

Dust in Active Galactic Nuclei: a close look at the torus and its surroundings

0

Almudena Alonso Herrero

Unified Model for AGN

The idea of a Unified Model for AGN was put forward by Antonucci & Miller in 1985 The torus of dust and molecular gas is the key ingredient

Typel

Image credit: Brooks/Cole Thomson Learning via AstronomyOnline.org

Importance of the dust-obscured AGN phase in galaxy evolution

def

0

Time (Relative to Merger) [Gyr]

σ

(c) Interaction/"Merger'

now within one halo, galaxies interact & lose angular momentum SFR starts to increase stellar winds dominate feedback rarely excite OSOs (only special orbits)

(b) "Small Group"

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center: starburst & buried (X-ray) AGN

C

-1

-2

- starburst dominates luminosity/feedback. but, total stellar mass formed is small

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled

- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

2

(f) Quasar

- dust removed: now a "traditional" QSO - host morphology difficult to observe:
- tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

- QSO luminosity fades rapidly - tidal features visible only with very deep observations - remnant reddens rapidly (E+A/K+A) 'hot halo" from feedback - sets up quasi-static cooling

mergers become inefficient

- growth by "dry" mergers

Different physical scales of dust in nuclear regions of Active Galaxies

Polar dust: up to a few hundred parsecs Circumnuclear disks: a few hundred parsecs to up to 1 kpc

NLR

200pc

Thermal IR emission of radio quiet AGN + angular resolution

- Ground-based imaging/spectroscopy: NIR AO (<0.1"), MIR diffraction limited (~0.3")
- Interferometry (<0.1")</p>
- MIR/FIR: SOFIA(~3"), Herschel (3-10"), ALMA (0.3-0.04")

Outline of the talk

What we have learned in the last \sim 5 years - an incomplete review and only for radio-quiet AGN

A few surprises about the dusty molecular torus of nearby AGN

A new paradigm: the dynamical torus

Properties of the AGN dust: grains, dust composition, PAH

Properties of the torus in distant AGN: dust covering factors and evolution

Structure of the torus (in 2013)

*Small torus sizes at 12μ m, ~3x smaller than expected Barvainis 1987

No differences between type 1 and type 2

*Larger scatter for torus sizes at $12\mu m$ than in the near-infrared

Burtscher+2013

First direct detection of the torus: NGC1068

The Unified Model torus has been detected only in a handful of AGN

ALMA 432 μ m view (0.04-0.06" res) of central 2" of NGC1068

•Dust and molecular gas torus (7-10pc). $M_{GAS} \sim 10^5 M_{\odot}$ and $M_{DUST} \sim 1600 M_{\odot}$

•Circumnuclear disk (300pc x 200pc) with recent SF activity

García-Burillo+2016 and 2018 in prep, also Gallimore+2016, Imanishi+2018

García-Burillo+2018 in prep.

Polar Dust Emission in AGN

Compact MIR emission (interferometry up to a few pc, imaging up to a few 100pc's)
Some AGN show a significant fraction of their MIR emission along the polar direction

MIR imaging: Asmus+2016 Radomski +2003, Packham+2004, Alonso-Herrero +2016, García-Bernete+2016

Modelling MIR interferometry: López-Gonzaga+2016, also Tristram+2009, Hönig+2012, 2013, Leftley+2018

Siebenmorgen+2015, also Hönig+2006, Schartmann+2008, Stalevski+2016, Wada+2016, Jud+2017, Lopez-Rodriguez+2018a

Disappearing torus at low AGN luminosities?

Torus predicted to disappear at L_{bol} (AGN) < 10⁴² erg/s: Elitzur & Shlosman 2006

mid-IR	optical		
	*		1
NGC1052(Qa)	NGC1052(F568N)	NGC1097(Si5)	NGC1097(F555W)
NGC3031(Si2)	NGC3031(F547M)	NGC3166(SI2)	NGC3166(F547M)
8			
		6	*
NGC3169(Si2)	NGC3169(F606W)	NGC3718(N')	NGC3718(F606W)
	•	6	
NGC3998(Si6)	NGC3998(F547M)	NGC4258(Si2)	NGC4258(F547M)

Mason+2012: Mid-infrared emission

Combes+2018, in prep: ALMA 832µm continuum in color + CO(2-1) contours

Müller-Sánchez+2009: Inflows detected in H_2 at 2.12µm with

Gallimore+2016: outflowing torus with

García-Burillo+2014: Outflows detected in CO(3-2) with ALMA on scales 50pc to 400pc from the AGN. Outflow rate in CND ~ 63 M $_{\odot}$ /yr

A massive "outflowing" torus in NGC5643

Alonso-Herrero+2018

Composite ALMA (red) +MUSE (blue, green)

CO(2-I)

ALMA CO(2-1) position-velocity minor axis

[OIII], Ha

Massive torus with M_{GAS}~10⁷M_☉ and outflowing in equatorial plane with v~100km/s

Artist Impression: ESO/M. Kornmesser

An obscured AGN in NGCI377 revealed by a cold molecular gas jet

- No evidence of star formation, therefore outflow must be AGN driven
- * Outflow rate 9-40 M $_{\odot}$ /yr
- No continuum dust emission detected at 690GHz (434µm) with ALMA. Could be explained by an unresolved obscured nuclear source 0.2-0.7pc ?

The new paradigm for the obscuring material of AGN

Mid-Infrared Polarimetry of AGN

• López-Rodríguez+2016, 2018b

Jet-molecular cloud interaction in northern ionization cone: No silicate feature in polarized light: **dust grains different from those in ISM?**

AGN location <0.3% polarization from the torus

Silicate Feature AGN

Porous (large grains) dust: Li+2008, Smith+2010 (M81 dust produced in AGN wind), Siebenmorgen+2015, Xie+2017

- Different dust species: Markwick-Kemper+2007
- Radiative transfer effects: Nikutta+2009
- \bullet Modified chemical composition in the presence of a strong radiation field: Smith+2010, Shi+2014

Dust composition in quasars

Example of a QSO fit: corundum: solid red, periclase: dashed red, olivine: solid blue, Mg-rich olivine: dashed blue, PAH: cyan

Mass fractions of various dust species for a sample of 53 quasars \neq dust composition in ISM

Dust produced in quasar winds? Elvis +2002

PAH emission in the nuclear regions of AGN

Jensen+2017

PAH emission excitation on scales of tens of parsecs: AGN vs. Nuclear SF?

Alonso-Herrero+2014, also Hönig+2010, González-Martín+2013, Esquej+2014, Ramos Almedia+2014, Ruschel-Dutra+2017, Esparza-Arredondo+2018

Protecting PAHs in the nuclear regions of AGN

Alonso-Herrero+2014

Torus, nuclear gaseous disks, and/or material in host galaxy provide sufficient material to shield the PAH molecules for Seyfert-like luminosities

PAHs will survive if rate of reaccretion of carbon onto PAHs higher than evaporation rate due to harsh AGN radiation field

$$\tau \approx 700 \,\mathrm{yr} \left(\frac{N_{\mathrm{H}}(\mathrm{tot})}{10^{22} \,\mathrm{cm}^{-2}}\right)^{1.5} \left(\frac{D_{\mathrm{agn}}}{\mathrm{kpc}}\right)^2 \left(\frac{10^{44} \,\mathrm{erg} \,\mathrm{s}^{-1}}{L_{\mathrm{X}}}\right)$$

Simplest version of the AGN Unified Model

Credit: NASA WISE

What We Expect to See

0

Galaxies are oriented randomly in the sky so the disks in their centers should be oriented randomly as well.

Thus we expect to see a random mix of exposed and hidden black holes everywhere we look.

with the obscuring tori having similar properties in all AGN independent of AGN luminosity, redshift, Eddington ratio, etc

The Obscured AGN fraction

Obscured fraction is usually derived from X-ray column densities (N_{H} ,) and optical class (type I broad vs. type 2 narrow lines)

Dependence with AGN luminosity?

Merloni+2014, see also Lawrence & Elvis 1982, Hasinger+2005, Simpson 2005, Della Ceca+2008, Burlon+2011, Ueda+2014, Buchner+2015

Modelling the AGN IR unresolved emission

$$N_{LOS}(i) = N_0 e^{-(90-i)^2 / \sigma_{torus}^2}$$
$$P_{esc} \simeq e^{(-N_{LOS})} \quad \text{β=90-i$}$$
$$f_2 = 1 - \int_0^{\pi/2} P_{esc}(\beta) cos(\beta) d\beta.$$

0

Geometrical covering factor (CF) f₂ is

only a function of torus angular width and number of clouds along equatorial direction and defines the fraction of obscured AGN

Different torus model parameters for Type I and Type 2 AGN

Martínez-Paredes+2017

Also Ramos Almeida+2011, Alonso-Herrero+2011, Mor+2012, Ichikawa+2015

Torus Dust Covering Factors vs Luminosity

Complete sample of X-ray selected AGN: 132 type 1 AGN and 78 type 2 AGN at redshifts z~0-1.7

Small CF values are preferred at high AGN luminosities, as postulated by simple receding torus models

Mateos+2016, see also Mor+2009, 2012, Roseboom+2015

Missing AGN in X-ray (<10keV) surveys

- A non-negligible fraction of luminous, heavily obscured (high covering factors) type-2 AGN X-ray detection (at energies < 10keV) are missing:</p>
- Comparison of optical fraction of type 1/type 2 of X-ray selected AGN with the modelled distribution of torus geometrical covering factors

Normal and dust deficient quasars

Lyu+2017b

* Warm and hot dust deficient quasars are only 10% of type 1 quasar population

- All quasars have very similar far-infrared SED that are also consistent with those of lower luminosity AGN
- * Similar emitting properties in the outer parts of the AGN-heated dusty structures, i.e., optically thin dust in the far-infrared

Lyu+2017a

Evolution of the obscuring material (torus) in **PG** quasars

Zhuang+2018

Summary

We are only starting to glimpse the *true nature* of the torus and the properties of the AGN dust

Images of the torus: detailed geometry of the torus in nearby active galaxies including sizes, polar dust

Inflows/outflows

Connection with the host galaxy including positive/negative feedback, nuclear star formation activity

- Dust properties in large AGN samples
- Evolution of torus properties in AGN vs luminosity, redshift, Eddington ratio, etc