Determining the systematic errors in fits of dust thermal emission The role of laboratory data in upcoming models

Lapo Fanciullo, Ciska Kemper, Peter Scicluna, Sundar Srinivasan CPHDUST2018, June 13th 2018

Wednesday 13 June 18

Intro: what is dust?

"Soot and sand in space" – A. P. Jones

CARBON

- Amorphous?
- Graphite?
- Hydrogenated?

SILICATES

- Mostly amorphous (98%)
- Mineralogy?
- Embedded metals?

ICES

- Inside dark clouds
- Rich chemistry

"Big" grains ≳ 100 nm

Aggregates

Intro: observing dust

3

EXTINCTION

(cm²/H) T0

I/λ (I/μm)

EMISSION

MPIA - Markus Nielbock

Intro: observing dust

4

EXTINCTION

EMISSION

MPIA - Markus Nielbock

Intro: SED fitting

NGC 185 (De Looze+16)

Intro: SED fitting

NGC 185 (De Looze+16)

Intro: SED fitting

Optical properties: lab vs observations

Optical properties: lab vs observations

• Grain structure, aggregates

Interpolation

- On T
- On wavelength

Smoothing (if necessary)

Correction for artifacts

Lab results vs. literature

Synthetic observations

Synthetic observations

Fit: bias estimation

Ensemble view

Wednesday 13 June 18

Conclusions

- Dust mass determination depends on choice of opacity
- Large differences between lab-derived opacities and typical values used in literature
 - Lab opacities are larger
 - Power law (single- β) model inadequate
 - Dependence on T
- Fits of synthetic photometry

Mass overestimated by up to ~10x

Solution to dust budget crisis?

Future work

Use lab data in galaxy models

- Grid of galaxy models spanning z, chemical composition, T distribution, ...
- Fit of synthetic SEDs using standard techniques
- Comparison of fit-recovered mass to input value; how it depends on the model parameters

Improve treatment

- Add more materials (e.g. University of Jena)
- Grain structure effects: $\kappa_{\lambda} \rightleftharpoons (n, k)$
- Compare different interpolation / smoothing techniques

Interpretation

- Where is dust mass overestimated?
 - Consistency with other tracers (e.g. elemental depletions)
 - Cold dust component?
- The solution requires widespread collaboration between the modelling, observational and experimentalist communities

Gordon et al. 2014		
Model	$M_d [{ m M}_{\odot}]$	Gas/Dust ^a
	LMC	
SMBB BEMBB ^b	$(8.1 \pm 0.07 \pm 2.1) \times 10^5$ $(6.7 \pm 0.03 \pm 1.7) \times 10^5$	$340 \pm 90 \\ 400 \pm 100$
TTMBB	$(1.2 \pm 0.01 \pm 0.3) \times 10^7$	22 ± 6
SMC		
SMBB	$(8.1 \pm 0.1 \pm 2.1) \times 10^4$	1440 ± 380
BEMBB ^b	$(6.7 \pm 0.1 \pm 1.7) \times 10^4$	1740 ± 440
TTMBB	$(5.1 \pm 0.3 \pm 1.3) \times 10^5$	230 ± 60

Thank you for your attention

Extra Material

Grain shape and coagulation

Köhler et al. 2012

K_{λ} : Demyk et al. 2017

Wednesday 13 June 18

"Best case" scenario

Wednesday 13 June 18

Mg_{1.5}SiO_{3.5}

Wednesday 13 June 18

Ensemble view: Coupeaud et al. 2011

Work by Peter Scicluna, z = I

