

Dust as a probe - luminous dusty galaxies and enshrouded nuclei

Susanne Aalto

Department of Space, Earth and Environment (SEE), Chalmers University of Technology Sweden

J. Gallagher, N. Falstad, S. König, S. Muller, K. Sakamoto, S. Garcia-Burillo, L. Kristensen, MasTER collaboration et al

Where am I on the "dust evolution" scale?

- A mix of stage 2, 3, 4 and 5
 - Extremely annoyed (it is getting in the way even at $\lambda=1$ mm...)
 - Accepting (its there...)
 - Stage 4 and 5: We need to probe dust to understand rapidly growing galaxies near and far

Starbursts and growing supermassive black holes are enshrouded in dust

Outline

- Dusty luminous galaxies what are they and why do we care?
- How can we study them?
- Extremely opaque dust nuclei -the CONs!
- Dusty outflows
- Conclusions

LIRGs and ULIRGs – dusty luminous galaxies

- Luminous and Ultraluminous Infrared Galaxies, (U)LIRGs, are dusty galaxies with IR luminosities L_{IR}>10¹⁰⁻¹¹ and >10¹² L_{sun}
- (U)LIRGs are often interacting and are fundamental to galaxy mass assembly over cosmic time (e.g. Elbaz & Cesarsky 2003; Sanders & Mirabel 1996).
 - U/LIRGs start dominating the SF density with increasing z
- Some (U)LIRGS have even more embedded nuclei that harbour a very active evolutionary stage of AGNs and/or starbursts.
 - The nuclear activity will often drive mechanical feedback in the form of molecular winds, jets and outflows (e.g. Banerji et al. 2012; Fabian 1999; González-Alfonso et al. 2012).

Dynamical simulation

Gallery of interacting ULIRGS (HST)

Winds and jets

The Antennae: 100 μm PACS on HST (Klaas +10)

HOW STUDY U/LIRGS?

Mid-IR properties of LIRGs

- Large range in PAH EQW, silicate absorption, mid-IR slope
 - Obscuration
 - Evolution with merger stage
 - PDRs, ionization rates, grain sizes
 - Compactness and temperature
 - PAHs: gas tracer on global scales (Poster 175)
- Mid-IR imaging to reveal buried AGN (e.g. Martinez-Paredes+17)

Comparison of average LIRG and ULIRG spectra to average submillimeter galaxy spectra from Menéndez-Delmestre et al. (Stierwalt+13)

Mid-IR properties of LIRGs

• 9.7 μm silicate absorption

- Obscured galaxy nuclei and/or cold diffuse foreground dust?
- Amorphous or crystalline silicates, SiC (see e.g. Kemper+04, Spoon+06, Roche+15) poster 109 (Kemper) – link to massive stars/cosmic ray processing
- Mid-IR water ice features In most obscured U/LIRGs (Spoon+01)
 - Evolutionary sequence from obscured systems showing ice features – to evolved PAH in luminous LIRGs with PDRs?
- Steeper **mid-IR slopes** in more compact distributions with warmer dust
- Molecular lines e.g. 14 μm absorption line of HCN (Lahuis+07)

thin solid (red) and dashed (blue) lines represent fits to the TReCS spectrum using the *u* Con and Tranezium silicate profiles, respectively. Silicate profile of LIRG NGC4418 (Roche+15)

Spoon+07

FIR emission and absorption

- 50-200 μm continuum reveal *embedded* star formation.
 - Star formation laws.
- Dust spectral energy distributions SEDs peaks
 - dust content, dust-to-gas ratios, dust temperatures
- high-J CO and HCN, H₂O, OH, OH⁺, H₃O⁺ probe
 - Molecular gas excitation and chemistry
 - Dust grain processing
 - Dynamics Infall/outflow (Sturm+11, Veilleux+13)

Herschel SPIRE spectrum of the quasar Mrk231 (van der Werf +10 The Antennae: 100 μm Herschel PACS on HST (Klaas et al 2010)

The rich water spectra of NGC4418 and Arp220 (Gonzalez-Alfonso et al 2012)

Dust and molecules at mm/submm wavelengths

ALMA/NOEMA/SMA - with ALMA at extremely high spatial resolution – 20 milli arcseconds

Spiral arms and bars

Flocculent - Grand design Strong/weak - Nested

Interactions

Polar rings, dust lanes, counterrotating and infalling gas Tidal gas "Overlap regions" Nuclear gas - Outflows and winds

Molecules probe e.g.

- dust grain processing, SiO, H₂S, CH₃OH etc
- Stellar enrichment ¹⁸O, ¹³C etc
- proxies for buried NIR/MIR energy densities

Sakamoto +14

Bolatto +13

Extragalactic molecules: >60 detected

2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	>8 atoms
OH	H ₂ O	H ₂ CO	$c-C_3H_2$	CH₃OH	CH₃CCH	HC ₆ H	c-C ₆ H ₆ *
CO	HCN	NH_3	HC₃N	CH₃CN	CH_3NH_2		C60* (?)
H_2^*	HCO+	HNCO	CH ₂ NH	$HC_4H *$	CH ₃ CHO		
СН	C ₂ H	C ₂ H ₂ *	NH ₂ CN	HC(O)NH	$_2$ HC ₅ N		
CS	HNC	H ₂ CS ?	$I-C_3H_2$				Caffeine
CH+ **	N_2H^+	HOCO⁺	H ₂ CCN				
CN	OCS	c-C₃H	H ₂ CCO				
SO	HCO	H ₃ O⁺	C_4H				
SiO	H_2S	/-C ₃ H				(- A - A - A - A - A - A - A - A - A - A
CO ⁺	SO ₂					τ	Devertical from Devertical from
NO	HOC⁺						not yet
NS	C ₂ S						
NH	H_2O^+	see upo	lates on				
OH⁺	HCS⁺	<u>http://www.astro.uni-</u>					
HF	H₂Cl⁺	koeln.d	<mark>e/cdms/</mark> m	<u>nolecules</u>			
SO ⁺	NH ₂						
ArH ⁺							
CF ⁺	* indicates molecules that have been detected by their rotation-						

vibration spectrum,

** those detected by electronic spectroscopy only.

Methanol tracing kpc-scale shocks in luminous merger VV114 (Saito+17)

J2000 Right Ascension J2000 Right Ascension J2000 Right Ascension

Integrated intensity contour of CH₃OH (3K–2K) overlaid on (a) 880 μ m dust emission, (b) Paschen α emission, and (c) Ks

- CH₃OH also tracing bar shocks and grain processing in IC342, Maffei2 (Meier and Turner 06, 12)
- SiO tracing faster shocks in outflows e.g. Tunnard+15, Imanishi+18

Submm/mm dust maps

Extended cold dust

• Disks and outflows

Submm continuum in center and outflow of starburst M82 (Leeuw and Robson 09

Submm/mm dust continuum good tracer of mass. (e.g. Groves+14, Scoville+14)

Obscured nuclei and torii

NGC1068: r=3.5 pc dusty turbulent torus with M_{gas} =1x10⁵ M_{sun} (Garcia-Burillo+16, Gallimore+16).

(Jy/beam)

450 μm nuclear dust disks in Arp220 merger (Wilson+14)

A hidden AGN population – or extreme starbursts?

COMPACT OBSCURED NUCLEI

CONs – Compact Obscured Nuclei - $N(H_2)>10^{24} \text{ cm}^{-2} \text{ A}_v>1000$

- Some (U)LIRGs harbour CONs Still unknown how common they are Extremely important to understand obscured phase:
- AGN statistics.
- Growth of nuclear stellar spheroid. Starburst-AGN connection
- Potential sources of cosmic neutrinos (e.g. Berezinskii & Ginzburg 1981; Bahcall & Waxman 2001, Yoast-Hull+17).
- Relation to distant DOGs? SMGs?

Example:

NGC4418 (e.g Sakamoto+10,13, Costagliola+13 – see also Varenius+14 for VLBI imaging)

mm/submm continuum

• <0. "1 (<20 pc) nuclear emission

- Core luminosity: $10^{11.0} L_{\odot}$ bulk of total FIR luminosity of NGC4418.
- T_B(860 μm)=120-210 K, τ(860 μm) = 1 (i.e., N_H>10²⁵ cm⁻²).

Central Molecular Zone (CMZ) of the Milky Way (Martin+04, ApJS, 150,

Size - 450 x 150 pc $M(H_2) - 5x10^7 M_{sun}$

In comparison:

How can we probe behind the veil of dust?

X-rays suffer attenuation when $N(H_2)>10^{24}$ cm⁻² and mid-IR diagnostics are also compromised by extreme dust obscuration.

-mm/submm continuum observations: luminosity density, N(H₂)

-Vibrationally excited HCN (HCN-VIB) requires $T_B(14 \ \mu m) > 100 \ K$. Observe rotation transitions in the mm/submm. (e.g. Sakamoto+10, Aalto+15a,b, Imanishi+13, Aalto+15ab, Martin+16, Aalto+16, Imanishi+16). Or in the cm wavelengths (e.g. Salter+08)

14 μm IR field

Buried nuclei traced by vibrationally excited HCN

- HCN-VIB emerging from extreme mid-IR cores since HCN-VIB requires a mid-IR surface brightness > 5x10¹³ L_{sur}/pc² :
 - Extreme compact opaque starburst (Andrews and Thompson 2011)
 - Obscured AGN
- So far luminous HCN-VIB only detected in: ULIRGs and LIRG early type spirals
 Preliminary statistics: 70% of nearby ULIRGs have HCN-VIB emission
- 30-100% of total IR luminosity of galaxy may emerge from HCN-VIB region.

Very luminous HCN-VIB emission detected at redshift z=2 (Riechers in prep.)

"Too cold" dust SEDs?

- Dust Spectral Energy Distribution (SED) may shift due to absorbed nuclear emission.
- high surface brightness mid-IR may be attenuated/buried (e,g, IRAS17208! No nuclear mid-IR Soifer+01) but very bright mid-IR excited HCN-VIB)
- Trapped radiation from the embedded source may raise the internal temperature ="Greenhouse effect". (See e.g. Rolffs+11)

Dust SED can shift to longer wavelengths.

...and this model still underestimates the opacity at mm wavelengths.

ALMA 345 GHz (850 μ m) 30 milli-arsecond observations of IC860

150

200

100

50

0

- Confirm ground state HCN, HCO+, CS lines • continuum and self absorbed in Inner 50 pc.
- HCN-VIB tracing emission close to nucleus -٠ but "vanishing" in the inner 0."03 (7 pc).
 - T_{ex} (HCN-VIB) T_{B} (cont) + opacities?
- Nuclear column density $N(H_2) > 10^{25} \text{ cm}^2$ "brick wall". Must go to even longer wavelengths to probe inside inner 7 pc.

-50

MilliArc seconds

-100

-150

-250

Problem continues at λ =1-3 mm

HCN-VIB structure may be modelled as compact (10 pc) molecular outflow – perpendicular to nuclear rotation

Most of λ =3mm emission is still dust (70 %). T_B=250-300 K from λ =6 mm to λ =0.8 mm.

Does the standard dust-to-gas ratio hold here?.

Use e.g. molecular isotopic ratios to search for evidence of recent nuclear processing – gas-to-dust ratio

HIDDEN DUSTY OUTFLOWS

Hidden outflow in the LIRG Zw049 (Falstad+17)

400 km/s OH (4-6 GHz) line wing seen with the VLA. Very compact on radio continuum nucleus

Outflow not seen with Herschel (Falstad+15,+17) Hidden inside dust that is opaque in the FIR.

What role is the dust playing in the powering oftThe outflow – radiation pressure

Dusty winds - see also poster 49

Weak radio continuum (5 GHz) associated with NIR dust "jet"

CO 2-1, 6-5 tracing very dense nuclear outflow . *The 690 GHz dust is tracing the nuclear ouflow.* (ALMA+SMA)

An HCN-"jet" in Arp220 (Barcos-Munos+18)

- ALMA reveals extremely dense and fast (850 km/s) outflow in iconic ULIRG Arp220. T_B(HCN) > T_B(CO)! (Barcos-Munos+17). (HCN detected in several fast AGN outflows (Aalto+12) – very dense gas and dust distributions.)
- 3mm dust emission very opaque dust in the cores T_D 500 K dust also reaches out into outflow (Sakamoto+17). Luminosity density 10^{15.5} L_{sun} kpc ⁻² on a scale of 20 pc. More than twice higher than any observation of dust brightness temperature in Arp220 (e.g. Downes and Eckart 07, Wilson+14, Scoville+17)

ALMA reveals a radio-quiet, precessing molecular jet?

OUTFLOW SHADOWS

Highly Obscured Nuclei: Dusty SO/a Galaxies: HST "Vband" Images

HST GO-1 J. Gallagher, S. Aalto et al

Dust Features: Evolutionary Sign Posts Polar dust structure \rightarrow past interaction *Cone/pillar* structures from center—slow outflow galactic geysers?

> Dusty central disk with embedded star formation

Zw049.057 Dust Opacity Measurements—Estimates of gas content of outer structures

- ✤ Optical depth proportional to column N_H
- Derive τ_V from contrast in HST V, I, J
 bands, convert to N_H assuming Galactic
 gas/dust ratio. Lower bound—optically
 thick substructure, cloud locations.
- ♦ Average densities $n \ge 15-20 \text{ cm}^{-3}$, L~50 pc
- ♦ ISM masses $M_{gas} \gtrsim 10^5 M_{\odot}$ per region.

Lauren Laufman—undergraduate project, U. Wisconsin Gallagher et al. 2018, in preparation

NGC 1377: High density molecular gas concentrated in nuclear

NGC 1377 V/I color map with CO 3-2 contours to show scale. Approximate absolute positioning.

Conclusions

- Mid-IR studies of
 - dust continuum, PAHs, silicate absorption, ices, AGN dust heating
- Dust peaks in the FIR
 - dust SEDs, star formation laws, dust properties and dust-to-gas ratios.
 Molecules as probes.
- Submm/mm continuum and lines
 - distribution of extended cold dust (dust mass and properties) and nuclear dust at high resolution. Molecules as proxies for grain processing, enrichment, buried energy density.
- The CONs: Some U/LIRGs have extremely dust enshrouded nuclei with A_v> 1000. Can be probed at long wavelengths – extreme luminosity densities.
 - Nature of buried activity? Dust properties?
 - Issues with dust opacity effects down to mm wavelengths.
- Dusty, collimated outflows a new early phase of feedback? How are they linked to large scale bipolar outflows?
 - Role of dust in driving?

From First Stars to Life: Science with the Origins Space Telescope (OST)

- Oxford September 4-7 2018
- https://www.ostmeeting.com/

