Formation of molecules on cosmic dust grains: a laboratory view

Alexey Potapov

Laboratory Astrophysics Group

Chemistry in the ISM

Chemical processes leading to the formation of molecules in the interstellar medium (ISM)

Chemistry in the ISM

Origin of Life

Cold phases of the ISM

Molecular clouds

Planet-forming disks

Outer parts of envelopes of evolved stars

Cosmic dust grains

Huge number of studies

Bernstein et al., Nature 2002

Munoz Caro et al., Nature 2002

A handful of works

<u>CO and CO₂</u> in H_2O ice covering hydrogenated carbon grains by <u>ion irradiation</u> (Mennella et al., 2004)

<u>CO and CO₂</u> in H₂O ice covering hydrogenated carbon grains by <u>UV irradiation</u> (Mennella et al., 2006)

 \underline{CO}_2 in O_2 ice covering carbon foil by \underline{UV} irradiation (Fulvio et al., 2012)

 \underline{CO}_2 in H_2O ice covering carbon foil by proton irradiation (Raut et al., 2012)

CO and CO₂ in H₂O ice covering hydrogenated carbon grains by proton irradiation (Sabri et al., 2015)

<u>CO and CO₂ in H₂O ice covering graphite films by UV irradiation (Shi et al., 2015)</u>

Formation of CO and CO₂

Our study

Atom bombardment (H + O)

Interstellar grain analogues in the laboratory

Ablation chamber Particle beam Deposition chamber

Laboratory Astrophysics Group Jena, Germany

Interstellar grain analogues in the laboratory

Amorphous hydrogenated fullerene-like carbon grains

Grains on a substrate

TEM image

Experimental details

Sample - fixed on a cryogenic polished copper mirror

High vacuum chamber with a base pressure of 10⁻⁹ mbar

Temperature of the mirror - 10 K

Bombardment – 30 minutes, final atom fluence 1.8×10²⁰ atoms cm⁻²

IR spectra - transmission-reflection mode between 5000 and 500 cm⁻¹ with a resolution of 0.5 cm⁻¹ using a Bruker FTIR spectrometer

O addition: IR spectra at 10 K

(a) carbon grains

(b) after O bombardment of carbon grains

(c) difference spectrum

O/H addition: IR spectra at 10 K

- (a) carbon grains
- (b) after H bombardment of carbon grains
- (c) after O/H bombardment of carbon grains ($[O_2]/[H_2] = 1/60$)
- (d) after O/H bombardment of carbon grains $([O_2]/[H_2] = 10/70)$

O/H addition: Difference IR spectra at 10 K

(a) after O/H bombardment of carbon grains $([O_2]/[H_2] = 1/60)$ (b) after O/H bombardment of carbon grains $([O_2]/[H_2] = 10/70)$

O/H addition: Difference IR spectra at 10 K

(a) after O/H bombardment of carbon grains $([O_2]/[H_2] = 1/60)$ (b) after O/H bombardment of carbon grains $([O_2]/[H_2] = 10/70)$

Grain surface chemistry

Grain surface chemistry

Grain surface chemistry

A new route of molecules formation in the ISM: grain surface processes

Atom bombardment (H + O)

The next steps (two examples)

$H_2CO - H_3CO - CH_3OH$

ne HCN – $CH_2N - CH_3N - CH_3NH - CH_3NH_2$

Methylamine

Outlook: erosion of grains in cold environments through formation of volatile molecules

Outlook: erosion of grains in cold environments

Molecular clouds

Debris disks

Cornelia Jäger and Thomas Henning Lab Astro Group, Max Planck Institute for Astronomy, Germany

Mindaugas Jonusas and Lahouari Krim MONARIS, UPMC, Sorbonne Universités, France

Deutsche Forschungsgemeinschaft

Potapov A., Jäger C., Henning T., Jonusas M., Krim L. "The formation of formaldehyde on interstellar carbonaceous grain analogs by O/H atom addition", *ApJ*, 2017, 846, 131

Thank you very much for your attention

Hydrogenation of CO

C. Pirim, L. Krim, RSC Adv. 2014, 4, 15419

Atom bombardment (addition)

PCS-ECR atomic source with a tube added after the plasma apertures to eliminate UV photons. A—molecular gas input, B—Microwave generator, C—Plasma discharge zone, D—Teflon tube, E—Atomic beam exit.

> Dissociation yields - 15% and 40% for H_2 and O_2 Bombardment - 30 minutes Final fluence - 1.8×10^{20} atoms cm⁻²

"Cometary" ice: H₂O, CO, CO₂, NH₃, CH₄, CH₃OH

Laboratory Astrophysics Workshop 2017

Laboratory Astrophysics Workshop 2017

Laboratory Astrophysics Workshop 2017