PROBING THE SOLAR ACCRETION DISK USING THE PROPERTIES OF DUST FILTERING AT GAPS IN THE EARLY SOLAR SYSTEM

E-mail: haugboel@nbi.ku.dk

Troels Haugbølle, Philipp Weber, Daniel Wielandt, Pablo Benítez-Llambay, Martin Bizzarro, Oliver Gressel, Martín Pessah

Combining models and meteoritics:

II) Lab search for CAIs in inner solar system meteorites

Results for the young Solar System:

i) Jupiter formed early (< 1 Myr) ii) Density @ Jupiter: 100 - 1000 g cm⁻² iii) Viscosity @ Jupiter: $\alpha = 0.001 - 0.003$ iv) Nice II model is incompatible with data