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Confidence intervals
Limits & significance

—Null Hypothesis testing – P-values
— Classical or ‘frequentist’ confidence intervals
— Issues that arise in interpretation of fit result
— Bayesian statistics and intervals



Introduction

• Issues and differences between methods arise when 
experimental result contains little information

• Now we focus on the difficult cases

• Most common scenario is establishing the presence of 
signal in the data (at a certain confidence level), or be 
able to set limits, in the absence of a convincing signal

– Connection with hypothesis testing 
Wouter Verkerke, NIKHEF
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Hypothesis testing

• Hypothesis testing

– What to choose as null hypothesis and what as alternate depends 
on the question you want to ask

– Example: discovery/exclusion of SuperSymmetry extension of SM

• Version 1
– H0 = No supersymmetry

– H1 = SuperSymmetry (of some kind)

– Prediction: Nevt(8 jets>pT20) = 10 (at x fb-1)

– Measurement: N=9 

• Version 2

– H0 = Standard Model

– H1 = Standard model + something else

– Prediction: Nevt(8 jets>pT20) =  3 (at x fb-1)

– Measurement: N=9 



Significance, Probability

• Be sure to formulate the correct question!

– What we usually want to know for discovery is: what is the 
probability that the ‘background’ has an fluctuation that looks like 
our signal (or better), i.e. Version#2 

– Version #1 quantifies the probability that nature with SUSY would 
result in an experimental result consistent with no SUSY.  You 
would use this to set a limit

• When making statistical inference on data samples that 
contain little information, precise formulation of 
question and assumption made, become very important

• Need to discuss fundamentals of probability and 
statistics more before proceeding.
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Definition of “Probability”

• Abstract mathematical probability P can be defined in terms of 
sets and axioms that P obeys. If the axioms are true for P, 
then P obeys Bayes’ Theorem (see next slides)

P(B|A) = P(A|B) P(B) / P(A).

• Two established* incarnations of P are:

• 1) Frequentist P: limiting frequency in ensemble of imagined 
repeated samples (as usually taught in Q.M.). 
P(constant of nature) and P(SUSY is true) do not exist (in a 
useful way) for this definition of P (at least in one universe).

• 2) (Subjective) Bayesian P: subjective degree of belief.
(de Finetti, Savage) P(constant of nature) and P(SUSY is true) 
exist for You. Shown to be basis for coherent personal 
decision-making.

*It is important to be able to work with either definition of P, and to know 
which one you are using!
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Frequentist P – the initial example

• Work out initial example (discovery – version 2)

– ‘Signal’ = SUSY ‘Background’ = Standard model

• Can we calculate probability that SM mimics SM+SUSY
(i.e. result is a ‘false positive)?

– Calculation details depend on how measurement was done (fit, 
counting etc..)

– Simplest case: counting experiment, Poisson process

Prediction      N=3            
Measurement N=9

N(bkg)       = 3            
N(sig+bkg) = 9

0.0038)3;(
9
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Frequentist P – working out example #2

• P-value - If you repeat experiment many times, given 
fraction of experiments will result in result more 
extreme that observed value

– In this example, only 0.38% of experiments will result in an 
observation of 9 or more events when 3 are expected.

• P-Value vs Z-value (significance)

– Often defines significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction to give 
the same p-value.
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Bayes Theorem in pictures

• Rev. Thomas Bayes

• 1702 – 7 April 1761

• Bayes Theorem

• Essay “Essay Towards Solving a Problem in the Doctrine 
of Chances”  published in Philosophical Transactions of 
the Royal Society of London in 1764

Wouter Verkerke, NIKHEF

P(B|A) = P(A|B) P(B) / P(A).



Bayes’ Theorem in Pictures
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What is the “Whole Space”?

• Note that for probabilities to be well-defined, the “whole 
space” needs to be defined, which in practice introduces 
assumptions and restrictions.

• Thus the “whole space” itself is more properly thought 
of as a conditional space, conditional on the 
assumptions going into the model (Poisson process, 
whether or not total number of events was fixed, etc.).

• Furthermore, it is widely accepted that restricting the 
“whole space” to a relevant subspace can sometimes 
improve the quality of statistical inference –see the 
discussion of “Conditioning” in later slides.

Wouter Verkerke, NIKHEF 
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Example of Bayes’ Theorem Using Frequentist P

• A b-tagging method is developed and one measures:

– P(btag| b-jet), i.e., efficiency for tagging b’s

– P(btag| not a b-jet), i.e., efficiency for background

– P(no btag| b-jet) = 1 -P(btag| b-jet), 

– P(no btag| not a b-jet) = 1 -P(btag| not a b-jet)

• Question: Given a selection of jets tagged as b-jets, 
what fraction of them is b-jets? 
I.e., what is P(b-jet | btag) ?

• Answer: Cannot be determined from the given 
information!

– Need also: P(b-jet), the true fraction of all jets that are b-jets. 
Then Bayes’ Theorem inverts the conditionality:

P(b-jet | btag) ∝ P(btag|b-jet) P(b-jet)

Wouter Verkerke, NIKHEF 
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Example of Bayes’ Theorem Using Bayesian P

• In a background-free experiment, a theorist uses a 
“model” to predict a signal with Poisson mean of 3 
events. From Poisson formula we know

– P(0 events | model true) = 30e-3/0! = 0.05

– P(0 events | model false) = 1.0

– P(>0 events | model true) = 0.95

– P(>0 events | model false) = 0.0

• The experiment is performed and zero events are 
observed.

• Question: Given the result of the expt, what is the 
probability that the model is true? 

I.e., What is P(model true | 0 events) ?

Wouter Verkerke, NIKHEF 
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Example of Bayes’ Theorem Using Bayesian P

• Answer: Cannot be determined from the given 
information! 

– Need in addition: P(model true), the degree of belief in the mode 
prior to the experiment.  Then using Bayes’ Thm

– P(model true | 0 events) ∝ P(0 events | model true) P(model true)

• If “model” is S.M., then still very high degree of belief 
after experiment! 

• If “model” is large extra dimensions, then low prior 
belief becomes even lower.

– N.B. Of course this example is over-simplified

Wouter Verkerke, NIKHEF 
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A Note re Decisions

• Suppose that as a result of the previous experiment, your 
degree of belief in the model is P(model true | 0 events) = 
99%, and you need to decide whether or not to take an 
action (making a press release, or planning your next 
experiment), based on the model being true. 

• Question: What should you decide?

• Answer: Cannot be determined from the given information!
– Need in addition: the utility function (or cost function), which gives the 

relative costs (to You) of a Type I error (declaring model false when it 
is true) and a Type II error (not declaring model false when it is false).

• Thus, Your decision, such as where to invest your time or 
money, requires two subjective inputs: Your prior 
probabilities, and the relative costs to You of outcomes.

• Statisticians often focus on decision-making; in HEP, the 
tradition thus far is to communicate experimental results 
(well) short of formal decision calculations. One thing 
should become clear: classical “hypothesis testing” is not a 
complete theory of decision-making!

Wouter Verkerke, NIKHEF 
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At what p/Z value do we claim discovery?

• HEP folklore: claim discovery when p-value of 
background only hypothesis is  2.87 × 10-7, 
corresponding to significance Z = 5.

• This is very subjective and really should depend on the
prior probability of the phenomenon in question, e.g.,

– phenomenon        reasonable p-value for discovery
D0D0 mixing ~0.05
Higgs ~10-7 (?)
Life on Mars ~10-10

Astrology ~10-20

• Cost of type-I error (false claim of discovery) can be 
high
– Remember cold nuclear fusion ‘discovery’

Wouter Verkerke, NIKHEF



Bayes’ Theorem Generalized to Probability Densities

• Original Bayes Thm: 

P(B|A) ∝ P(A|B) P(B). 

• Let probability density function p(x|µ) be the conditional pdf
for data x, given parameter µ. Then Bayes’ Thm becomes

p(µ|x) ∝ p(x|µ) p(µ).

• Substituting in a set of observed data, x0, and recognizing 
the likelihood, written as L(x0|µ) ,L(µ), then

p(µ|x0) ∝L(x0|µ) p(µ),
where:

– p(µ|x0) = posterior pdf for µ, given the results of this experiment

– L(x0|µ) = Likelihood function of µ from the experiment

– p(µ) = prior pdf for µ, before incorporating the results of this experiment

• Note that there is one (and only one) probability density in µ 
on each side of the equation, again consistent with the 
likelihood not being a density.

Wouter Verkerke, NIKHEF 
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Bayes’ Theorem Generalized to pdfs

• Graphical illustration of p(µ|x0) ∝ L(x0|µ) p(µ)

• Upon obtaining p(µ|x0), the credibility of µ being in any 
interval can be calculated by integration.

• To make a decision as to whether or not µ is in an 
interval or not (e.g., whether or not µ>0) , one requires 
a further subjective input: the cost function (or utility 
function) for making wrong decisions

Wouter Verkerke, NIKHEF
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Area that integrates 
X% of posterior



Choosing Priors

• When using the Bayesian formalism you always have a 
prior. What should you put in there?

• When there is clear prior knowledge, it is usually 
straightforward what to choose as prior

– Example: prior measurement of µ = 50 ± 10

– Posterior represents updated belief. But sometimes we only want 
to publish result of this experiment, or there is no prior 
information. What to do?

Wouter Verkerke, NIKHEF

prior p(µ)

posterior 
p(µ|x0)

likelihood
L(x0|µ)



Choosing Priors

• Common but thoughtless choice: a flat prior

– Flat implies choice of metric. Flat in x, is not flat in x2

• Flat prior implies choice on given metric

– Conversely you make any prior flat by a appropriate coordinate 
transformation (i.e a probability integral transform)

– ‘Preferred metric’ has often no clear-cut answer. (E.g. when 
measuring neutrino-mass-squared, state answer in m or m2)

– In multiple dimensions even more issues (flat in x,y or flat in r,φ?)
Wouter Verkerke, NIKHEF

prior p(µ)

posterior 
p(µ|x0)

likelihood
L(x0|µ) prior p(µ’)

posterior 
p(µ’|x0)

likelihood
L(x0|µ’)

distribution in µ
distribution in µ2



Probability Integral Transform

• “…seems likely to be one of the most fruitful 
conceptions introduced into statistical theory in the last 
few years” −Egon Pearson (1938) 

• Given continuous x ∈(a,b), and its pdf p(x), let

y(x) = ∫a
x p(x′) dx′.

• Then y ∈( 0,1) and p(y) = 1 (uniform) for all y. (!)

• So there always exists a metric in which the pdf is 
uniform. 

– The specification of a Bayesian prior pdf p(µ) for parameter µ is 
equivalent to the choice of the metric f(µ) in which the pdf is 
uniform. 

Wouter Verkerke, NIKHEF 
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Using priors to exclude unphysical regions

• Priors provide a simple way to exclude unphysical regions 
from consideration

• Simplified example situations for a measurement of mν
2

1. Central value comes out negative (= unphysical).

2. Upper limit (68%) may come out negative, e.g. m2<-5.3, not so clear 
what to make of that

– Introducing prior that excludes unphysical region ensure limit in 
physical range of observable (m2<6.4)

– NB: Previous considerations on appropriateness of flat prior for domain 
m2>0 still apply Wouter Verkerke, NIKHEF

p(µ|x0) with flat prior p(µ|x0) with p’(µ)p’(µ)



Non-subjective priors?

• The question is: can the Bayesian formalism be used by scientists to report the 
results of their experiments in an “objective” way (however one defines 
“objective”), and does any of the coherence remain when subjective P is 
replaced by something else?

• Can one define a prior p(µ) which contains as little information as possible, so 
that the posterior pdf is dominated by the likelihood?

– A bright idea, vigorously pursued by physicist Harold Jeffreys in in mid-20thcentury:

– The really really thoughtless idea*, recognized by Jeffreys as such, but dismayingly common in 
HEP: just choose p(µ) uniform in whatever metric you happen to be using! 

• “Jeffreys Prior” answers the question using a prior uniform in a metric related to 
the Fisher information.

– Unbounded mean µ of gaussian: p(µ) = 1

– Poisson signal mean µ, no background: p(µ) = 1/sqrt(µ)

• Many ideas and names around on non-subjective priors
– Objective priors? Non-informative priors? Uninformative priors?

– Vague priors? Ignorance priors? Reference priors? 

• Kassand & Wasserman who have compiled a list of them, suggest a neutral 
name : Priors selected by “formal rules”.

– Whatever the name, keep in mind that choice of prior in one metric determines it in all other 
metrics: be careful in the choice of metric in which it is uniform!

– N.B. When professional statisticians refer to “flat prior”, they usually mean the Jeffreys prior.

Wouter Verkerke, NIKHEF
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Sensitivity Analysis

• Since a Bayesian result depends on the prior probabilities, 
which are either personalistic or with elements of 
arbitrariness, it is widely recommended by Bayesian 
statisticians to study the sensitivity of the result to varying 
the prior.

• Sensitivity generally decreases with precision of experiment

• Some level of arbitrariness – what variations to consider in 
sensitivity analysis

Wouter Verkerke, NIKHEF 



What Can Be Computed without Using a Prior?

• Not P(constant of nature | data).

1. Confidence Intervals for parameter values, as 
defined in the 1930’s by Jerzy Neyman.

2. Likelihood ratios, the basis for a large set of 
techniques for point estimation, interval estimation, 
and hypothesis testing.

• These can both be constructed using frequentist 
definition of P.

• Compare and contrast them with Bayesian methods.

Wouter Verkerke, NIKHEF 
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Confidence Intervals

• “Confidence intervals”, and this phrase to describe 
them, were invented by Jerzy Neyman in 1934-37. 
– While statisticians mean Neyman’s intervals (or an approximation) 

when they say “confidence interval”, in HEP the language tends to 
be a little loose.

– Recommend using “confidence interval” only to describe intervals 
corresponding to Neyman’s construction (or good approximations 
thereof), described below.

• The slides contain the crucial information, but you will 
want to cycle through them a few times to “take home” 
how the construction works, since it is really ingenious –
perhaps a bit too ingenious given how often confidence 
intervals are misinterpreted.

• In particular, you will understand that the confidence 
level does not tell you “how confident you are that the 
unknown true value is in the interval” –only a subjective
Bayesian credible interval has that property!

Wouter Verkerke, NIKHEF 
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How to construct a Neyman Confidence Interval

• For each value of parameter θ, determine distribution in 
in observable x

Wouter Verkerke, NIKHEF

observable x



How to construct a Neyman Confidence Interval

• Focus on a slice in θ

– For a 1-α% confidence Interval, define acceptance interval that 
contains 100%-α% of the probability 

Wouter Verkerke, NIKHEF

observable x

pdf for observable x
given a parameter value θ0



How to construct a Neyman Confidence Interval

• Definition of acceptance interval is not unique

Wouter Verkerke, NIKHEF

observable x

pdf for observable x
given a parameter value θ0

observable x

observable x

Lower Limit

Central

Other options, are e.g. 
‘symmetric’ and ‘shortest’



How to construct a Neyman Confidence Interval

• Now make an acceptance interval in observable x
for each value of parameter θ

Wouter Verkerke, NIKHEF

observable x



How to construct a Neyman Confidence Interval

• This makes the confidence belt

– The region of data in the confidence belt can be considered as 
consistent with parameter θ

Wouter Verkerke, NIKHEF
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How to construct a Neyman Confidence Interval

• This makes the confidence belt

– The region of data in the confidence belt can be considered as 
consistent with parameter θ

Wouter Verkerke, NIKHEF

observable x



How to construct a Neyman Confidence Interval

• The confidence belt can constructed in advance of any 
measurement, it is a property of the model, not the data

• Given a measurement x0, a confidence interval [θ+,θ-] can 
be constructed as follows

• The interval [θ-,θ+] has a 68% probability to cover the true 
value

Wouter Verkerke, NIKHEF
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Confidence interval – summary

• What does it mean?

• Let the unknown true value of µ be µt. 

In repeated expt’s, the confidence 
intervals obtained will have 
different endpoints [µ1, µ2], 
since the endpoints are functions 
of the randomly sampled x.

A little thought will convince you that 
a fraction C.L. = 1 – α of intervals 
obtained by Neyman’s construction
will contain (“cover”) the fixed but 
unknown µt. i.e.,

P( µt ∈[µ1, µ2]) = C.L. = 1 -α.

• The random variables in this equation are µ1 and µ2, and not µt, 

• Coverage is a property of the set, not of an individual interval! 

• It is true that the confidence interval consists of those values of µ for 
which the observed x is among the most probable to be observed.

– In precisely the sense defined by the ordering principle used in the Neyman construction

Wouter Verkerke, NIKHEF
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Coverage

• Coverage = Calibration of confidence interval

– Interval has coverage if probability of true value in interval 
is α% for all values of mu

– It is a property of the procedure, not an individual interval

• Over-coverage : probability to be in interval > C.L
– Resulting confidence interval is conservative

• Under-coverage : probability to be in interval < C.L
– Resulting confidence interval is optimistic

– Under-coverage is undesirable à You may claim discovery too early

• Exact coverage is difficult to achieve

– For Poisson process impossible 
due to discrete nature of event count

– “Calibration graph” for preceding example below 

Wouter Verkerke, NIKHEF



Confidence intervals for Poisson counting processes

• For simple cases, like a Poisson counting process with a 
fixed background estimate, P(x|µ) is known analytically 
and the confidence belt can be constructed analytically

– Example: for P(x|s+b) with b=3.0 known exactly

Wouter Verkerke, NIKHEF

Confidence belt from 
68% and 90% central intervals

Confidence belt from 
68% and 90% upper limit



Connection with hypothesis testing example

• Construction of confidence intervals and hypothesis 
testing closely connected.

• Going back to opening example: 
worked with P(x|µ) with µ=3 to calculate p-value à
Slice at µ=3 of confidence belt

Wouter Verkerke, NIKHEF



Confidence belts for non-trivial data

• How to construct a confidence belt if 
measurement is not a single observed value ‘x’
– Example: Data is histogram with 20 bins in observable x

Model is Gaussian in x with fixed width and floating mean

• Compactify N-dimensional data point into 1-D
using a ‘test statistic T(x,µ)’
– Common choice Likelihood ratio

• with L(µ) the likelihood of the data given parameter µ,and 

• µ-hat the value of mu with gives the lowest L(u) (i.e. the ‘fitted value’ of µ)

Wouter Verkerke, NIKHEF
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Confidence belts for non-trivial data

• Illustration of meaning of likelihood ratio

Wouter Verkerke, NIKHEF
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Confidence belts for non-trivial data

• What will the confidence belt look like when
replacing

x=3.2

),( µxLRx
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Confidence belts for non-trivial data

• What will the confidence belt look like when
replacing

x=3.2
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Confidence belts with Likelihood Ratio ordering rule

Wouter Verkerke, NIKHEF

• Note that a confidence interval with 
a Likelihood Ratio ordering rule (i.e. 
acceptance interval is defined by a 
range in the LR) is exactly the 
Feldman-Cousins interval

• One of the important features of FC 
that it provides a unified method for 
upper limits and central confidence 
intervals with good coverage
– Upper limit at low x, 

central interval at higher

– When choosing ‘ad hoc’ criteria to 
switch, good chance that your 
procedure doesn’t have good coverage



Going from central to one-sided interval in FC

Wouter Verkerke, NIKHEF
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Confidence belts with Likelihood Ratio ordering rule

• How can we determine the shape of the confidence belt 
in (LR,µ) for random problem

– In the case of the Poisson(x|s+b) confidence belt in (x,s) we could 
construct the belt directly from the p.d.f.

– In rare cases you can do the same for a belt in (LR,s)

1. Calculation with toy-MC sampling
– For each µ generate N samples of ‘toy’ data generated from the 

model F(x|µ). Calculate LR for each toy and construct distribution



Confidence belts with Likelihood Ratio ordering rule

• Use asymptotic distribution of LR
– Wilks theorem à Asymptotic distribution of –log(LR) is chi-

squared distribution χ2(2⋅LLR,n), with n the number of parameters 
of interest (n=1 in example shown)

– Does not assume p.d.f.s are Gaussian

– Example: 
LLR distribution from 100 event, 
20-bin measurement with Gaussian model 
from toy MC (histogram) vs asymptotic p.d.f

Wouter Verkerke, NIKHEF

excellent agreement 
up to Z=3 (LLR=4.5)

(need a lot of toy MC
to prove this up to Z=5…)



Connection with likelihood ratio intervals

• If you assume the asymptotic distribution for LLR, 

– Then the confidence belt is exactly a box 

– And the constructed confidence interval can be simplified
to finding the range in µ where LLR=½⋅Z2

à This is exactly the MINOS error

Wouter Verkerke, NIKHEF
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Likelihood (Ratio) Intervals

• Thus, after using maximum-likelihood method to obtain estimate û 
which maximizes L(u), one can obtain a likelihood interval [u1,u2] as 
the union of all u for which 

LR(u) ≤Z2, for Z real.

• But! Regularity conditions, in particular requirement that û not be on 
the boundary, need to be carefully checked. (E.g., if u≥0 on physical 
grounds, then û=0 requires care.)

Wouter Verkerke, NIKHEF
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Likelihood-Ratio Interval example

• 68% C.L. likelihood-ratio 
interval for Poisson process 
with n=3 observed:

• L (µ) = µ3exp(-µ)/3!

• Maximum at µ= 3.

• ∆2lnL= 12 for approximate 
±1 Gaussian standard 
deviation yields interval 
[1.58, 5.08]

Wouter Verkerke, NIKHEF 



U.L. in Poisson Process, n=3 observed: 3 ways

• Bayesian interval 
at 90% credibility: 
find µu such that posterior 
probability p(µ>µu) = 0.1.

• Likelihood ratio method for 
approximate 90% C.L. U.L.: 
find µu such that L(µu) / L(3) 
has prescribed value. 

• Frequentist one-sided 90% 
C.L. upper limit: find µu such 
that P(n≤3 | µu) = 0.1.

Wouter Verkerke, NIKHEF 



U.L. in Poisson Process, n=3 observed: 3 ways

• Deep foundational issues

– Only #3 has guaranteed ensemble properties (“coverage”)
(though issues arise with systematics.) Good ?!?

– Only #3 uses P(n|µ) for n ≠observed value. Bad?!? 
(See likelihood principle in next slides)

• These issues will not be resolved: aim to have software 
for reporting all 3 answers, and sensitivity to prior.

• Note on coverage

– Bayesian methods do not necessarily cover (it is not their goal), 
but that also means you shouldn’t interpret a 95% Bayesian 
“Credible Interval” in the same way. Coverage can be thought of 
as a calibration of our statistical apparatus. 

Wouter Verkerke, NIKHEF 
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68% intervals by various methods for Poisson process with n=3 observed

• NB: Frequentist intervals over-cover due to discreteness 
of n in this example

• Note that issues, divergences in outcome are usually 
more dramatic and important at high Z (e.g. 5σ = 
‘discovery’)

Wouter Verkerke, NIKHEF 
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Expected versus observed limits

• With knowledge of your detector and the expected 
background you can calculate the ‘expected limit’ for 
any new discovery you’d like to make

• This tells you how sensitive your experiment is to make 
a discovery.

• Procedure

– For each discovery type (e.g. Higgs at mass X GeV) run many MC 
studies, for each construct the limit.

– Average of limits you get from above procedure = expected limit

– Works in principle for any type of limit setting procedure 
(Bayesian, Frequentist of Likelihood)

• Two flavors of output
– Required amount of data to make N sigma discovery à

Customary when you don’t have any data yet

– expected vs observed à Customary when you have data

Wouter Verkerke, NIKHEF



Example of expected limits – Higgs discovery potential

Wouter Verkerke, NIKHEF



Example of expected vs observed

Wouter Verkerke, NIKHEF



Expected versus observed limit

• If you find less ‘null hypothesis’ events than expected 
your observed limit will be better then expected

– You got ‘lucky’ in terms of limit setting

• If you find more ‘null hypothesis’ events than expected 
your observed limit will be worse than expected
– You’re unlucky in terms of setting a good limit

– On the other hand it is also possible that those extra events were 
actually ‘signal’ à You might get lucky soon with a discovery

Wouter Verkerke, NIKHEF



Likelihood Principle

• As noted above, in both Bayesian methods and likelihood-ratio
based methods, the probability (density) for obtaining the data at 
hand is used (via the likelihood function), but probabilities for 
obtaining other data are not used!

• In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or more extreme 
than that observed), one uses probabilities of data not seen.

• This difference is captured by the Likelihood Principle*: If two 
experiments yield likelihood functions which are proportional, then 
Your inferences from the two experiments should be identical.

• L.P. is built in to Bayesian inference 
(except e.g., when Jeffreys prior leads to violation). 

• L.P. is violated by p-values and confidence intervals.

• Although practical experience indicates that the L.P. may be too 
restrictive, it is useful to keep in mind. When frequentist results 
“make no sense” or “are unphysical” the underlying reason might be 
traced to a bad violation of the L.P.

• *There are various versions of the L.P., strong and weak forms, etc. 
See Stuart99 and book by Berger and Wolpert.

Wouter Verkerke, NIKHEF 
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Likelihood Principle Example #1

• The “Karmen Problem” 
– You expect background events sampled from 

a Poisson mean b=2.8, assumed known precisely. 

– For signal mean µ, the total number of events n is 
then sampled from Poisson mean µ+b.

– So P(n) = (µ+b)n exp(-µ-b) / n! 

– Then you see no events at all! I.e., n=0.

– L(µ) = (µ+b)0 exp(-µ-b) / 0! = exp(-µ) exp(-b)

• Note that changing b from 0 to 2.8 changes L(µ) only by the 
constant factor exp(-b). 
– This gets renormalized away in any Bayesian calculation, and is irrelevant 

for likelihood ratios. 

• So for zero events observed, likelihood-based inference about 
signal mean µ is independent of expected b.

• For essentially all frequentist confidence interval constructions, 
the fact that n=0 is less likely for b=2.8 than for b=0 results in 
narrower confidence intervals for µ as b increases. 
– Clear violation of the L.P.

Wouter Verkerke, NIKHEF 
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Likelihood Principle Example #2

• Binomial problem famous among statisticians 

• Translated to HEP: You want to know the trigger efficiency e. 
– You count until reaching n=4000 zero-bias events, and note that of these, 

m=10 passed trigger. 

Estimate e = 10/4000, compute binomial conf. interval for e.

– Your colleague (in a different sample!) counts zero-bias events until m=10 
have passed the trigger. She notes that this requires n=4000 events. 

Intuitively, e=10/4000 over-estimates e because she stopped just upon 
reaching 10 passed events. (The relevant distribution is the negative 
binomial.)

• Each experiment had a different stopping rule. Frequentist 
confidence intervals depend on the stopping rule.
– It turns out that the likelihood functions for the binomial problem and the 

negative binomial problem differ only by a constant! So with same n and m, 
(the strong version of) the L.P. demands same inference about e from the 
two stopping rules!

Wouter Verkerke, NIKHEF 
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Likelihood Principle Discussion

• We will not resolve this issue, but should be aware of it.

• If you are interested, read the book by Berger & 
Wolpert, but be prepared for the stopping rule 
arguments to set your head spinning.

• Irrelevance of the Stopping Rule is known as the 
“Stopping Rule Principle” and has been hotly debated 
for decades, with some famous statisticians changing 
their minds, e.g:

– L.J. “Jimmie” Savage is widely quoted as saying in 1962, “I 
learned the stopping-rule principle from Professor Barnard in 
conversation in the summer of 1952. Frankly, I then thought it a 
scandal that anyone in the profession could advance an idea so 
patently wrong, even as today I can scarcely believe that some 
people resent an idea so patently right.”

Wouter Verkerke, NIKHEF 
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Conditioning*

• An “ancillary statistic” (see literature for precise math 
definition) is a function of your data which carries 
information about the precision of your measurement of 
the parameter of interest, but no info about parameter’s 
value.

• The classic example is a branching ratio measurement in 
which the total number of events N can fluctuate if the 
expt design is to run for a fixed length of time. Then N is 
an ancillary statistic.

• You perform an experiment and obtain N total events, and 
then do a toy M.C. of repetitions of the experiment. Do you 
let N fluctuate, or do you fix it to the value observed? 

• It may seem that the toy M.C. should include your 
complete procedure, including fluctuations in N.

• But there are strong arguments, going back to Fisher, that 
inference should be based on probabilities conditional on 
the value of the ancillary statistic actually obtained!

Wouter Verkerke, NIKHEF 
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Conditioning (cont.)

• The 1958 thought expt of David R. Cox focused the issue:
– Your procedure for weighing an object consists of flipping a coin to 

decide whether to use a weighing machine with a 10% error or one 
with a 1% error; and then measuring the weight. (Coin flip result is 
ancillary stat.)

– Then “surely” the error you quote for your measurement should reflect 
which weighing machine you actually used, and not the average error 
of the “whole space” of all measurements!

– But classical most powerful Neyman-Pearson hypothesis test uses the 
whole space!

• In more complicated situations, ancillary statistics do not 
exist, and it is not at all clear how to restrict the “whole 
space” to the relevant part for frequentist coverage.

• In methods obeying the likelihood principle, in effect one 
conditions on the exact data obtained, giving up the 
frequentist coverage criterion for the guarantee of 
relevance

Wouter Verkerke, NIKHEF 
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Summary of Three Ways to Make Intervals
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