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Searching for signals:
Matched Filtering



» Many searches are based on the concept

» If a template in the bank matches a signal

Matched Fﬂtermg

of matched filtering.

+ Recall from lecture 1 that the optimal filter
for a known signal is one that matches
the signal in the Fourier domain, ek T e
weighted by the noise PSD. I TS . ' '
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> In practice, signal is not known, sousea .|| |
template bank of possible waveformes.
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in the data, we can pull it out of the noise




Matched Filtering

» Many searches are based on the concept

» In practice, signal is not known, so use a

of matched filtering.

+ Recall from lecture 1 that the optimal filter
for a known signal is one that matches ?
the signal in the Fourier domain,

weighted by the noise PSD.

| SNR

Coalescence Time

template bank of possible waveformes.

» If a template in the bank matches a signal

in the data, we can pull it out of the noise



Likelihood

» Recall from first lecture our model for the detector output

s(t) = n(t) + h(t; X)
+ For stationary noise we have

(@ (F)n(f)) = Su(f)O(f = f')

» If we additionally assume the noise is Gaussian then we can write down a

probability distribution for s(t)

p(s1%) = p(n(t) = 5(t) — h(t: X)) oc exp |~ (s — h(R)]s — h(Y)

~

»  where ~
a0
T

df

»  For normalised templates, maximum likelihood correspond to matched filter.



How well can we do: Fisher Matrix?

« If we write
s(t) = n(t) + h(t; Xo)
* and expand (this is the linear signal approximation)
X — X() e A_))\ h(t; X) — h(t; Xo) - &;h(t; XO)A)\Z

+  we find

p(s|A) x exp —% (A)\i — (T ik (n|0kh(t; )\0)) B (A)\j — (F_l)jl(n\ﬁoh(t; )\0))

+  where g o | an
e SO

* is the Fisher Information Matrix.




Template Bank Construction

o
%

K/

minimal match criterion

min max (Ferue|(Ptemp) = 1 — MM

htrue htemp

« Fisher Matrix metric not easy
to use in higher dimensional
parameter spaces. Now
common to use stochastic banks.

+ (Can also do stochastic searches
(MCMCQ) that generate
templates on the fly.
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» Fisher matrix used to estimate precision of parameter estimation.

# Can also be used as a metric to construct a template bank satistying a
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Wavetorm Consistency

[f we subtract the correct
template the residual at
each frequency should be
Normally distributed.

Hence the quantity

follows a chi-squared
distribution.

Construct an effective SNR
that penalises lack of fit
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PSD Estimation

Matched filter is noise-weighted. OK if you know the noise PSD, but in
general we will not. For LIGO, estimate this using off-source data.
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In practice, use median of noise estimates, rather than the average. This
is less sensitive to non-stationarities.

No off-source data for LISA. Make progress by fitting noise and signal
properties simultaneously - need reasonable noise model.




Background Estimation

Noise is not stationary or Gaussian and contains glitches, lines etc.

Use frequentist techniques to characterise noise background properties
process data in a way that eliminates signal but not noise

for LIGO - time slide data from different detectors
I I T TT]
UL
I
noise + signal coincidences are not background

significance of events in tail, i.e., sources, is hard to estimate



Phase and Time Parameters

» Certain parameters can be maximised over cheaply, e.g., unknown phase

h(tv A7 f07 tca ¢O) e ACOS(ZWfO(t = tC) i ¢0)

Hﬁlbax(8|h)2 = A2 ((S|h(t7 Aa f()atcv O))2 5 (S|h(t7 A7 f()atcv _7-‘-/2))2)

- and unknown coalescence time

iL(f) A7 f07 tC7 ¢0) or: iL(f? A7 an 07 ¢0) eXp(_Qﬂ-iftC)

(1At A, fo,ter00)) = 2Re [ UL f(lff 0:0:90) oy (~2mift,) df

¢ This is the inverse Fourier transform of §* (f)il(f, A, 10,0, 00)/ S (f).

Obtain overlap for all time offsets cheaply using a Fast Fourier
Transform.




LIGO Pipelines

Two main matched filtering pipelines used in LIGO for compact binary
coalescence searches.

pycbc: constructs template bank of waveforms; computes chi-squared
test for fit; uses effective SNR as a ranking statistic; background
computed using time slides.

gstLAL: constructs template bank of waveforms, then does SVD
decomposition to form a signal basis; detection statistic is likelihood
ratio for signal versus noise; waveform consistency assessed by

comparing SNR time series to theory; time slides again used to assess
background.



LIGO Pipelines
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Searching for signals:
Unmodelled/Excess power searches



Unmodelled Searches

“ Detection of gravitational wave bursts relies on two
techniques

— Coincidence analysis. As for stochastic background, combine
data from multiple detectors. Likelihood of an instrumental
artefact in two detectors simultaneously is small.

—  Time-frequency analysis. Look for changes in spectral
properties over time, e.g., excess power in a set of
connected pixels.

“ Basic idea: construct time-frequency spectrograms of
the data, i.e., estimate power at each frequency and
time. Use spectrograms at multiple resolutions to
give sensitivity to different burst morphologies.

* Look for clusters of pixels coincident between
instruments.

Burst
Search Search
I N
Trigger| | Trigger
List List
—
v
Coincidence
Tests
o
.~ Waveform ~~

'~ consistency.. <

[

Results and
Astrophysical Interpretation




Unmodelled Searches: Coherent Wave Burst

# Combines spectrograms at multiple
resolutions. Identifies pixel clusters.
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Unmodelled Searches: X-pipeline

X-pipeline uses similar
methods to CWB. Analysis is in
two stages. Irigger generation,
as described above, then post
processing. e R

Post processing involves e

rejecting background events 2oL e
based on event properties, and Sy e R
assessment of search efficiency. | ;

 [ewes |
G ooonmomma) v off-source).
combinations of energy e |

Rejection uses different

1 2 3 4

measures, based on randomly 10 .10 10
selected training set of
injections and time slides.



Unmodelled Searches: Coherent Wave Burst
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Unmodelled Searches: BayesWave

The BayesWave pipeline takes a slightly different approach to modelling
the noise and signal components.

The smooth noise PSD component is modelled using a cubic spline.

Lines in the instrumental noise are modelled using Lorentzian functions.

1 b
R e i

) —

The remaining components of the data are modelled using wavelets,
which resolve time series at particular times and frequencies. BayesWave
uses the Morley-Gabor basis.

There is a coherent wavelet component for sources and incoherent
components to represent glitches.



Unmodel]ed Searches: BayesWave
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Unmodelled Searches: BayesWave
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Searching for signals:

Semi-coherent methods



Semi-coherent searches

» First stage is coherent matched filtering of shorter (~few week)
waveform segments. Segment length set by computational limits.

* Second stage involves incoherent summation of maximized power along

traiectories through th ts. .
ra]ec ories roug e Segmen S P = Z Pk
11 5
) 9
a=1 1=1 ‘

Time

Coherent templates



Semi-coherent searches

First stage is coherent matched filtering of shorter (~few week)
waveform segments. Segment length set by computational limits.

Second stage involves incoherent summation of maximized power along
trajectories through the segments.

Performance analysed theoretically to derive estimated EMRI event
rates. Computational cost has prevented practical implementation.



Semi-coherent searches: pulsars

* LIGO unknown pulsar search uses semi-coherent techniques.

Stack-Slide algorithm as described above.

*  Also Hough Transform method. This applies the Hough Transform, a

well-established technique for detecting simple shapes (edges) in an
image, to the output of the coherent stage of the search.

» Requires a huge amount of computer power - Einstein@home.
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In the spirit of Seti@home, Einstein@Home is an attempt to use idle cpu
hours to analyse LIGO data and assist with the unknown pulsar search.
You can sign up at http:/ / einstein.phys.uwm.edu/ !

The program is built on BOINC (Berkeley Open Infrastructure for
Network Computing) and was released in 2005 to coincide with the
World Year of Physics.

Each computer analyses a different segment of data for a particular sky
position. Each data segment is farmed out to at least two nodes to
ensure accuracy.

Einstein@Home currently has approximately 500,000 active users and a
total of 5GFLOPs computing power.

No gravitational waves discovered from pulsars, but has identified
unknown pulsars in other data sets.
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Searching for signals:
Backgrounds



Stochastic Gravitational Wave Fore/Backgrounds

+ Stochastic backgrounds are potentially present in all frequency bands,
and could therefore be seen by any of our gravitational wave detectors.

* The Polarisation of the Cosmic Microwave Background is a direct probe
of cosmological gravitational waves.

» In interferometers, search for an isotropic background using cross-
correlation between multiple detectors to identity common noise.

T T
YQ - /O dt1/0 dtQ hl (tl)Q(tl — tg)hg(tz)

~

= ["ar [ agsts - pRGRU ()



Stochastic Gravitational Wave Fore/Backgrounds

¢ In the preceding equation, 7 ( f) denotes a finite time approximation to
the Dirac delta function

T/2 |
57(f) = / e~27iftdt = sin(r fT) /m f
_T/2
» and ()(t) denotes the cross-correlation filter. If the noise in the detectors

is uncorrelated, the expectation value of depends only on the cross-
correlated stochastic signal
T ©.@)

o) =u=75 [ ADSeulIfDAH S

— OO
+ The functionY(|f|) is the overlap reduction function, which measures the
loss of sensitivity due to the separation and relative orientation of the
two detectors. The SNR is maximized by using the optimal filter

a0y o 2UDSe 1) (FDQw (1)
SuDS:A1F1) ™ TRS NS0/




Stochastic Gravitational Wave Fore/Backgrounds
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Stochastic Gravitational Wave Fore/Backgrounds

For pulsar timing, the overlap reduction function for an isotropic
background is the Hellings and Downs curve.
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Stochastic Gravitational Wave Fore/Backgrounds

Uncorrelated anisotropic and correlated backgrounds have different
correlation functions.
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Stochastic Gravitational Wave Fore/Backgrounds

# Uncorrelated anisotropic and correlated backgrounds have different
correlation functions.
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Stochastic Gravitational Wave Fore/Backgrounds

Uncorrelated anisotropic and correlated backgrounds have different

correlation functions.

1.5

'Isotropic back‘ round

Expansion tol,,=2 ———
Expansionto ., =3 ——
Expansion to |, =4 ——

Decomposition
of isotropic
uncorrelated
background as a
|superposition of
correlated

05 | {backgrounds

Correlation

1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
Pulsar separation



Parameter Estimation



Bayes Theorem

» Recall definition of conditional probability:

p(AN B)
DA BE=
ey
» Rearranging, we obtain Bayes” Theorem:
p(B|A)p(A
ol = PEIAA
p(B)

» This is mathematically exact, but can be used in an approximate way for inference

- p(A) — prior belief about state of the Universe, “A”;
- p(BlA)—likelihood of seeing data “B” if the state is “A”;
- p(A1B) — posterior belief on the state of the Universe after collecting data;

- p(B) — “evidence” for your model (a normalising constant).



Sampling posterior distributions

+ Typically, “A” will be a statement about the parameters of some model],
M; “B” will be the observed data. The statement of Bayes theorem then
becomes

—

d|f, M)p(6| M)
p(d| M)

—

p(0|d, M) = d

—

* We want to compute the posterior distribution, p( ‘d , M ), for the
model parameters based on the observed data.

Simplest approach: evaluate the posterior on a grid in parameter space.

»  But: not very efficient in high-dimensional parameter spaces.



Sampling posterior distributions

« Alternative: stochastic approach. Generate a sequence of samples,

—

* Integrals over the posterior distribution can then be evaluated using a

sum over the samples



Markov Chain Monte Carlo

* Such a sequence of samples can be constructed by generating a

reversible Markov chain with stationary distribution equal to the target
distribution.

»  Such a Markov chain must satisfy detailed balance

— — — -, —

p(0) p(6,6") = p(") p(0', 6)

- In which

—

P(Q_;@_?) = p(@: = 9_7\97;—1 = _})
» and p( _)) denotes the target distribution, in our case p(@ | GlrldL ) .



Metropolis Hastings Algorithm

» The Metropolis-Hastings algorithm provides one way to compute a

Markov chain with these properties.

»  We initialise by choosing a (random) starting point. Then, at step i:

- propose a new point, 9, by drawing from a proposal
distribution, q(6', 0;).

- evaluate the target distribution at the new point. Compute the
Metropolis-Hastings ratio

— and draw a rand
" 7

Set9i+1 = H,Ot

move is definite]

(9:) (9: 9:)
p( i)q(0’,0;)

om sample, @, from a UJ[0,1] distribution. If « < H
herwise set §;,; = 6;. NB if 7 > 1 the proposed

y accepted.



Proposal Distributions

» Sampling efficiency strongly

» Uniform proposal (random

- Ideally want a proposal tuned to

» Gaussian a good choice, but need

influenced by choice of proposal
distribution.

sampling) very inefficient - better
to use a grid.

the distribution you are sampling.

to tune width.




Proposal Distributions

» Sampling efficiency strongly

» Uniform proposal (random

» Gaussian a good choice, but need

influenced by choice of proposal
distribution.

sampling) very inefficient - better
to use a grid.

- Ideally want a proposal tuned to 3
the distribution you are sampling. ;

to tune width.

»  too wide: low acceptance rate;




Proposal Distributions

» Sampling efficiency strongly

» Uniform proposal (random

- Ideally want a proposal tuned to

» Gaussian a good choice, but need

influenced by choice of proposal
distribution.

sampling) very inefficient - better
to use a grid.

the distribution you are sampling.

to tune width.

»  too wide: low acceptance rate;

* too narrow: high acceptance
rate; low effective samples.



Annealing

»  One way to accelerate convergence

*  where

is to use simulated annealing.

“Heat up” posterior by making the KT =5
replacement e

—

4 p
p(0ld, M) — |p(0]d, )|

5:i /] A\

Kol
Choosing a high temperature

smoothes out the posterior which 7 & 7 g 2
can then be more easily sampled.

* Allows identification of interesting

parts of parameter space.



Annealing

» Itis common to use parallel tempering. A sequence of M MCMC chains

are run simultaneously at ditferent temperatures, {T}, ..., Tm}.

* The chains can exchange information, which is achieved by proposing a

swap of the states of two chains with different temperatures. The swap
is accepted with probability

0,) p; (0;
e (1 i(0,) p; <4>)
i(0:) p;(6;)
* where i, j label the two temperature chains, 9. denotes the current state

of the k’th chain and P« (@) denotes the target (annealed) distribution
for the k’th chain.




Burn-in

The MCMC chain does not sample
from the target distribution
immediately.

Chain values of m

There is a residual “memory” of
the initial state. Need to discard

the first few samples. -
This is called the burn-in. o
Can identify number of samplesto _

discard by looking at trace plots.

Usually a few hundred to a | | | | | |
0 200 400 600 800 1000
thousand samples is sufficient for

True value =red line

burn-in.



Autocorrelation and Effective sample size

Consecutive samples in the MCMC chain are not independent samples
from the target distribution.

Can use all samples for posterior inference but do need to know how
many independent samples the chain contains in order to assess the
precision of inferences.

Compute the (lag-k) autocorrelation

—z 2= 9
e BTl
D — N

T

* where x now denotes one of the components of § . Choose k=K large
enough that pr << 1. Effective sample size is ~ N/K. Can “thin”
chain by keeping only every K’th sample without affecting accuracy of
posterior inference.




Diagnostics
There are various techniques to diagnose the quality of results from a

given MCMC run.

compute acceptance rate, i.e., fraction of proposed points that are
accepted. Acceptance rate ~25% is optimal.

look at one and two dimensional posterior distributions — do they
look smooth and well sampled?

look at trace plots — is the chain moving back and forth or
unidirectionally?

run multiple MCMC chains starting at different points. Do they give
consistent results?

use Gelman-Rubin convergence diagnostic.



Probability Density

Probability Density

Convergence diagnostics: GW 150914
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Examples of Parameter Posteriors
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Examples of Parameter Posteriors
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Hierarchical Models

» To infer population properties, we can use

hierarchical models.

Parameter prior for individual events
depends on further parameters that
characterise the population.

Construct combined posteriors from which
inference on either individual events or
populations can be derived.

*  Models can quickly get complicated!

Simplify by imposing conditional
independence structure, e.g.,

p(xy,z) =plxlz) plylz) p(z).



Examples of Parameter Posteriors
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Examples of Parameter Posteriors
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Reversible Jump MCMC

»  Often the number of sources in the data set is also unknown.

*  Reversible Jump Markov Chain Monte Carlo is a technique applied in such

situations, by periodically proposing jumps between models. In GW
applications these normally correspond to different numbers of events.

» Represent a proposed move by tuples (x, u) and (x”, u’). Here x and x’

denote the parameters of the current and proposed state (which may
have different numbers of dimensions) and u, u’ are sets of random
numbers that lead to a proposed move from x to x” and back.

» Generalisation of acceptance ratio is

o = min (1, ) B0 )

p(x)q(u) | 9(x,u)




Product Space MCMC
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An alternative to RIMCMC is to use
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Bayesian Evidence Galculation

» The denominator in Bayes’ theorem is the Bayesian Evidence.

p(dw_}, M)p(é)‘M)
p(d|M)

p(é)‘d, M) =E

 This is the probability that the observed data d would be generated by

model M. If we have competing models we can use the evidence for
model selection by computing the posterior odds.




Bayesian Evidence Galculation

* The Bayesian Evidence is an integral over the model parameter space

2, = p(d|M;) = / p(Npi(d %) dX

»  This can be rewritten as

i:/ L pMpi(dy) 5
Z; pi (d|\) Z;

* which is an integral over the posterior and so can be calculated from

MCMC samples via

-3

2 kpz

» This is very unstable numerically, due to low number of samples in tails.



Nested Sampling

Nested Sampling (Skilling 04) provides an efficient way to compute evidences,
using a 1D integral over the prior

1
s / £(©)r(@)dV e — / £(X)dX, where X(\) = / (©)dV e
0 L(O)>A
Use N ‘live points’, initially chosen at random from the prior. At step i, the point
of lowest likelihood, L; is replaced by a new point with likelihood £ > L; The
prior volume is reduced by a factor ¢, drawn from p(t) = N tN " lateach step.
We climb through nested contours of increasing likelihood as the algorithm

proceeds. L




MultiNest

« The trick is to sample efficiently from the prior within the hard constraint
that £ > L;. MultiNest achieves this using an ellipsoidal rejection
sampling scheme. The live point set is partitioned into a number of
(possibly overlapping) ellipsoids.

7/

# The algorithm is well suited to exploring likelihoods with multiple modes.

7/

*  Although designed to compute the evidence, MultiNest also returns the
posterior probability distribution.



MultiNest
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MultNest for GWs

MultiNest widely used in
astrophysics and other fields.

There have been a number of
applications to gravitational wave
detection. For example, cosmic
string detection in the Mock LISA
Data Challenges.

Identified correct number of signals
(3), and recovered waveforms with
better than 99% overlap in all cases.
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MultNest for GWs

MultiNest widely used in
astrophysics and other fields.

There have been a number of
applications to gravitational wave
detection. For example, cosmic
string detection in the Mock LISA
Data Challenges.

Identified correct number of signals
(3), and recovered waveforms with
better than 99% overlap in all cases.

Evidence ratio identifies burst
Origin as cosmic string versus
generic sine-Gaussian alternative.

Bayesian Evidence Ratio as a Function of SNR for a Cosmic String Signal
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