A Closer Look at Some Gas-Phase Depletions in the ISM: Trends for O, Ge and Kr vs. F_{*}, f(H₂) and Starlight Intensity

Edward B. Jenkins

Princeton University Observatory

- Archival spectra of 100 stars recorded by STIS on HST --1. vields column densities of O I, Ge II, Kr I, Mg II, Mn II and H I. FUSE spectra were used to obtain $N(H_2)$. Sample spectrum Flux 2. <u>Partial</u> correlations of abundances relative to H_{total} were investigated for the trends with F_* , log $f(H_2)$ and log I/I_0 . Generalized depletion parameter Fraction of hydrogen in molecular form 0^{\Box}_{1235} Relative starlight intensity 3. Outcomes for gas-phase abundances: O/H_{total} shows positive correlations with $\log f(H_2)$ and $\log I/I_0$, and a negative correlation with F_* .
 - 2. Kr/H_{total} shows a positive correlation with $\log f(H_2)$ and negative correlations with $\log I/I_0$ and F_* .
 - 4. Interpretations:
 - 1. Negative correlations with F_* indicate O and Kr deplete along with other elements (although less rapidly no surprise here)
 - 2. There is more gas-phase O when $\log I/I_0$ increases, $\frac{1}{20}$ $\frac{1}{000}$ perhaps this is caused by photodesorption of O bound onto grains. The increase with $\log f(H_2)$ is $\frac{1}{20}$ $\frac{1}{100}$ may be due to ionization.

