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This talk limited to:
• Dust in diffuse ISM (not dark clouds, not protostars)
• “Normal star-forming galaxies” – like the MW.

(not low-metallicity, early-type, extreme starburst, etc.)
Most observational constraints are on electromagnetic properties:
• Extinction vs. λ
• Polarized extinction (polarization of starlight)
• Scattering: from X-rays to IR
• Emission: IR to microwave
• Polarization of emission (IR, FIR, submm, microwave)

Other constraints (not discussed here):
• depletions (including variations in depletions)
• photoelectric heating
• catalysis of H2 (and other species?)
• grain-assisted recombination of ions
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Reverse-Engineering Interstellar Dust

collaboration with
Brandon Hensley (JPL):

see Poster XXX
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Reverse-Engineering Interstellar Dust

• Propose a model: materials and size distributions
• Must be consistent with abundance constraints

(i.e., atoms that are missing from the gas phase: interstellar depletion)
• Calculate optical properties

(use theoretical methods to calculate scattering, absorption, and emission for model
grains).
• Because we don’t know what materials form in ISM, some freedom to “invent” materials

(e.g., “astrosilicate”)
– informed by lab studies of candidate materials
– require consistency with laws of physics

• Compare with observations (extinction, polarization, IR-submm emission)
• Adjust as needed...
• Insufficient constraints: model will not be unique...
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IR-Optical-UV Extinction

typical diffuse ISM sightline-to-sightline variations
• Lessons from modeling:

– Optical extinction and scattering: Most of the grain mass at a >∼ 0.1µm .
– Rising extinction down to λ = 0.1µm :

substantial number of grains with sizes down to at least 0.01µm
– IR features at 9.7µm (Si-O stretch) and 18µm (O-Si-O bend):

substantial fraction of grain mass must be silicate material
• Weak feature at 3.4µm : C-H stretch. Hydrocarbon material present.
• Strong 2175 Å feature: Probably π→π∗ excitation in sp2-bonded C (example: graphite).
• Dust properties vary from one sightline to another: dust evolution in ISM

4 B.T. Draine Observational Constraints on Interstellar Dust Properties Copenhagen 2018.06.12



IR-Optical Extinction

• Progress based on stellar pho-
tometry by
– 2MASS
– Spitzer Space Telescope
– WISE
– SDSS
– Pan-STARRS
– APOGEE

• 5–8µm extinction in diffuse
ISM is significantly larger
than had been thought pre-
2005

Symbols: Indebetouw et al. (2005), Wang et al. (2013), Xue et al. (2016),
Schlafly et al. (2016). Shaded area: Fitzpatrick & Massa (2007).

from Hensley & Draine (2018) – see Poster xxx
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Scattering

• Reflection nebulae
illuminator: nearby star(s)

• Diffuse Galactic light
diffuse ISM = reflection nebula
illuminator: diffuse starlight

• “Cloudshine”
externally-illuminated translucent cloud
illuminator: diffuse starlight

• “Coreshine”
externally-illuminated dark cloud
illuminator: diffuse starlight

Tests of size distribution and composition

NGC 7023 (credit: Claustonberry Observatory)

spectrum of DGL

from Brandt & Draine (2012)
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Silicate Composition

Solid: Cyg OB2-12 (Poteet, private communica-
tion)
Cyan: Cyg OB2-12 (Fogerty et al. 2016)
Dashed: Galactic Center (Kemper et al. 2004)

• 9.7µm and 18µm features: silicates
• Crystalline fraction < 2% (Kemper et al.

2004)
• Essentially all Si, Mg is in silicate grains
• Silicates: ∼2/3 dust mass in diffuse ISM
• Composition based on lab spectra of amor-

phous silicates:
Mg-rich olivine/pyroxene, e.g.,:

Mg1.32Fe0.10SiO3.45 (Min et al. 2007)
Mg1.48Fe0.32SiO3.79 (Poteet et al. 2015)
Mg1.37Fe0.18Ca0.002SiO3.55 (Fogerty et al. 2016)

(Mg:Fe ratio somewhat uncertain)
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Carbon in Diffuse ISM
C/H

∼ 324 ppm total
∼ 177 ppm gas (ζ Oph)
∼ 147 ppm dust (ζ Oph)

carbon dust mass

total dust mass
≈ 19%

carbon dust volume

total dust volume
≈ 30%

IR emission features: (3.3, 6.2, 7.7, 8.6, 11.3, 12.7µm )
PAHs with < 103 C atoms: ∼35 ppm [qPAH = 0.047]

larger carbon grains: ∼110 ppm

2175Å feature:
π → π∗ transition in sp2-bonded C
(PAHs, or very small graphitic grains)

need ∼60ppm C/H to account for 2175Å feature (PAHs)?

Composition of larger carbonaceous grains uncertain:
• polycrystalline graphite?
• amorphous carbon?
• hydrocarbons?

3.4µm feature: C-H bond in aliphatic carbon
but not known how much C-H
Abundance of diamond-like (sp3-bonded) carbon uncertain
• nanodiamonds found in meteorites
• 3.47µm absorption feature
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Composition Puzzles
Where is the Fe?

• Mg-rich silicates appear to consume only
∼ 20% of the Fe.
• Where is the rest of the Fe?

– Metallic Fe ?
(easy to hide – no features)

– γ-Fe2O3 maghemite? (15µm feature)
– Fe3O4 (features at 14, 23µm )
– FeO (wustite)? (feature at 22µm )

• No identifications to date
• In principle can diagnose with Fe L-band

absorption spectrum at ∼ 705− 725 eV

hν( eV)
from Draine (2003)

Where is the O?
• Jenkins (2009): O depletion greater

than expected for silicates and metal
oxides
• Not in H2O ice on normal-sized

grains – 3.1µm absorption not seen
• Perhaps very large (a >∼ 1µm ) H2O

ice grains (Poteet et al. 2015)?
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Grain Geometry
• Observed polarization of starlight (and polarized FIR emission): interstellar grains are

not spherical. What is the geometry of interstellar dust? Two extremes:

� Are interstellar grains fairly smooth and compact?

Presolar onion-like graphite grain (diameter ∼5µm ). Photo from S. Amari.

� Or are they typically loose aggregates of smaller particles, with a large “porosity”?

Two interplanetary dust particles collected from stratosphere (diameter ∼10µm ).
Elemental compositions similar to primitive meteorites: silicates + carbonaceous material.

Images courtesy E.K. Jessberger and Don Brownlee.
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Infrared and Submm Emission

from Hensley & Draine (2018)

• PAH emission features at 3.3, 6.2, 7.7, 8.6,
11.3, 12.7µm
• local translucent cloud DCld 300.2 -16.9 taken

as representative of emission from diffuse ISM
• Very similar to NGC 5992 at λ < 12µm

from Hensley & Draine (2018)

SED of diffuse ISM

11 B.T. Draine Observational Constraints on Interstellar Dust Properties Copenhagen 2018.06.12



Polarization of Starlight and Submm Emission

Polarization of starlight (from Draine 2011)

λ-dependence for HD 161056 (Clayton et al. 1995)
2175Å feature not polarized

Polarized emission at 850µm

Direction of ~Bgal [ ~E(850µm) rotated by 90◦]

from Planck Collaboration et al. (2016)
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Polarization in Spectral Features
• 2175Å feature (carbonaceous): not polarized
• 3.4µm C-H stretch feature: no evidence of polarization (Chiar et al. 2006)
• 10µm silicate Si-O stretch: strong polarization

BN Object (Aitken et al. 1989)

Extinction and polarization profiles in diffuse ISM
polarization data from Wright et al. (2002)
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Constraints on Grain Shape and Porosity
• Need to reproduce starlight polarization, up to

pmax

E(B − V )
≈ 0.09

• Grains that produce starlight polarization must
also produce polarized submm emission
• UV polarization/extinction very small: smallest

grains are not aligned.
Alignment fraction appears to be almost a step
function:
a <∼ 0.05µm : negligibly aligned
a >∼ 0.10µm : substantially aligned

• Many models assume
partially aligned silicate grains
randomly-oriented (or minimally-aligned)

carbonaceous grains, e.g.,
– Draine & Fraisse (2009)
– Siebenmorgen et al. (2014)
– Siebenmorgen et al. (2017)
– Guillet et al. (2018) see Poster...
– Hensley & Draine (2018) see Poster...

• (submm polarization)/(optical polarization) de-
pends on shape and porosity
• At fixed opacity (cm2/g) porous grains are less

effective polarizers,
• Ratio (submm pol.)/(optical pol.) depends on

shape and porosity
• Vary grain shape and porosity:

Hold IR-submm opacity fixed
[ε(λ) depends on shape and porosity].

• Use observed Pν(850µm)/pV to find allowed
shapes and porosities
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Allowed Shape and Porosity for Silicate Grains

Observed:

Pν(850µm)

pV
= (5.4± 0.5)MJy sr−1

(Planck Collaboration et al. 2015):

Pν(850µm) = polarized intensity
pV = starlight polarization on sightline

Models with partially-aligned silicates,
randomly-oriented carbonaceous grains:

Allowed shape and porosity
(assuming Draine & Hensley (2018a) dielectric function )

• Guillet et al. (2018) [GVF18] favor 3:1 prolate
spheroids with porosity P ≈ 0.2

• Draine & Hensley (2018b) favor ∼1.5:1 oblate
spheroids with porosity P ≈ 0.2
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Polarization in the 10µm Feature

• For fixed absorption profile, polariza-
tion profile depends on both shape and
porosity
• Oblate spheroids appear to fit observed

polarization profile better than prolate
spheroids: (Draine & Lee 1984; Aitken
et al. 1989)
• GFV18 assume 3:1 prolate spheroids

for modeling polarization of starlight
and submm emission

• above models: identical aborption profile
(Cyg OB2-12)
• Oblate gives better fit to diffuse ISM po-

larization profile (Wright et al. 2002)
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Anomalous Microwave Emission (AME)
Poster Child

Planck Collaboration et al. (2011)

More Cases...

Planck Collaboration et al. (2014)
spectrum inconsistent with synchrotron or free-free

AME peaks near ∼30 GHz
peak frequency appears to vary from region-to-region

AME is ∼30 times stronger than power-law extrapolation of dust opacity to 30 GHz
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Spectrum of the AME over the sky
WMAP+Planck (“Commander” analysis):

from Hensley & Draine (2017)

• AME spectrum: only well-determined
on bright sources, which may not be
typical...

• Full-sky analysis is based on only 5
bands (23-45 GHz):
typical AME νpeak ≈ 20GHz

• Eagerly await more data:
C-BASS all-sky map at 5 GHz...
QUIJOTE (Tenerife): 10-40 GHz
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Anomalous Microwave Emission
AME Intensity

• Dust radiates at 10−60GHz much more
strongly than expected for thermal
emission from large grains: “Anoma-
lous Microwave Emission” (AME)
• νpeak ≈ 20GHz

• νpeak varies from region to region
• PAHs, expected to spin at ∼ 10 −
60GHz, could account for AME if
dipole moment is right
• Surprise: NO evidence of correlated

variations in
AME power

total dust power
with

PAH power

total dust power

(Hensley et al. 2016)
• Perhaps AME is rotational emission

from nanosilicates
[or perhaps nanodiamonds? (Greaves
et al. 2018)]

AME Polarization
Theory:
• Nanoparticles small enough to spin at
∼20GHz are expected to be randomly-
oriented (Lazarian & Draine 2000;
Draine & Hensley 2016) [but: see
(Hoang et al. 2016)]
• If AME is rotational emission, it should

be unpolarized

Observations:
• AME is essentially unpolarized

supports “spinning dust” hypothesis
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X-Ray Studies: Scattering Halo Intensity and Spectrum
• Small-angle scattering by dust
→ X-Ray “halo” around point sources
• For given model, halo can be accurately

calculated (even for irregular grains: Hoff-
man & Draine 2016)
• Comparison of standard graphite-silicate

model with observations:

GX5-1 (Smith 2008)

• Tests of: Size distribution, porosity, com-
position

Spectrum of scattering halo:

Cyg X-2 (Costantini et al. 2005)
(XMM-Newton)

∼230′′, 290′′, 350′′
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X-Ray Studies: Transmission Spectrum

• Extinction =
scattering + absorption

• High S/N→
study details near X-ray ab-
sorption edges
• Sensitive to chemical environ-

ment of absorbing atom
• Deduce chemical composition

of dust
• Chandra resolution marginal –

were hoping for Hitomi...

e.g., use Si K edge to study silicates

2000 1850 1720 eV

Chandra spectrum of GX5-1 (Zeegers et al. 2017)
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Some Conclusions...

• Size distribution extending from molecular sizes (∼4Å, ∼30 atoms) to >∼ 0.3µm
• Most of mass in large grains, most of surface area in small grains
• Small grains: substantial PAH component (may also include significant population of

silicate nanoparticles (Hensley & Draine 2017)
• Grain mass: mostly silicate, ∼1/3 of volume is carbonaceous
• Silicates:

– Amorphous silicate strongly confirmed by IR spectroscopy
– Composition intermediate between olivine (M2SiO4) and pyroxene (MSiO3), where

M = Mg or Fe
– Silicates appear to be Mg-rich
– Most Fe in non-silicate form (metallic Fe? Fe oxides?)
– Large silicate grains are aligned.
– Silicate grains may be approximated by ∼1.5:1 oblate spheroids, moderate porosity

• Anomalous Microwave Emission (AME)
– Probably “spinning dust”
– Nanosilicates may dominate rotational emission
– Theory: spinning dust emission at >∼ 20GHz should be unpolarized
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Some Open Questions ...

• What is grain porosity and actual grain geometry?

• Are silicate and carbonaceous materials actually segregated?
To what extent mixed in single grains?

• Why do carbonaceous grains appear to be non-aligned?
(lack of polarization in 3.4µm C-H stretch)

• How is size distribution maintained in ISM?

• What is the carbonaceous material?
– polycrystalline (turbostratic) graphite?
– glassy carbon (metallic)?
– (hydrogenated) amorphous carbon (semiconductor)?
– (hydrogenated) diamond (insulator)?

• What form is most of the Fe in?
Is it ferromagnetic?

• Where is the “missing” oxygen in translucent clouds?
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THANK YOU
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