Gravitational VWaves:
Introduction
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Who am |?

e PhD (2002) at Institute of Astronomy,
University of Cambridge with Donald
Lynden-Bell.

® Postdoc at Caltech then junior research
fellow and Royal Society Research Fellow
back in Cambridge.

® Now: Professor in the School of Mathematics
~at the University of Edinburgh. |
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Lecture Outline

® What are gravitational waves!
® Principles of gravitational wave detection.

® Current and planned gravitational wave detectors.

® Principles of signal analysis.
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® Newton

The nature of gravity

Gravity is a universal force
“Action at a distance”

Newton’s law describes
effect of gravity but does
not explain its origin.



The nature of gravity

® FEinstein
- Gravity is spacetime curvature
- Any mass/energy bends spacetime in its
vicinity
- Freely falling objects follow the

background curvature.

- “Matter tells space how to curve, space
tells matter how to move.”

- Einstein’s equations are simple to write
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Gravitational VWaves

® “Ripples in Spacetime” - rapidly
moving mass creates fluctuations
In spacetime curvature.

® These fluctuations propagate away
at the speed of light - these are
gravitational waves.
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Gravitational VWaves: key properties

® Conservation of mass and momentum mean that it is the
quadrupole moment that radiates

W= /p:(;iwjdV

® A gravitational wave is a fluctuation in the spacetime metric -
changes distances between objects.

.."u’. Lt Py 4 —
R g L g By >

® Characterised by a strain: fractional change in distance.
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Gravitational Wave Detection - Interferometry

® |nterferometers use lasers to measure distances.

® They exploit quadrupole nature of gravitational waves.
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Ground Based Interferometers

® A network of ground-based
interferometers has been
constructed over the last |5 years

- LIGO:2 4km detectors in the US.
-Hanford, Washington; Livingston,
_ouisiana.

- Virgo: 3km detector near Pisa, Italy.

= GEO: 600m detector near Hanover,
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Ground Based Interferometers: Sources

Compact binary coalescence

Vi Miiller et al. 2012
- BH-BH, NS-BH, NS-NS. Components

Model L15

formed from stars, from one to a few |0s
of solar masses.

at10 kpc|

0.00

Bursts S

- Supernovae; cosmic string cusps and kinks.
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Continuous waves

f— {bnum'(‘ lsl

- Monochromatic emission from deformed
rotating neutron stars; possible causes

include crustal deformation, fluid modes,
free-precession.

Stochastic backgrounds

- Generated in early Universe or produced
by astrophysical populations.




Ground Based Interferometers: Results

® First gravitational wave detection was made on
September [4th 2015 at 09:50:45 UTC - GWI150914.
Source was a merger of a stellar origin black hole binary.
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Ground Based Interferometers: Results

Black Holes of Known Mass

Solar Masses
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Pulsar Timing Arrays

® Pulsars are very accurate clocks.

- GW passing between source and
observer changes pulse time of
arrival.

- Use a network (array) of pulsars
to reduce noise.

- Ongoing international effort using
various radio telescopes.
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Pulsar Timing Arrays: Results

® The primary source for pulsar timing arrays is a stochastic
background generated by supermassive black hole binaries.

® No detection as yet, but upper limits are approaching levels
where detection is likely.

Pessimistic [e.g. Sesana et al. (2016)]

Optimistic [e.g. McWilliams et al. (2014)]

Arzoumanian et al. (2018)| Observed GW Frequency, f [Hz]



Space Based Interferometers

® There are plans for a space-
based interferometer, LISA.
Due to launch in 2034

- Operating in millihertz band.

= | hree satellites, 2.5 million km
apart, in heliocentric, Earth-
trailing orbit. 6 laser links.

- ESA-led project with NASA
- involvement. Just entered
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The Gravitational Wave Spectrum
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Principles of Signal




Principles of Signal Analysis

® Gravitational wave detectors are intrinsically noisy. The
output s(t) will consist of a (possible) signal h(t) plus
noise fluctuations n(%).

s(t) = h(t) + n(t)
® The noise is a random process.

- = Future values are not uniquely determined by initial data, but
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Principles of Signal Analysis

® We typically make various useful assumptions about the
properties of a random process

= Stationarity: A stationary process is one for which the probability
distributions depend only on time differences, not absolute time.
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= Gaussianity: A process is Gaussian if and only if all of its (absolute)
~ probability distributions are Gaussian.
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Principles of Signal Analysis

® We are interested in how large the random fluctuations are
about the mean value.We’ll assume this is zero here, which
can be arranged by a subtracting a constant.

® The fluctuations can be characterised by the power in a
certain time interval -T/2 <t <T/2

T/2
/ n(t)|*dt
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Principles of Signal Analysis

® Defining nr(t) = n(t)1]|t| < T'/2] and using Parseval’s
theorem we have

/T/2 n(t)]2dt = /OO nr(t)]? = /OO cnizacs 2/000 o (£)2df

—T/2 — 00 — 00

T/2 00
P l/ SR 3/0 A (f)2df

. - .
1 hisS motivat
dalk b LS Vi Do By LR Py Do
) ) — o o .~




Principles of Signal Analysis

® The spectral density represents the average power in the
process at a particular frequency
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® The auto-correlation function of a (zero mean) time series is

defined by
1 [T/2
Ciliali=slim —/ n(t)n(t + 7)dt

T — 00 T s /2




Principles of Signal Analysis

® For stationary processes a consequence of the Wiener-
Khintchine theorem is that

(R (f)n(f)) = Sn(f)(f — 1)

® where ~ denotes the Fourier transform, and * denotes complex
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Understanding
Gravitational Wave




Principles of Signal Analysis

® For a Gaussian, stationary random process the spectral
density conveys all the information about the statistical
properties of the process.

® For gravitational wave detectors, it is natural therefore to
plot the spectral density to characterise the detector
- sensitivity. But - how then do we represent sources on the
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Signal Sensitivity: Bursts

® A transient burst of gravitational waves can be characterised
by its frequency, f, its duration, At, its bandwidth, A f and its
mean square amplitude, a proxy for signal power

1 JAN
N h(t)|*dt = h¢




Signal Sensitivity: Bursts

® The square root of the ratio of the signal power to the noise
power is the signal-to-noise ratio.

() - a7
N/ ~ AfSu(f) ~ AfSa(f)

® This is a measure of detectability. If we window and bandpass
the time series, this is the ratio of the root-mean-square signal
contribution to the root-mean-square noise contribution.
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Signal Sensitivity: Continuous VVaves

® Consider now a monochromatic GVV source
h(t) — ho exp(27r7§f0t)

® The signal power is constant over time and given by

T /2 1

Ll 2 TRy R
Py = lim _T/2|h(t)| dt = B3




Signal Sensitivity: Continuous VVaves

® This motivates representing sensitivity by plotting

IR Q. Diersnsy) Sl

® where Pthresh is the estimated threshold S/N needed for
detection. This is the strain spectral density.

® Advantage: for a monochromatic source, height above curve
glves expected S/N or, with speC|f' ed threshold, an easy
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Signal Sensitivity: Continuous Waves

Binary confusion
noise estimate CWDBs at

Galactic Centre
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Signal Sensitivity: Inspiraling Sources

® For an inspiraling source, the total energy emitted in each
frequency band is finite and so is the Fourier transform.

® Hence

i
—h(f)=0 as T o x

3

® and so the spectral density is zero (over all time).
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Filtering

e A filtered time series is defined using a kernel K (t —t').
s / K(t — t')s(t')dt

® We now apply a slightly modified definition of S/N.We
compare the amplitude output of the filter due to the signal
to the rms output of the filter due to the noise.
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Optimal Filter

® Ve can ask what choice of filter maximises the value of
S/N at zero-lag, i.e., t=0.

® From the convolution theorem for Fourier transforms we
have

and

w(f) = K(f)h(f)




Optimal Filter

® This motivates a natural inner product,(h; |h2), on the
space of signals of the form

R (H)ha(f) + By (f)Ri(f)
LI /O Sl -
S (SnK|h)
® in terms of which we have N V(S K|S, K)




Optimal Filter

® A search using the optimal filter then amounts to taking the
inner product (s|h)of the data stream, s, with a template of
the signal h. This is matched filtering.

® The signal to noise ratio of a matched filtering search is
S hih
el

_[ ] =
& v/ ((h[n)(h[n))
® which follows from the fact that((h; |n)(hz|n)) = (hy|h2)

= (h[h)"”
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Optimal Filter

® The matched filtering S/N squared is

) [

® which can also be written as
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Characteristic Strain

® The analogy with a broad-band burst therefore motivates
the definition of a characteristic strain, h., for inspiraling
sources (e.g., Finn and Thorne 2000).

2 f2
df/dt

® The characteristic strain is a measure of the SNR
accumulated while the frequency sweeps through a
bandwidth equal to frequency. If we also plot the rms noise
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Characteristic Strain

® |n the definition of characteristic strain

2 f2
df/dt

e =10

® the term inside the square root is equal to the number of
cycles the inspiral spends in the vicinity of the frequency f.




Characteristic Strain
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Signal Sensitivity: Sky Averaging

® SNRs also depend on the sky position and orientation of a
source. This can be folded into the spectral density be using a
sky and orientation averaged sensitivity, and using the strain of
an optimally positioned and oriented source.
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Representing Stochastic Backgrounds

Stochastic backgrounds are characterised by a spectral density,
so it is natural to compute the power spectral density and
plot it on the same axes as the detector PSD.

There are two caveats.

Firstly, the “power” we have been talking about so far has
not been a power in a physical sense since we have not
specified any unites for the time series (and indeed for GW
strain this is dimensionless). Better to use something that
represents a physical energy density if possible.

Plotting two PSDs does not convey any information about
their distinguishability. Can we represent backgrounds in a
way that allows the reader to assess detectability at a glance!?



Representing Stochastic Backgrounds

® The energy density carried by a gravitational wave is

dFE b 5
v ST == 5

® Therefore, we should consider the time derivative of the
strain series to get a physical energy.

® The corresponding spectral density is f? Sy(f) and fluctuations
in a bandwidth equal to frequency are 2 Sq(f).
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Representing Stochastic Backgrounds

® Quick assessment of background detectability can be derived
from power-law sensitivity curves (Thrane & Romano 201 3).
Requires assumptions about data analysis procedures.
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Sensitivity Curves Summary

® To summarise, there are four different types of sensitivity
curve you might see in figures.

® Power Spectral Density - summarises statistical properties of
noise

Sn(f)

® Strain spectral density
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Estimating Detectability




Typical strains of astrophysical sources

® Recall that the gravitational wave strain is given by

T
gl Iz--z/ x;x;dV
D J PLidLj

® and the rate of energy loss is given by
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Typical strains of astrophysical sources

® Newtonian circular binary system with masses M, Msand
separation r is equivalent to object of mass 1 orbiting in a fixed
potential of mass M at distance r.

MM,
Y SRV ¥
" e
M = My + M, ﬁ| Centre of Mass
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Typical strains of astrophysical sources

® We deduce the quadrupole moment scales as
My Mo
(M + Mz)%

Sl
3

I ~ pr? cos 2wt ~ W

® So emissions is at fow = w/7, with strain amplitude




Typical strains of astrophysical sources

® Ve may also deduce expressions for the Fourier domain
amplitude of the signal and the characteristic strain

° Relntroducmg dlmen5|onal and numerical factors the
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Typical strains of astrophysical sources

® Putting in physical units we have
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Typical strains of astrophysical sources

® Ata distance of 1 Mpc,we find 1 ~ 10" at merger. This
scales like M?%/?so0 a 10° M + 10° M SMBH binary at 10

Gpc generates the same strain in the Solar System, with
merger frequency of ~ImHz.

o A 1My + 1Mg millihertz compact binary at 1 kpc has
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Eccentric binaries

® Eccentric orbits have emission at all frequencies, with relative

contribution
- 32 2 4 10
= + H M3 (27wf)3 g(n,e)
nt [ 2 -
GinseE=— = ¢ | Jp—a(ne) — 2eJ,_1(ne) + Ejn (ne) + 2ed,11(ne) — Jn+2(ne)}

= L e = e Jn+2(ne)]2 | 3i2 [Jn(ne)]Z}

- ® Can compute a characteristic strain for a particular mode




Eccentric binaries

Represent these on a single “waterfall plot”.

wM=1/10°
e(LS0O)=0.3
e(LSO-10yrs)=0.46
_ v(LS0)=1.65 mHz
N Sinst+conf v(LSO-10yrs)=0.94 mHz

Barack & Cutler (2004)



Stochastic Backgrounds

® Recall definition
G dEGW
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® Suppose background is generated by a astrophysical
population of sources with coming volume density N(z).
Then, total energy density in background today is
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Stochastic Backgrounds

® For a population of inspiraling binaries we have

_NM:%%
ff If

® From which we deduce the scaling of the energy density

Qaw(f) ~ M2 f? /O 1]1 (z))%dz

° and of the characterlstlc straln and spectral den5|ty

. s - - & i3 3
-"-"\‘- = e "'.'r-' A S 'i‘ SL5 PN L% M b 3 \ 0 s YR L g L tamr ad R thailt bt 4 - A
- ' 5 \ '[ 'Jl s =~ e 1o = by e A . ot
s A AT e Y% '.ff “-, » N} o o I _‘.,' e St & P s 5 A .} - Yy AT « _'_-:. X - .,4'.. o TALS .-5 ." R ik IR .‘-"'r--‘ " . oA Ol Ly e 1] 4




Stochastic Backgrounds

111 | | | | IIIII
10-9 10-8

observed frequency [Hz] |Sesana,Vecchio & Colacino (2008)




Typical strains of astrophysical sources

® Supernovae

= Collapse of the core of a massive star. If collapse is asymmetric,
expect gravitational waves to be produced.

= |nternal potential of system is potential of pre-colla se core, which
can be modelled as a Neutron star, for which qbint/lz ~ 0.2,

= At a distance of 10 Mpc, the Newtonian potential is
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Typical strains of astrophysical sources

® Rotating Neutron Stars
= Pulsars are rapidly rotating Neutron Stars.

= |f the Neutron Star is deformed, i.e., it has a “mountain” on the
surface, then this rotation leads to a time varying quadrupole
moment and hence gravitational radiation.

= The quadrupole moment of a “mountain” of mass 0 M on the
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