CPHDUST2018

The properties of interstellar dust in the Milky Way and in nearby galaxies

Maud Galametz, CEA Saclay

DUST: A TRACER OF GALAXY EVOLUTION

A strong diagnostic tool

- Role in the ISM chemistry, heating and cooling
- Tracer of the gas reservoirs
- Tracer of the SFR

DUST : A TRACER OF GALAXY EVOLUTION

Nearby galaxies: different laboratories to understand dust properties

Effects of dust evolution on the SED itself

 Reemit from 30% to 90% of the stellar power

Galliano et al 2004

1- Dust composition and distribution

2- Dust modelling and current revisions

3- Evolution in the ISM

4- Dust polarisation

DUST COMPOSITION

The extinction curves provides us with clues on the dust composition

From Galliano, Galametz & Jones et al 2017

DUST COMPOSITION

PAHs

Their emission varies with their ionization, size ...

Very small grains Small grains

Sizes < 20nm Can vary significantly

Large grains

Carbonaceous grains and Amorphous silicates

Grains at thermal equilibrium

Compiègne et al 2011

MACROSCOPIC DISTRIBUTION

A few spatial scales relevant for the heating of the dust

- Scale lengths:

MIR often compact – FIR larger than stellar scale-length

- Scale heights :

100 - 200 pc in the FIR cold dust could extend to even larger scales

- Mean free path $I_{
m V} \propto {
m density}$

 $I_{\rm V} \approx 60 \, {\rm pc}$ when ${\rm n_{H}} \approx 10 \, {\rm cm}$ -3 $\approx 0.06 \, {\rm pc}$ when ${\rm n_{H}} \approx 10^4 \, {\rm cm}$ -3

Cold

- 7 -

MACROSCOPIC DISTRIBUTION

Studying the heating sources with IR colours or radiative transfer models

Viaene et al 2016 - 8 -

1- Dust distribution and composition

2- Dust modelling and current revisions

3- Evolution in the ISM

4- Dust polarisation

A CLASSICAL PRESCRIPTION

Modified blackbody model $L_{\nu}(\lambda) = M_{dust} \cdot \kappa(\lambda_0) (\lambda_0/\lambda)^{\beta} \cdot 4\pi B_{\nu}(\lambda, T_{dust})$

@ 10Mpc with SPIRE

VARIATION OF BETA IN NEARBY GALAXIES

 $_{\circ}$ 12+log(0/H) > 8.55 $_{\circ}$ log Σ(Hα) ≤38.6 * 12+log(0/H) ≤8.55 * log Σ(Hα) > 38.6

Boselli et al 2012

Smith et al, 2012

Investigations using color ratios

- β = 2 or unique not appropriate

Tabatabaei et al, 2013

BUT difficult to study due to the numerous degeneracies...

BETA-T ANTI-CORRELATION

Planck coll, 2013 NGC1512 NGC0337 NGC0628 NGC3351 NGC3621 NGC1097 NGC3627 NGC4826 NGC1316 NGC7793 T. [K] 1.5 1.0 BETA 0.5 10 15 20 25 30 T (K) **TEMPERATURE** Galametz et al 2012

Explanations:

- Laboratory experiments on dust analogues *Coupeaud et al. 2011; Demyk et al.2017*

- changes in the composition and structure of silicate or carbon dust

Meny et al. 2007; Jones et al 2013

BUT

Degeneracies between the dust colour temperature and the observed spectral index

Juvela & Ysard 2012

2.0

Dust mixing with various temperatures

Prescription from Dale et al. 2001: $\frac{dM_{dust}}{dM_{dust}} \propto U^{-\alpha} dU \text{ with } U_{min} < U < U_{max}$

BUT

- Similar noise-induced anti-correlations

- Still usually assumes that the dust composition and size distribution does not change

CONSTRAINTS ON THE DUST OPACITY

- Model the Galactic IR/submm emission (Planck, IRAS, WISE)
- Compare A _{v,DL} with stellar observations in molecular clouds optical estimates from QSOs in the diffuse ISM

 \rightarrow Not the right far-IR opacity of dust grains, even in the diffuse ISM

CONSTRAINTS ON THE DUST OPACITY

The same discrepancy is observed in Andromeda

Dalcanton et al 2015

From Draine et al 2014

 \rightarrow Revision of the physical properties of current models _15.

1- Dust distribution and composition

2- Dust modelling and current revisions

3- Evolution in the ISM

4- Dust polarisation

DUST EVOLUTION PROCESSES

Grain Formation

- Grain condensation (Sne ejecta, AGB stars)
- Accretion of atoms and molecules (growth, mantle, ice) in the ISM

Grain Processing

- Shattering, fragmentation by grain-grain collisions
- Structural modifications (high energy photons, cosmic rays)
- Coagulation

Grain Destruction

- Erosion and evaporation (thermal or kinetic sputtering)
- Photo-desorption of atoms and molecules
- Thermal evaporation
- Astration (incorporation into stars)

DUST EVOLUTION PROCESSES

From Jones et al 2013; schematic diagram of the THEMIS model

EMISSIVITY VARIATIONS

Core-mantle

Core-mantle-mantle

Aggregates

Aggregates with ice mantle

Köhler et al, 2015

GAS-TO-DUST MASS RATIO EVOLUTION

Clear evolution of the ratio with metallicity

Rémy-Ruyer et al, 2014

GAS-TO-DUST MASS RATIO EVOLUTION

Clear evolution of the ratio with metallicity

Chemical Evolution models from Asano et al (2013a)

The trend can be explained when grain growth in the ISM is taken into account in the dust formation processes.

Rémy-Ruyer et al, 2014

SIGNATURES OF DUST EVOLUTION IN THE LMC

Variations in the Gas-to-Dust ratio with the environment

Decrease of G/D from the diffuse ISM to the dense clouds

Roman-Duval et al, 2014; 2017

ARE THERE DUST COMPONENTS WE ARE STILL MISSING ?

Detection of a submm excess

Bendo et al, 2006

Galliano et al, 2003

... among many others:

Bot el al, 2010 Galliano et al, 2005 Zhu et al, 2009

Galametz et al, 2014

OTHER TYPES OF DUST

Spinning dust

Anomalous Microwave Emission : i.e. continuum excess

Highly variable in nearby galaxies

Carriers: PAHs or nano-silicates

Magnetic grains

Magnetic nanoparticles such as Fe, Fe_3O_4 , γ -Fe₂O₃

The submm excess... an open question...

Draine & Hensley (2012) - 24 -

1- Dust distribution and composition

2- Dust modelling and current revisions

3- Evolution in the ISM

4- Dust polarisation

DUST POLARISATION

Various potential alignment mechanisms Paramagnetic relaxation Mechanical alignment Radiative torques

Polarization depends on the alignment degree and grain structure

Guillet et al (2017) - 26 -

DUST POLARISATION IN MW DENSE CLOUDS

Polarization (%)

Dark molecular cloud L134

T_{353GHz}

Planck Collaboration XIX (2015)

Several possible explanations

Geometrical Effects / mixing along I.o.s. / resolution

Depolarisation due to dampening of radiation field

Collisional depolarization

Low grain alignment efficiency at high n

Variation of the grain population

DUST POLARISATION IN NEARBY GALAXIES

Probe the magnetic field structure of nearby galaxies?

Frick et al. 2016

DUST POLARISATION IN NEARBY GALAXIES

Probe various galaxy components? 2.0 ²olarization Percentag 0.9 Reveal dusty torii, SF rings 0.4 Trace dust blown up by the outflows 0.2 B Constrain the extend of the halo C **NGC1068** Offset along Minor Axis (arcsec) -10 -30 -20 0 20 Polarization 1.5 - (a) fraction NGC891 1.0 De Co H-band pola NE Cen. SW dichroism scattering 0.0 10 E (b) Pola angle -10 -20 Antonucci & Miller et al. 1985 -30

-1.5

SE

-1.0

-0.5

0.0

Offset along Minor Axis (kpc)

0.5

1.0

1.5

NW

Montgomery et al. 2014

DUST POLARISATION IN NEARBY GALAXIES

Mason et al 2007

Kawabata et al 2014

A GOLDEN AGE FOR DUST POLARIMETRY

The arrays

SMA

Instruments

Planck

Baloon exp. BLASTPol, PILOT

In space? POL on SPICA Need of refined / rescaled dust properties to fit the submm observations Signs of dust properties variations from diffuse to dense medium New challenge: model the polarized dust emission

Spatially resolved studies : ALMA, JWST

 \rightarrow dust heating in dense extragalactic PDRs

FIR spectroscopy / pola: future SPICA

→ better constraint on the shape of the SED
→ IR polarimetry

Challenges in Panchromatic Galaxy Modelling with next Generation Facilities

November 12-16th 2018

Osaka, Japan

https://panmodel2018.sciencesconf.org/

Thank you for your attention!

This presentation has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562 [RADIONET]

Back-up slides

DUST POLARISATION AS A TRACER OF B IN THE MW

L1448N

