Real life problems
Systematic errors

— What are systematic uncertainties
— How to deal with systematic uncertainties
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Real-life problems

e Exact calibration of p-values/Z-values possible for counting
experiment with background that is exactly known.
e Real-life problems are often more difficult

— Result is (ML) fit to distribution in >=1 dimensions,
with model shape uncertainties

— Background estimate has uncertainty

e Correct calculation of significance no longer guaranteed!
- Q: Is that a problem?

— A: Yes. If your (naive) calculation says Z=5, but it is really Z=3, there
is a substantial chance your discovery is fake

— If ATLAS and CMS use different methods one experiment may claim
discovery of e.g. Higgs with onI?/ half the data of the other because of
differences in significance calculation

e Systematic errors
- What are systematic errors
— How to incorporate them in measurement
— Nuisance parameters in limits and intervals
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Systematic errors vs statistical errors
e Definitions

Statistical error = any error in measurement due to
statistical fluctuations in data

Systematic errors = all other errors

Systematic uncertainty = Systematic error

e But Systematic error # Systematic mistake!

— Suppose we know our measurement needs to be
corrected by a factor of 1.05 + 0.03

- Not correcting the data by factor 1.05 introduces
a systematic mistake

- Right thing to do: correct data by factor 1.05
and take uncertainty on factor (0.03) as a systematic error
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Classification of systematic errors

e C(Classification by Pekko Sinerva (PhyStat 2003)
e Good, Bad and Ugly




Source of systematic errors — ‘Good’ and '‘Bad’ errors

errors arise from clear causes and can be evaluated
— Clear cause of error
— Clear procedure to identify and quantify error

— Example: Calibration constants,
efficiency corrections from simulation

errors arise from clear causes, but can not be evaluated
— Still clear cause
— But no unambiguous procedure to quantify uncertainty

- Example: theory error:
e Given 2 or more choices of theory model you get 2 or more different answers.

e What is the error?
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Sources of systematic errors - ‘Ugly’ errors

» 'Ugly” errors arise from sources that have been overlooked

Cause unknown - error unquantifiable

e ‘Ugly’ errors are usually found through failed sanity checks

Example: measurement of CP violation on a sample of events that is
known to have no CP-violation: You find A=0.10 £ 0.01

Clearly something is wrong — What to do?

1) Check your analysis

2) Check your analysis again
3) Phone a friend

4) Ask the audience

99) Incorporate as systematic error
as last and desperate resort!
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What about successful sanity checks?

— Infinite number of successful sanity checks would otherwise lead
to infinitely large systematic uncertainty. Clearly not right!

e Define beforehand if a procedure is a sanity check
or an evaluation of an uncertainty

— If outcome of procedure can legitimately be different from zero, it
is a systematic uncertainty evaluation

— If outcome of procedure can only significantly different from zero
due to mistake or unknown cause, it is a sanity check
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Common scenarios in evaluating systematic errors

— What is a good estimate for your systematic uncertainty?

e I)If A and B are extreme scenarios, and the truth must
always be between A and B

- Example: fully transverse and fully longitudinal polarization
— Error is root of variance with uniform distribution with width A-B

G:.I_I4_:_B_.| V(X)=<X>2—<x2>:(lj —':[xzdx:l_lzi

J12

— Popular method because sqrt(12) is quite small, but only justified if A,B are
truly extremes!

e II)If A and B are typical scenarios

- Example: JETSET versus HERWIG (different Physics simulation packages) N
Factor \ N -1
to get unbiased

G—lA_Bl-\/_ |A—B| estimate of oy,rent

P o

— Error is difference divided by sqrt(2)



Common scenarios in evaluating systematic errors

e Two variations of the analysis procedure on the same data

- Example: fit with two different binnings giving A + 5, and B + o

— Clearly, results A,B are correlated so |A—B|

2 2
of smallness of error \O4+ 0y

is not a good measure

e Generally difficult to calculate, but can estimate
uppper,lower bound on systematic uncertainty

2 2 2 2 2 2 2 2
\NO,— 0y —4J0;—0y <0, 4 S\/GA—GO +\/GB—JO

— Where 6,>05 and o, is the Minimum Variance Bound. 0'02(&)=<(&—<&>)2>

- If the better technique (B) saturates the MVB the range reduces to

D 2
aga —&, o

- If MVB is not saturated (e.g. you have low statistics) you will need to
use a toy Monte Carlo technique to evaluate o, g Wouter Verkerke, UCSB



Common scenarios in evaluating systematic errors

Common scenario in HEP analysis:
you need to assign systematic uncertainty to shape of
distribution obtained from simulated events

— Measuring data in range [30,90]. Correct for acceptance effect by
dividing by efficiency measured from simulated data.

— Ndata[30,90] = 750
- effyc= 7300/10000 = 0.73

— What is uncertainty on Ntotal from MC simulation uncertainty?

Ntotal = 750 / 0.73 = 1027
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Common scenarios in evaluating systematic errors

e Popular but wrong technique: ‘Cut variation’
— Procedure: vary each of your cuts by a little bit. For each change,
1) Measure new yield on data
2) Correct with new MC efficiency.

3) Difference between efficiency corrected results is systematic
uncertainty.

— Example, for a nominal cut in x at '‘p’ you find N(data)=105, with
a MC efficiency gy=0.835 so that N(corrected)=125.8

N(data) | €(MC) | N(corrected)
p+Ap | 110 | 0.865 [  127.2 } o, =(1272-124.5)/2=1.4
p-Ap 100 0.803 124.5 | |

x=125.8+t14
e Bad thing to do >

error can be dominated by low stats in variation range



Common scenarios in evaluating systematic errors

e Warning I: Cut variation does not give an precise
measure of the systematic uncertainty due data/MC
disagreement!

— Your systematic error is dominated by a potentially large statistical

error from the small number of events in data between your two
cut alternatives

e This holds independent of your MC statistics

2
|

— You could see a large
statistical fluctuation
- error overestimated

Events / ( 0.333333 )
b

— You could see no change due 30
to a statistical fluctuation
- error underestimated
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Common scenarios in evaluating systematic errors

e Warning II: Cut variation doesn’t catch all types of
data/MC discrepancies that may affect your analysis

— Error may be fundamentally underestimated

— Example of discrepancy missed by cut variation:

Nominal cut
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Cut variation is a good sanity check,
but not necessarily a good estimator for systematic uncertainty



Systematic errors and correlations

e Pay attention to correlation between systematic errors

o =(L) oo Lo A L] L oo,
Xy dx X dy y dx dy x y

e If error uncorrelated, p=0
— Add in quadrature

e If error 100% correlated, then p=1.

- E.g. tracking efficiency uncertainty per track for 6 tracks,

O3trk = Ork Okt Opk = 3-0pc (NOE V3 -0yy)

e If errors 100% anti-correlated, then p=-1
— This can really happen!
— Example BF(D*0 - D%%) =67% and BF(D*0->D0%) =33%
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Combining statistical and systematic uncertainty

e Systematic error and statistical error are independent

- In 'simple measurements’ can be added in quadrature to obtain
combined error

— Nevertheless always quote (also) separately.

— Also valid procedure if systematic error is not Gaussian:
Variances can be added regardless of their shape

— Combined error usually approximately Gaussian anyway (C.L.T)

e You can also incorporate systematic uncertainties
directly into a ML of 2 fit

— Advantage: automatic and correct error propagation
(including correlations)

— For ML fit simply multiply your pdf in the parameters with a pdf
that describes you systematic uncertainty



Adding uncertainties to a likelihood

e Example: Gaussian signal plus flat background

— Mean of Gaussian, fraction of signal are parameters

e Casel : Width of Gauss is known exactly
Flou f.o)=f-Gx,uo)+(1-1)-Ux)

o

L(x;u, f,0) ==) F(x,.u, f,0)

e Case II: Width of Gaussian is known with 10% uncertainty

— NB: '10% uncertainty’ is ambiguous, choose Gaussian error blow

F'(5 4, f,09,60) = F(x, f, 4,0 G(0,0,,00)

o

L(u, f,0,,060)==> F(x,u, f,0)€log(G(o |l o,,60))



Adding uncertainties to a likelihood

e Example 1 - Width known exactly
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e Example 2 — Gaussian uncertainty on width
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Adding uncertainties to likelihood

e Can in principle also systematic uncertainties of type
‘HERWIG simulation’ vs ‘PYTHIA simulation’ directly in
likelihood using ‘'morphing transformation’

— Several algorithms available in e.g. RooFit
Fa(X;P) Fs(x;q) Fas(X;0,P,q)

gos-
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x le X * | Q
— Construct -log(L) with F,g and let a float in fit

— Optionally, add (Gaussian) constraint term on parameter a



Parameters of interest vs. nuisance parameters

e Typical (likelihood) fit yields many parameters

Flxeypu, f,o)=f-Gx,u,0)+(1~-f)-U(x)

— Not all are of ‘physics interest’

e Terminology to distinguish parameters
— Parameter(s) of interest > Physics we intend to publish (Nygqs)
— Nuisance parameters > The others (detector resolution etc...)

e Goal: incorporate uncertainty from nuisance parameters
into parameters of interest.

e Each of the three main classes of constructing intervals
(Bayesian, likelihood ratio, Neyman confidence intervals)
has a way to incorporate the uncertainty on the nuisance
parameters in the parameters of interest. But this remains
a subject of frontier statistics research.

e Next: introduce methods and their problems
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Dealing with nuisance parameters in Bayesian intervals

e Elimination of nuisance parameters in Bayesian interval

— Construct a multi-D prior pdf P(parameters)
for the space spanned by all parameters;

— Multiply by P(data|parameters) for the data obtained;
— Integrate over the full subspace of all nuisance parameters;

p(slx)= j(L(s,l;)p(S,l;))dl;

— You are left with the posterior pdf for the parameter of interest. The
math is now reduced to the case of no nuisance parameters.

e Issues

— The multi-D prior pdf is a problem for both subjective and non-
subjective priors.

— In HEP there is almost no use of the favored non-subjective priors
(reference priors of Bernardo and Berger), so we do not know how well
they work for our problems.

— In case of many nuisance parameters, the high-D numeric integral can
be a technical problem (use of Markov Chain Monte Carlo)



Illustration of nuisance parameters in Bayesian intervals
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Example: data with Gaussian model (mean,sigma)
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Dealing with nuisance parameters in Frequentist intervals

e (Full) Neyman construction:

— The goal is that the parameter of interest should be covered at
the stated confidence for every value of the nuisance
parameter

— if there is any value of the nuisance parameter which makes the
data consistent with the parameter of interest, that parameter
point should be considered:

- eg. don’t claim discovery if any background scenario is compatible
with data

full construction

e Jssues

— Significant over coverage common
problem

- Wilks theorem may not apply
due to e.q. ‘look elsewhere effects’
in nuisance parameters - must
rely on toy MC approach, can
get very cumbersome




Wilks theorem and nuisance parameters

o Wilks’s theorem holds if the true distribution is in the
family of functions being considered

— eg. we have sufficiently flexible models of signal & background to
incorporate all systematic effects

- but we don't believe we simulate everything perfectly

- ..and when we parametrize our models usually we have further
approximated our simulation.

e E.g. if a model has a floating mass, it is clear that there
is @ degradation in significance due to the look-
elsewhere effect (if you look into a wide enough mass
range, your always find ‘some peak’ in the background)

- Formally, the conditions required for Wilks’s theorem do not hold

because floating mass parameter makes no sense in a
background-only model.

Wouter Verkerke, NIKHEF



Events /(1)

MLE fit fit data

Dealing with nuisance parameters in Likelihood ratio intervals

e Nuisance parameters in LR interval

— For each value of the parameter of interest, search the full
subspace of nuisance parameters for the point at which the

likelihood is maximized.

— Associate that value of the likelihood with that value of the
parameter of interest - ‘Profile likelihood’
-logPLR(mean)

-logLR(mean,sigma) -logLR(mean,sigma)
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Dealing with nuisance parameters in Likelihood ratio intervals

H*-nh.'id.ll

P S U N
T = T T

100

; Likelihood Ratio

y Profile Likelihood Ratio

Minimizes -log(L)

for each value of fg,
by changing bkg shape params
.. (a6thorder Chebychev Pol)

— 0. 0.1 0.2 0.25 0.3 0.35 0.4 0.45




Link between MINOS errors and profile likelihood

Parameter of interest

sg2

34756 98 4 42 44 48 4

ot

e Note that MINOS algorithm in
MINUIT gives same errors as
Profile Likelihood Ratio

— MINOS errors is bounding box

around A(s) contour d/
— Profile Likelihood = Likelihoo _ .

minimized w.r.t. all nuisance

parameters o

AT T TR PR N PR T
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Dealing with nuisance parameters in Likelihood ratio intervals

e Issues with Profile Likelihood

— By using best-fit value of the nuisance parameters corresponding
to each value of the parameter of interest, this has a reputation of
underestimating the true uncertainties.

— In Poisson problems, this is partially compensated by effect due to
discreteness of n, and profile likelihood (MINUIT MINOS) gives
good performance in many problems.

e NB: Computationally Profile Likelihood is quite
manageable, even with a large number of nuisance
parameters

— Minimize likelihood w.r.t. 20 parameters quite doable

— Especially compared to numeric integration over 20 parameters,
or constructing confidence belt in 20 dimensions...
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Recent comparisons results from PhyStat 2007

A Prototype Problem RO,

What is significance Z of an observation x =178 events in a
signal like region, if my expected background 5 =100 with a
10% uncertainty?

» if you use the ATLAS TDR formula Zs°=5.5
» if you use Cousins-Highland Zy=5.0

The question seems simple enough, but it is not actually
well-posed

» what do | mean by 10% background uncertainty?

Typically, we consider an auxiliary measurement y used to
estimate background (Type | systematic)

» eg: a sideband counting experiment where backgrouy

in sideband is a factor 7 bigger than in signal region
Lp(x,y|lp,b) = Pois(xz|u +b) - Pois(y|Th). _
Kyle Cranmer (BNL) PhyStat 2007, CERN, June 26, 2007 Sldeband measurement USEd

Example Sideband Measurement U DITIATEN,

to extrapolate / interpolate
the background rate in
signal-like region 1500

Events {JZ GeV
g

For now ignore uncertainty in  ®
extrapolation.

12500

Lp(x,y|lp,b) = Pois(x|pu+ b) - Pois(y|7b).

Kyle Cranmer (BNL) PhyStat 2007, CERN, June 26,2007 14




Recent comparisons results from PhyStat 2007

Comparison of Methods for Prototype Problem BROOKHLUEN

contours for b, =100, critical regions fort =1

In my contribution to PhyStat2005, »wor

| considered this problem and 1201/ /: ~°Svst-=mﬂcs\ \

compared the coverage for several oy [z o -
. » profile | /

methods 10or ‘.I S minae , /Jf
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Hybrid Techniques: Introduction to Pragmatism

Given the difficulties with all three classes of interval
estimation, especially when incorporating nuisance
parameters, it is common in HEP to relax foundational
rigor and:

— Treat nuisance parameters in a Bayesian way while treating the
parameter of interest in a frequentist way, or

— Treat nuisance parameters by profile likelihood while treating
parameter of interest another way, or

- Use the Bayesian framework (even without the priors
recommended by statisticians), but evaluate the frequentist
performance. In effect (as in profile likelihood) one gets
approximate coverage while respecting the L.P.
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Goal for the LHC a Few Years Ago

e Have in place tools to allow computation of results using a
variety of recipes, for problems up to intermediate
complexity:

— Bayesian with analysis of sensitivity to prior

— Frequentist construction with approximate treatment of nuisance
parameters

— Profile likelihood ratio (Minuit MINOS)
— Other “favorites” such as LEP’s CLS(which is an HEP invention)
e The community can then demand that a result shown with

one’s preferred method also be shown with the other
methods, and sampling properties studied.

e When the methods all agree, we are in asymptopic
nirvana.

e When the methods disagree, we learn something!
— The results are answers to different questions.
- Bayesian methods can have poor frequentist properties
- Frequentist methods can badly violate likelihood principle

Wouter Verkerke, NIKHEF



ATLAS/CMS/ROOT Project: RooStats built on RooFit
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Core developers:

K. Cranmer (ATLAS)
Gregory Schott (CMS)
Wouter Verkerke (RooFit)
Lorenzo Moneta (ROOT)

Open project, all welcome
to contribute.

Included in ROOT
production releases since
v5.22, more soon to come

Example macros in
$ROOTSYS/tutorials/roostats

RooFit extensively
documented, RooStats
manual catching up, code
doc in ROOT.
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RooStats Project — Example

e Create a model - Example
Poisson(x|s-r,+b-r,)-Gauss(r,,1,0.05) - Gauss(r,,1,0.1)

Create workspace with above model (using factory)

RooWorkspace* w = new RooWorkspace(“w”) ;
w->factory(“Poisson::P(obs[150,0,300],
sum::n(s[50,0,120]*ratioSigEff[1.,0,2.],
b[100,0,300] *ratioBkgEff[1.,0.,2.]))");
w->factory("PROD: :PC(P, Gaussian::sigCon(ratioSigEff,1,0.05),
Gaussian::bkgCon(ratioBkgEff,1,0.1))");

Contents of workspace from above operation
RooWorkspace(w) w contents

variables

RooProdPdf::PC[ P * sigCon * bkgCon ] = 0.0325554
RooPoisson: :P[ x=obs mean=n ] = 0.0325554
RooAddition::n[ s * ratioSigEff + b * ratioBkgEff ] = 150
RooGaussian: :sigCon[ x=ratioSigEff mean=1 sigma=0.05 ] = 1
RooGaussian: :bkgCon[ x=ratioBkgEff mean=1 sigma=0.1 ] = 1 e, NIKHEF



RooStats Project — Example

e Confidence intervals calculated with model

— Profile
likelihood

- Feldman
Cousins

— Bayesian
(MCMOQO)

ProfilelLikelihoodCalculator pic;

plc.SetPdf(w: :PC);

plc.SetData(data); // contains [obs=160]
plc.SetParameters(w::s);

plc.SetTestSize(.1);

ConfInterval®* 1rint = plc.GetInterval(); // that was easy.

FeldmanCousins fc;

fc.SetPdf(w: :PC);

fc.SetData(data); fc.SetParameters(w::s);
fc.UseAdaptiveSampling(true) ;
fc.FluctuateNumDataEntries(false);

fc.SetNBins(100); // number of points to test per parameter
fc.SetTestSize(.1);

ConfInterval®* fcint = fc.GetInterval(); // that was easy.

UniformProposal up;

MCMCCalculator mc;

mc.SetPdf(w: :PC) ;

mc.SetData(data); mc.SetParameters(s);
mc.SetProposalFunction(up) ;
mc.SetNumIters(100000); // steps in the chain
mc.SetTestSize(.1); // 90% CL

mc.SetNumBins (50); // used in posterior histogram
mc.SetNumBurnInSteps (40) ;

ConfInterval®* mcmcint = mc.GetInterval();



RooStats Project — Example

e Retrieving and visualizing output

double fcul
double fcll

fcint->UpperLimit(w::s);
fcint->LowerLimit(w::s);

Profile Likelihood Ratio and Posterior for S
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RooStats Project — Example

e Some notes on example

— Complete working example (with output visualization)
shipped with ROOT distribution

($ROOTSYS/tutorials/roofit/rs101_1limitexample.C)

— Interval calculators make no assumptions on internal
structure of model. Can feed model of arbitrary complexity to
same calculator (computational limitations still apply!)
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‘Digital’” publishing of results

e A likelihood may be considered the ultimate publication
of a measurement

e Interesting to be able to digitally publish actual
likelihood rather than

— Parabolic version (i.e. you publish your measurement and an
error)

— Some parameterized form. Cumbersome in >1 dimension. No
standard protocol for exchanging this time of information

: H — vy
SLae=30" u oH(H — bb)

(no K-factors) A H — 2727 = 41

e This is trivially possible
with RooFit/RooStats

- Many potential applications,
e.g. combining of Higgs channels,

ATLAS H — WW — Iy
2 ¥
107 qqH — qq WW"
N 4 qqH — qqTo

Signal significance

Total significance

10 |

e e b e b e b e w1
100 120 140 160 180 200
my (GeVich)




Using persisted p.d.f.s.

e Using both model & p.d.f from file

Make plot
of data <
and p.d.f

Construct
likelihood ¢

& profile LH

Draw
profile LH =

TFile f(“myresults.root”) ;
RooWorkspace* w = f.Get(“w”) ;

RooPlot* xframe = w::x.frame() ;

w::d.plotOn(xframe) ; ‘
w::g.plotOn(xframe) ;

RooAbsReal* nll
RooAbsReal* pll

RooPlot* mframe = w::m.frame(-1,1) ;
pll1->plotOn(mframe) ;

mframe->Draw()

File Edit View Options Inspect Classes Help

w::g.createNLL(w: :d)

nll->createProfile(w: :mean) ;

e
Help

le Edit View Options Inspect Classes

Projection of profile likelihood

-] = N W 3 (L] -] ~ ]
UL LS LA LA LR AN

A RooPlot of "m"

ME T Ty T oy Ty e Ty T T
01 -0.08 -006 -0.04 -0.02 0 002 004 006 008 01
m

- Note that above code is independent of actual p.d.f in file >

e.g. full Higgs combination would work with identical code




A toy combination example

w
o
[

N
<h

Combined

Profile likelihood

(\~]
o
T
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Work in progress on realistic Higgs limit combination

Combining the inputs ‘?

Using the same code as last time, with a few extra lines for the new
channels, we arrive at the combined dataset & model

» here the only common parameter is mu, the master signal strength
- could easily make Higgs mass be the same for all three channels

» the combined model has 27 nuisance parameters

—

Kyle Cranmer (NYU) ATLAS Statistics Forum, September 2, 2009 14

Expected Significance (o)

O :I TT TTTT TTTT | TTTT | TTTT | TTTT | TTTT TTTT TT I:
oF ATLAS =
sE Us=14TeV, 301"
e [l-channel ]
7E -~ |h-channel
E — combined ]
6 E
50 : ;
4F T
F - - \“\\ ]
3F - S e,
2 ;_ ; ; 3. - _;
;[ 11 | 1111 | 111 | 1111 | 1111 | 1111 | 1111 | 1111 | 11 'I:'

105 110 115 120 125 130 135 140

m, (GeV)



The end — Recommended reading

Easy

R. Barlow, Statistics: A Guide to the Use of Statistical Methods
in the Physical Sciences, Wiley, 1989

L. Lyons, Statistics for Nuclear and Particle Physics, Cambridge
University Press

Philip R. Bevington and D.Keith Robinson, Data Reduction and
Error Analysis for the Physical Sciences

Intermediate

EIEPn) Cowan, Statistical Data Analysis (Solid foundation for

Frederick James, Statistical Methods in Experimental Physics,
World Scientific, 2006. (This is the second edition of the
influential 1971 book by Eadie et al., has more advanced
theory, many examples)

Advanced

A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of
Statistics, Vol. 2A, 6th edition, 1999; and earlier editions of
this “"Kendall and Stuart” series. (Authoritative on classical
frequentist statistics; anyone contemplating a NIM paper on
statistics should look in here first!)

PhyStat conference series:

Beginning with Confidence Limits Workshops in 2000, links at
http://phystat-lhc.web.cern.ch/phystat-lhc/ and
http://www.physics.ox.ac.uk/phystat05/

Statistics

STATISTICAL
DATA
ANALYSIS

Frederick James

Statistical Methods in
Experimental Physics
2nd Edition

S

Classical
Inference
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