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Why do we care?

o Traces physical conditions
in dust-forming region
o History of dust processing

o Mineralogy determines
optical properties,
important for wind driving
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|dentifying minerals

o Observe features and match
with lab data.
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|dentifying minerals
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|dentifying minerals

o Observe features and match
with lab data.
o Difficult:

Grain size and shape
temperature &
radiative-transfer effects! =
Must use models

not everything has features!
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Abundances?

Identification isn't enough!
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Abundances?

Identification isn't enough!

o Features small compared to
overall emission
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Abundances?

Identification isn't enough!
o Features small compared to
overall emission

o Individual sources or small
samples

need statistics to see the big
picture
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Previous attempts

e.g Sylvester et al., 1999
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Previous attempts

e.g Sylvester et al., 1999 Sloan et al., 2003
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Previous attempts - being quantitative

e.g.

Heras & Hony 2005:
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Previous attempts - being quantitative

e.g. Heras & Hony 2005:
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Previous attempts - being quantitative
Jones et al., 2014
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Statistical problems

o Combining photometric & spectroscopic
data

need SED for energy balance (L., M, ...)
spectrum for details (e.g. mineralogy)
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Statistical problems
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Statistical problems

o Combining photometric & spectroscopic
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need SED for energy balance (L., M, ...)
spectrum for details (e.g. mineralogy)
Weighting? Nphot << Nspec
Correlated noise in the spectrum?
o Variability
Data at different phases
Use an average or try to keep all the data?
o Sample size
o Fitting methods
Often “y by eye”, doesn't give any idea of
uncertainties
Or grids, sampling often too sparse
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AMPERE: A new framework

Toolkit to combine data, models and optimisers

Pure python, GPL licenced
Bayesian inference - include the problems in the model!

Peter Scicluna CPHDust 2018 8 / 12



AMPERE: A new framework

Toolkit to combine data, models and optimisers

Pure python, GPL licenced
Bayesian inference - include the problems in the model!

@ Forward modelling: Use synthetic observations
@ Build a flexible likelihood function

@ Nuisance parameters to deal with issues of weighting, calibration,
covariance

Peter Scicluna CPHDust 2018 8 / 12



AMPERE: A new framework

Toolkit to combine data, models and optimisers

Pure python, GPL licenced
Bayesian inference - include the problems in the model!

@ Forward modelling: Use synthetic observations
@ Build a flexible likelihood function

@ Nuisance parameters to deal with issues of weighting, calibration,
covariance

o Also for scientific issues - variability, imperfect model (not all
species, no atomic lines etc), foreground extinction

Peter Scicluna CPHDust 2018 8 / 12



AMPERE: A new framework

Toolkit to combine data, models and optimisers

Pure python, GPL licenced
Bayesian inference - include the problems in the model!
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Forward modelling: Use synthetic observations
Build a flexible likelihood function

Nuisance parameters to deal with issues of weighting, calibration,
covariance

Also for scientific issues - variability, imperfect model (not all
species, no atomic lines etc), foreground extinction

Can use interpolation if model expensive (e.g. STARFISH, Czekala
et al., 2015)
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Modelling data

o Model covariance matrix to
encapsulate noise

Simple but effective

Plenty of literature
o Simple additive and multiplicative
terms for calibration K4 KS + 80 |

“Keep it simple stupid” — Kelly Johnson
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A
Czekala et al., 2015
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Current/future capabilities

@ Synthetic photometry, spectra
Global covariance structure

o Optimisation with emcee
@ simple analytical models

o ideas and contributions are welcomel!
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Current/future capabilities

@ Synthetic photometry, spectra, visibilities, images
Global covariance structure, non-stationary covariance

o Optimisation with emcee, parallel genetic algorithm, +more
@ simple analytical models, interfaces to common RT codes

@ ideas and contributions are welcomel!
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Current work

Replicating Srinivasan et al. (2017) - mineralogy of AGN winds.
Sundar's results:
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“Best fit" is consistent, but uncertainty is = 20%
Definitely not Gaussian
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Current work

Replicating Srinivasan et al
Sundar's results:

PG 1011-040
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Residual

)
“Best fit" is consistent, but uncertainty is = 20%
Simple covariance model, correlated uncertainties are small
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Summary

©

Mineralogy

Critical to understanding dust formation and processing
Many components known, but abundances are not

©

Major obstacles are methodological
Fitting heterogeneous data
variability, correlated uncertainties, etc
o AMPERE is designed to tackle these issues

forward modelling
model covariance = optimum weighting
understand distributions of solutions

©

Code will be public

©

Input and contributions are welcome!
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