wilks theorem may not apply
due to e.g. ‘look elsewhere effects’
in nuisance parameters à must 
rely on toy MC approach, can
get very cumbersome
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Wilks theorem and nuisance parameters

• Wilks’s theorem holds if the true distribution is in the 
family of functions being considered

– eg. we have sufficiently flexible models of signal & background to 
incorporate all systematic effects

– but we don’t believe we simulate everything perfectly 

– ..and when we parametrize our models usually we have further 
approximated our simulation.

• E.g. if a model has a floating mass, it is clear that there 
is a degradation in significance due to the look-
elsewhere effect (if you look into a wide enough mass 
range, your always find ‘some peak’ in the background)
– Formally, the conditions required for Wilks’s theorem do not hold 

because floating mass parameter makes no sense in a 
background-only model. 
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Dealing with nuisance parameters in Likelihood ratio intervals

• Nuisance parameters in LR interval

– For each value of the parameter of interest, search the full 
subspace of nuisance parameters for the point at which the 
likelihood is maximized. 

– Associate that value of the likelihood with that value of the 
parameter of interest à ‘Profile likelihood’

MLE fit fit data
-logLR(mean,sigma) -logLR(mean,sigma)
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Dealing with nuisance parameters in Likelihood ratio intervals
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Likelihood Ratio

Profile Likelihood Ratio

Minimizes –log(L) 
for each value of fsig
by changing bkg shape params
(a 6th order Chebychev Pol)



Link between MINOS errors and profile likelihood

• Note that MINOS algorithm in 
MINUIT gives same errors as 
Profile Likelihood Ratio

– MINOS errors is bounding box 
around λ(s) contour

– Profile Likelihood = Likelihood
minimized w.r.t. all nuisance 
parameters
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Dealing with nuisance parameters in Likelihood ratio intervals

• Issues with Profile Likelihood

– By using best-fit value of the nuisance parameters corresponding 
to each value of the parameter of interest, this has a reputation of 
underestimating the true uncertainties. 

– In Poisson problems, this is partially compensated by effect due to 
discreteness of n, and profile likelihood (MINUIT MINOS) gives 
good performance in many problems.

• NB: Computationally Profile Likelihood is quite 
manageable, even with a large number of nuisance 
parameters

– Minimize likelihood w.r.t. 20 parameters quite doable

– Especially compared to numeric integration over 20 parameters, 
or constructing confidence belt in 20 dimensions…
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Recent comparisons results from PhyStat 2007



Recent comparisons results from PhyStat 2007
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Hybrid Techniques: Introduction to Pragmatism

• Given the difficulties with all three classes of interval 
estimation, especially when incorporating nuisance 
parameters, it is common in HEP to relax foundational 
rigor and: 

– Treat nuisance parameters in a Bayesian way while treating the 
parameter of interest in a frequentist way, or

– Treat nuisance parameters by profile likelihood while treating 
parameter of interest another way, or

– Use the Bayesian framework (even without the priors 
recommended by statisticians), but evaluate the frequentist 
performance. In effect (as in profile likelihood) one gets 
approximate coverage while respecting the L.P.
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Goal for the LHC a Few Years Ago

• Have in place tools to allow computation of results using a 
variety of recipes, for problems up to intermediate 
complexity:
– Bayesian with analysis of sensitivity to prior

– Frequentist construction with approximate treatment of nuisance 
parameters

– Profile likelihood ratio (Minuit MINOS)

– Other “favorites” such as LEP’s CLS(which is an HEP invention)

• The community can then demand that a result shown with 
one’s preferred method also be shown with the other 
methods, and sampling properties studied.

• When the methods all agree, we are in asymptopic
nirvana.

• When the methods disagree, we learn something! 
– The results are answers to different questions.

– Bayesian methods can have poor frequentist properties

– Frequentist methods can badly violate likelihood principle
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ATLAS/CMS/ROOT Project: RooStats built on RooFit

• Core developers:

• K. Cranmer (ATLAS)

• Gregory Schott (CMS)

• Wouter Verkerke (RooFit)

• Lorenzo Moneta (ROOT)

• Open project, all welcome 
to contribute.

• Included in ROOT 
production releases since 
v5.22, more soon to come

• Example macros in 
$ROOTSYS/tutorials/roostats

• RooFit extensively 
documented, RooStats
manual catching up, code 
doc in ROOT.
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RooStats Project – Example 

• Create a model - Example
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RooWorkspace* w = new RooWorkspace(“w”); 
w->factory(“Poisson::P(obs[150,0,300], 

sum::n(s[50,0,120]*ratioSigEff[1.,0,2.],
b[100,0,300]*ratioBkgEff[1.,0.,2.]))");

w->factory("PROD::PC(P, Gaussian::sigCon(ratioSigEff,1,0.05), 
Gaussian::bkgCon(ratioBkgEff,1,0.1))"); 

)1.0,1,()05.0,1,()|( bsbs rGaussrGaussrbrsxPoisson ⋅⋅⋅+⋅

RooWorkspace(w) w contents

variables
---------
(b,obs,ratioBkgEff,ratioSigEff,s)

p.d.f.s
-------
RooProdPdf::PC[ P * sigCon * bkgCon ] = 0.0325554
RooPoisson::P[ x=obs mean=n ] = 0.0325554

RooAddition::n[ s * ratioSigEff + b * ratioBkgEff ] = 150
RooGaussian::sigCon[ x=ratioSigEff mean=1 sigma=0.05 ] = 1
RooGaussian::bkgCon[ x=ratioBkgEff mean=1 sigma=0.1 ] = 1

Create workspace with above model (using factory)

Contents of workspace from above operation



RooStats Project – Example 

• Confidence intervals calculated with model

– Profile 
likelihood 

– Feldman
Cousins

– Bayesian 
(MCMC)
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ProfileLikelihoodCalculator plc; 
plc.SetPdf(w::PC); 
plc.SetData(data); // contains [obs=160]
plc.SetParameters(w::s); 
plc.SetTestSize(.1); 
ConfInterval* lrint = plc.GetInterval(); // that was easy. 

FeldmanCousins fc; 
fc.SetPdf(w::PC); 
fc.SetData(data); fc.SetParameters(w::s); 
fc.UseAdaptiveSampling(true); 
fc.FluctuateNumDataEntries(false); 
fc.SetNBins(100); // number of points to test per parameter 
fc.SetTestSize(.1); 
ConfInterval* fcint = fc.GetInterval(); // that was easy. 

UniformProposal up; 
MCMCCalculator mc; 
mc.SetPdf(w::PC); 
mc.SetData(data);  mc.SetParameters(s); 
mc.SetProposalFunction(up); 
mc.SetNumIters(100000); // steps in the chain 
mc.SetTestSize(.1); // 90% CL 
mc.SetNumBins(50); // used in posterior histogram 
mc.SetNumBurnInSteps(40); 
ConfInterval* mcmcint = mc.GetInterval();



RooStats Project – Example 

• Retrieving and visualizing output
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double fcul = fcint->UpperLimit(w::s);
double fcll = fcint->LowerLimit(w::s);



RooStats Project – Example 

• Some notes on example

– Complete working example (with output visualization) 
shipped with ROOT distribution 
($ROOTSYS/tutorials/roofit/rs101_limitexample.C)

– Interval calculators make no assumptions on internal 
structure of model. Can feed model of arbitrary complexity to 
same calculator (computational limitations still apply!)
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‘Digital’ publishing of results

• A likelihood may be considered the ultimate publication 
of a measurement

• Interesting to be able to digitally publish actual 
likelihood rather than

– Parabolic version (i.e. you publish your measurement and an 
error)

– Some parameterized form. Cumbersome in >1 dimension. No 
standard protocol for exchanging this time of information

• This is trivially possible
with RooFit/RooStats

– Many potential applications, 
e.g. combining of Higgs channels, 
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• Using both model & p.d.f from file

– Note that above code is independent of actual p.d.f in file àààà
e.g. full Higgs combination would work with identical code

TFile f(“myresults.root”) ;
RooWorkspace* w = f.Get(“w”) ;

RooPlot* xframe = w::x.frame() ;
w::d.plotOn(xframe) ;
w::g.plotOn(xframe) ;

RooAbsReal* nll = w::g.createNLL(w::d) 
RooAbsReal* pll = nll->createProfile(w::mean) ;

RooPlot* mframe = w::m.frame(-1,1) ;
pll->plotOn(mframe) ;
mframe->Draw()

Using persisted p.d.f.s.

Make plot
of data

and p.d.f

Construct
likelihood

& profile LH

Draw
profile LH



Wouter Verkerke, NIKHEF 

A toy combination example

‘Atlas’
‘CMS’

Combined
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Work in progress on realistic Higgs limit combination
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The end – Recommended reading

• Easy
– R. Barlow, Statistics: A Guide to the Use of Statistical Methods 

in the Physical Sciences, Wiley, 1989

– L. Lyons, Statistics for Nuclear and Particle Physics, Cambridge 
University Press

– Philip R. Bevington and D.Keith Robinson, Data Reduction and 
Error Analysis for the Physical Sciences 

• Intermediate
– Glen Cowan, Statistical Data Analysis (Solid foundation for 

HEP)

– Frederick James, Statistical Methods in Experimental Physics, 
World Scientific, 2006. (This is the second edition of the 
influential 1971 book by Eadie et al., has more advanced 
theory, many examples)

• Advanced
– A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of 

Statistics, Vol. 2A, 6th edition, 1999; and earlier editions of 
this “Kendall and Stuart” series. (Authoritative on classical 
frequentist statistics; anyone contemplating a NIM paper on 
statistics should look in here first!)

• PhyStat conference series: 
– Beginning with Confidence Limits Workshops in 2000, links at 

http://phystat-lhc.web.cern.ch/phystat-lhc/ and 
http://www.physics.ox.ac.uk/phystat05/
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