The submm properties of dust in the detached shells around carbon AGB stars

Matthias Maercker
Magdalena Brunner, Marko Mecina
Theo Khouri, Oscar Jaldehag

Department of Space, Earth and Environment
Nordic ALMA node, Onsala Space Observatory
Galaxy evolution

Milky Way (S. Brunier)

LMC (ESA/Hubble & NASA)
Galaxy evolution

Dusty, normal galaxy at $z=7.5$

Watson et al. 2015, Nature
Galaxy evolution - where does the dust come from?

AGB stars
- Dust formed in the expanding circumstellar envelopes
- Timescales
- Mass-loss rates
- Dust properties

Supernovae
- Dust formed in ejecta from supernova explosion
- Reverse shock dust yields
- Dust properties

IMF
Galaxy evolution - where does the dust come from?

Dust production in the LMC

![Graph showing dust production in the LMC](image)

Dust production in high-z galaxies

- In 3 out of 6 $z>4$ galaxies, AGB stars can explain observed dust mass
- Requires a dust production of approx. 0.03-0.07 M_\odot per star ($2.5 \text{ M}_\odot < M < 8 \text{ M}_\odot$)
- At the upper limit of what is estimated for AGB stars today
- Depends on mass-loss mechanism and evolution, and dust properties

Dust in AGB stars

- Carbon-oxygen core
- Stellar envelope
- He- and H shells

Nucleosynthesis

- HCN
- CO
- SiS
- CS
- SiO
- OH
- H$_2$O
- H$_2$

Interstellar medium

Circumstellar envelope

Chemical evolution of the interstellar medium!
Detached shells and thermal pulses

Geometrically thin shells of dust and gas around carbon AGB stars

- Created during recent thermal pulses
- Observed around 7 carbon AGB stars
- Polarised, dust-scattered stellar light images reveal spatially well constrained shells

Spatial constraints fix the distance to the central stars

Grain temperature depends on grain properties!
SED models of R Scl

Radiative transfer models to constrain the dust properties in the detached shell

- Observations from optical to submm
- Spatially resolved observations from APEX/LABOCA at 870 µm
- Test of different dust properties to fit the SED:
 - different lab measurements of opacities
 - grain sizes
 - composition
 - geometry (hollow vs. solid, fluffy grains)

\[F_\nu = \frac{\lambda^2}{(1 + \lambda R_d)^{\alpha}} \]

\[\dot{M}_{pd} = 2 \times 10^{-10} \, M_\odot/\text{yr} \quad M_{sh} = 3 \times 10^{-5} \, M_\odot \]

Maercker et al. 2014, A&A
Brunner et al. 2018, A&A
SED models of R Scl

Radiative transfer models to constrain the dust properties in the detached shell
- Best-fit model gives $M_{sh}=3.1 \times 10^{-5} \pm 0.5 \, M_\odot$, solid, spherical grains with radius 0.1 μm
- Strongest effect on total estimated mass through assumed hollow vs. solid and fluffiness
- No straight-forward explanation of the submm excess
 - SED shape in submm can not be reproduced
- Spatial constraints from the LABOCA observations show that excess originates in the shell
- **Cold component** explanation requires blackbody of 5 K!

![Graph](image)

Brunner et al. 2018, A&A
SED models of shells around U Ant, V644 Sco, DR Ser

- Spatially constrained LABOCA observations
- As for R Scl, SED at FIR and submm wavelengths not affected much by opacities, geometry, composition
- Fixed distance from the star - grain temperature most strongly affected by grain size
- FIR points missing for DR Ser and V644 Sco

Indication of large grains in all sources

- Submm excess in all sources

Maercker et al. 2018, in prep.
Grain properties in detached shells

- Large grains **cannot** explain submm excess in the observed detached shell sources
- Simple two-blackbody model would required blackbodies of only a few K
- “cold” dust population would have to be distinct from “warm” dust
 - continuous distribution would not reproduce SED “knee”

- ALMA ACA proposals to observe V644 Sco, DR Ser, U Ant, and R Scl in Bands 3, 6, and 7 during Cycles 5+6
- Spatially constrained measurements of the submm emission from the shell
Grain properties in detached shells

- Large grains **cannot** explain submm excess in the observed detached shell sources
- Simple two-blackbody model would require blackbodies of only a few K
- “cold” dust population would have to be distinct from “warm” dust
 - continuous distribution would not reproduce SED “knee”

- ALMA ACA proposals to observe V644 Sco, DR Ser, U Ant, and R Scl in Bands 3, 6, and 7 during Cycles 5+6
- Spatially constrained measurements of the submm emission from the shell
- Observations will probe shape of submm excess at 850μm, 1300μm, and 3000μm
Submm excess from dust grains

Dehaes et al. 2007
- Dust models of 32 AGB stars (M+C-type)
- Submm excess in 5 sources
- FIR + submm region not well sampled
- possible PAH emission?
- Spatial constraints in submm essential!

Gordon et al. 2014
- Herschel observations of the LMC and SMC
- 5 bands from 100 to 500 µm
 - Single-T BB with modified power-law emissivity
 - BB with broken power-law emissivity
 - Two-T BB with same power-law emissivity
- Best-fit given by BB with broken power-law emissivity
 - unknown dust properties in the submm
 - Not “simply” population of cold dust grains
Conclusions

- Improved dust models of detached-shell sources R Scl, U Ant, V644 Sco, and DR Ser
- Uncertainty in dust mass one order of magnitude lower than previous estimates
- Indication of larger grains in detached shells than generally assumed in AGB stars
- Unexplained submm excess indicates unknown dust properties

Spatially resolved observations in FIR and submm essential to constrain dust properties!

- similar excess observed around “normal” AGB stars, and in the LMC and SMC
- unknown origin of the submm excess
- simple cold component does not seem to explain the observations
- unknown dust properties and/or PAH emission?

Need to know dust properties to understand origin and evolution of dust in galaxies!