

High-Energy Radiative Processes and Jets

Lecture 2 Sera Markoff (API/GRAPPA, U Amsterdam)

VSSA X J. Xo ~ V $N(E) \sim E^{-S}$ "consnical = value of S? S~2 Synchwolver of ~ V-1 ~ O.S

Some useful simple scalings for "Ancient Loys of AGN ubservi $T_{SSA} \sim 1.6 \times 10^{-3} (B_{ma})^{4} ($ when look it optically thick o J=1 surface = "photos JSolve + 255mptions 260-7 999 (1) VSSA ~ 100 MUZ (2) USSA ~ 0.2 MHZ Bright AGN,

"flat" (synch.self-absorbed) jet cores
ing = [longzine Folder + Bien
(Reos, KPC) 10-3 1042
bjuits > only sec "in = 1/40
phane
metry: $\frac{1}{\sqrt{2}}$
(Bma) (RLos, Kec) - 9/10
E (Su, JY) 8/17 (D/R) 8/17 Rupe VII
$, S_v \sim I J_y$

Example: Cygnus A (again), the famous radio galaxy

First (and deepest) Chandra-HETG observations of Sgr A*: Evidence for elongation of quiescent emission

(Wang, Nowak, SM++, Science, 2013)

Chandra-HETG observations of Sgr A*: First detailed plasma diagnostics

(Wang, Nowak, SM++, Science, 2013)

Energy (keV)

Chandra-HETG observations of Sgr A*: First detailed plasma diagnostics

(Wang, Nowak, SM++, Science, 2013)

Energy (keV)

(Nielsen++ 2013)

Sgr A* experiences ~daily nonthermal flaring

Variability & plasma constraints: Finally enough flares to perform statistics!

(Dodds-Eden 2009; Witzel++ 2012; Nielsen++ 2013, Nielsen, SM++ 2015; Dibi, SM, Nielsen++2016)

Variability & plasma constraints: Finally enough flares to perform statistics!

(Dodds-Eden 2009; Witzel++ 2012; Nielsen++ 2013, Nielsen, SM++ 2015; Dibi, SM, Nielsen++2016)

Sgr A*: Which synchrotron formula can you already use?

Sgr A*an AGN like others?: VSSA

 $\frac{100}{M_{\odot}} cm \qquad V_{SSA} \sim 100 (B_{ma})^{43} R_{kpc}^{1/3}$ $\frac{Sgr A^{*}}{M - 4 \times 10^{6} M_{\odot}} \frac{10^{12}}{10^{12}} \sim 10^{8} Hz (B_{ma})^{42} \left[\frac{10 \cdot 1.5eS \cdot 4e6}{3eZ1} \right]$ ~150 G (Lassonde?

Bremsstrahlung

Electron

mmm

Bremsstrahlung

- Radiation emitted as a particle de/accelerates in the Coulomb field of another charge
- # "Braking radiation", also called "free-free" emission
- * QED process, but we can go pretty far with classical picture using dipole approximation for case of e-ion interactions
- ***** If interested in seeing the real derivations:
 - e-p: Karzas & Latter 1961 ApJ Suppl., 6, 167
 - e-e+: Haug 1987, A&A, 178, 292
 - -e-e: Haug 1989, A&A, 218, 330

What happens to dipole radiation pattern in the relativistic case? $\frac{dE}{dL} = \frac{dw'}{dL dA} = \int \frac{dE'}{dL} \frac{dE'}{dL} = \int \frac{dE'}{dL} \frac{dE'}{dL} = R^2 \left[\frac{J}{S_{rai}} \right] \frac{dE'}{L} = \frac{R^2 c}{4\pi} \left[\frac{E'}{E_{rai}} \right] \frac{E'}{L} = \frac{R^2 c}{4\pi} \left[\frac{E'}{E_{rai}} \right] \frac{E'}{L} = \frac{R^2 c}{L} \left[\frac{E'}{E_{rai}} \right] \frac{E'}{L} = \frac{R^2 c}{L}$ $= \frac{q^{2}}{[\hat{n} \times l(\hat{n} \times l(\hat{n} - \vec{z}) \times \vec{z})]}$ $(1-\hat{n}\cdot\vec{z})$ YTTC $\frac{dL}{dL} = \frac{2}{\pi rc} \frac{\beta^2 \sin^2 \theta}{(1 - 4r \cos \theta)^5} \implies 5mell$ latis conciler Brits nx & = BSING # > An1/8 > B.B Solve my $n \times B = B \sin \theta$ $N \cdot B = B \cos \theta$

Relating frequency to particle acceleration via dipole approximate W_{2M} : $E_{v} = \frac{J_{W}}{Jt dw dr d\Lambda} = \frac{J_{R}}{Jr} \cdot \frac{J}{dw} \cdot \frac{J}{dw}$ Fouriar Larmon's for, $(J_{L})_{I} = \frac{J'_{SM^2\theta}}{4\pi c^3}$ hont time info $\omega = 2\pi v$ $R^2 \lesssim |E_{GJ}|^2$ 5- [Eral] = <u>J</u>sino $i = q_c B$ Infor: $\tilde{E}_{r_2}(\omega) \simeq \tilde{J}(\omega)(-\omega^2) \sin \Theta$ Form of j $d(t) = \int_{-\infty}^{\infty} \widehat{J}(\omega) e^{-i\omega t} d\omega$ $\frac{dw}{d\omega dk} \propto \frac{\kappa^2 c}{\epsilon \pi} \frac{|\tilde{E}(\omega)|^2}{|\tilde{E}(\omega)|^2} = \frac{1}{4} \frac{2}{\omega} \frac{4}{\omega} \frac{4}{\omega} \frac{1}{\omega} \frac$ $J(t) = \int_{-\infty}^{\infty} (\omega^2) J(\omega) e^{-i\omega t} dt$ du $\int Jud JA = \begin{pmatrix} 8tt \\ 3 \end{pmatrix} E$ > axant let breacof parçavals mm -

Semi-classical "dipole" approximation for bremsstrahlung $\mathfrak{M}_{\mathcal{V}\mathcal{A}} \longrightarrow (-\omega^2) J(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} J(t') e^{-i\omega t'} J(t$ $F = mv_e = -\frac{2e^2}{c^2} \qquad \qquad \stackrel{\sim}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} -ev_e(t) dt'$ Smell angle $\rightarrow -(w^2)f(\alpha) \simeq \frac{e}{2\pi} \frac{2\pi e^2}{mv_6}$ so: $\frac{dW}{dw} = \frac{8\pi}{3} \frac{\omega^4}{c^3} \left| \hat{J}(\omega) \right|^2 = \left(\frac{\cos t}{m^2 \sqrt{2} h^2} \right) \frac{2^2 t^4}{m^2 \sqrt{2} h^2}$ J~ J~ w WMax 2

+~ /w eint ~1

Application: astrophy $i = v_e$ e^{-s} n_e $l = v_{i} = v_{i}$

nysical thermal plasma $\mathcal{N}_{e}, \mathcal{N}_{i}, \mathcal{T}$
Jos Mer. 27616
$n = \int_{bmm}^{\infty} \frac{dn}{d\omega}$. Ne ve $2\pi 6 d6$
$\frac{m}{1+dw dw} = NeN; ZITVe \int_{bmm}^{bmm} () \frac{1}{b} db$
ZXAPZA bmv zh
nt V's QEN => Gauntt -hu/KT (1-5) QEN => Gauntt e -hu/KT (1-5) GEN => Gauntt Eng/Cm²/S/HZ
-> big diagrospic
$\rightarrow v$

Sqr A*: What's the T?

 $T_{ghsn} \implies h\upsilon = h(10^{18.5}) = kT$ = 4 × 107 ko KA~10 G~10 A.S. (ne = Ni = n)Lx ~10 57/s = Er. V. Vol [33 - 0.85 + 38 + 3.8 - 18 - 57.5 - 0.6]/2 $n \sim 10$ $n | . S # / cm^3$ (s~fa~~107 cm/s 4mr2 (s Mp M~ 15° Molyr MBH~ 10 Chandre 996 /ost so

Inverse Compton Pt I

Relativistic scattering: Klein-Nishina & recoil

$$\begin{aligned} & \underbrace{\xi}_{i}^{\xi} - \sin^{2}\theta \end{aligned}$$
if $h_{i} \overset{\xi}{\leftarrow} \overset{\xi}{$

Inverse Compton (IC) scattering: energy gain $\begin{aligned} \mathcal{E}_{1,max} &= \frac{\mathcal{E}(1+8)}{(1-8)} \times \frac{(1+8)}{(1+8)} = \mathcal{E}(1+8)^2 8^2 \\ N \Rightarrow 8 + \pi & (1-8)^2 (1+8) \\ \hline 0 \Rightarrow 8 - 8 & (1-8)^2 = \frac{1}{8^2} \end{aligned}$ D - 6~0

 $\varepsilon_1 = \varepsilon(1 - \beta_{COSO})$ (1 - 16000)

ろこし had lime Eimer L Ee Emin (teilon) ~ JyzE $\varepsilon:\varepsilon':\varepsilon, =) : \varepsilon:\varepsilon^2$

Emor (hadron) ~ 482 - important! $\left\langle \xi_{1,m2x} \right\rangle \sim \frac{4}{3} \sqrt{2} \varepsilon$

Sgr A*: SSC (synchrotron-self Compton)

28. max > ~ 482E 104~ 382 ~ 182~ 87 $V_{c} = \frac{2}{4\pi} (87)^{2} \frac{5.00}{5.00} B$ 9.e-28 3.e10 B~ 30G Kon Ma 15 Ma/10, GAN 0.40 GNBH, 8 $P_{synch, tot} = (n, B, \delta) = 10$ folm B 20 Yuan et al. 2003

Spectrum and Compton Y parameter Smyke scolf (scmi-malytral) No x A => Minth applification $(\text{ompton } Y \implies \text{spectral avolution} \implies N_{\text{scett}}(T), \ \mathcal{N} = \frac{\Delta \varepsilon}{\varepsilon} = \frac{\varepsilon - \varepsilon}{\varepsilon}$ $: \stackrel{\mathcal{E}_{1}}{=} \sim (1+\eta)^{N} \sim (1+\eta)^{N} + \frac{(\eta)^{2}}{2!} \cdots \sim \mathcal{O}^{N}$

 $N \sim M \approx (\gamma^2, \gamma)$

Spectrum and Compton Y parameter II 3 régnnes : 1) "E2Sy= y CCI => single scott. -> spectrum documt Evolve 2) Y ≤ 1 : have, very common -> PL w cutoff @ Emmar - Ee 3) Y>1 : Saturte -> so many sustais => Thank cg : BB

M·M Mcmel Lishbhon

 $Y_{1h} = \begin{cases} \frac{4k\Gamma}{mc^2}, nmcl \\ K(\frac{k\Gamma}{mc^2})^2, rel. \end{cases} \times M^{2n}(T, T^2)$ n

Sgr A*: SSC (synchrotron-self Compton): y?

 $\langle \chi \rangle \sim 87$ $\chi = \frac{3/cT}{mc^2}$ $\gamma = 16 \left(\frac{k\Gamma}{mc^2}\right)^2 \sim 16 \left(\frac{87}{3}\right)^2 \sim 16^{47}$ T=NJR = 10 5- 10mg ~ 16 V~10-2 20 Yuan et al. 2003

So $\ln\left(\frac{\varepsilon_0}{\varepsilon_k}\right) = k \ln(1+\eta) \longrightarrow k = \frac{\ln(\varepsilon_k/\varepsilon_0)}{\ln(1+\eta)}$ ⇒ Use Statistical aquinents to relate or to y! if f = probably of one scatter, q = 1-p = probab of Escare

Non-saturated Compton ($y \le 1$): statistical approach -What is reason you get PL and how does it depend on $Y? = \frac{\Delta \varepsilon}{\varepsilon}$ - youry back to "banking", after k scatters $\left\{ \frac{\sum_{k}}{\sum_{n}} > -(1+n) \right\}$ The intensity of photons w/ Encryy \mathcal{E}_{k} , \mathbf{I}_{k} , \mathbf{h}_{es} to be proportional to the probability of k scotters, $\mathbf{I}_{k} \propto \mathcal{P}^{k} = \begin{pmatrix} \mathbf{h}_{e} \end{pmatrix}^{k} \frac{\mathbf{h}_{e} \mathbf{h}_{e} \mathbf{h}_{e} (\mathbf{s}_{e}' \mathbf{s}_{e}) / \mathbf{h}_{e} (\mathbf{s}_{e}' \mathbf{s}_{e}) \\ = \begin{pmatrix} \mathbf{E}_{k} \\ \mathbf{E}_{e} \end{pmatrix}^{-\mathbf{h}_{e} \mathbf{s}} \begin{pmatrix} \mathbf{h}_{e} \end{pmatrix}^{-\mathbf{h}_{e} \mathbf{s}} \begin{pmatrix} \mathbf{h}_{e} \end{pmatrix}^{-\mathbf{s}} = \begin{pmatrix} \mathbf{E}_{k} \\ \mathbf{E}_{e} \end{pmatrix}^{-\mathbf{s}} \\ = \begin{pmatrix} \mathbf{E}_{k} \\ \mathbf{E}_{e} \end{pmatrix}^{-\mathbf{s}}$ => photon with En hal to Sustar n times and Escope > Pn=png

Non-saturated Compton ($y \le 1$): statistical approach II Av. number of subtres $\langle N \rangle = \underbrace{\tilde{\mathcal{E}}}_{n=1}^{\infty} n \cdot \mathcal{D}_{n} = \underbrace{\tilde{\mathcal{E}}}_{n\neq q} n \varphi_{q}^{2} = \varphi_{q} \underbrace{\tilde{\mathcal{E}}}_{n=1}^{n-1} n \varphi_{q}^{2} = \underbrace{\chi_{q}}_{n=1}^{2} \underbrace{\tilde{\mathcal{E}}}_{n=1}^{n-1} (\underbrace{\tilde{\mathcal{E}}}_{n=1}^{n} e^{n})$ So $\langle N \rangle = pq \left(\frac{1}{1-\rho}\right)^2 = \frac{p}{q} = \frac{p}{1-\rho}$ Je (F) $(N)(1-p) = P \implies p = \frac{(N)}{1+(N)} = 1 - \frac{1}{1+(N)} < (N) > 1$ $(Q) ball <math>\Rightarrow conpression for : \frac{h(1/p)}{h(1+n)} = \frac{h((1+\frac{1}{1+N}))}{h(1+n)}$ h(1+x)~~, xc<1 So IK ~ EK-1/Y $=\frac{1+\frac{1}{1+N}}{\frac{1}{1+N}}-\frac{1}{N^{n}}=\frac{1}{1}$ > When you see PL and know it's IC, slope gives you 2 constraint on M.M. I

Probability in particle acceleration

Schematic of 1st order Fermi Acceleration

- **Deceleration/acceleration of a supersonic** flow produces a thin shock layer full of compressed magnetic fields
- In the particle rest frame, system looks like converging flow (think of two pingpong racquets)
- Particle scatters back and forth (with probability of escaping increasing), gaining energy during each crossing

Another mechanism is completely different: magnetic reconnection

Another mechanism is completely different: magnetic reconnection

Particle-in-cell (PIC) Simulations

0

(Crumley, Caprioli, SM, Spikovsky, subm.)

$$h_e = 64, \ \sigma = 0.01, \ t = 70 \omega_{pi}^{-1}$$

 $-6 \ \overline{g}$
 -0
 -10^0
 $10^{-1} \ \overline{g}$
 -10^{-2}

 n/n_0

300 400 600 500 $x [c/\omega_{pi}]$

Particle-in-cell (PIC) Simulations

Few final examples of HEA "in action"

Mass scaling works for black holes!

Back to Sgr A* simulations

(van Eijnatten, SM, Younsi, Tchekhovskoy++)

Blandford & Königl 1979: flat jet spectra = high τ_{SSA}

Maximum synchrotron self-absorption break most compact part of jet where particle acceleration occurs

Qj

How do we recognize particle acceleration?

3C273: Jester et al. (2006), ~30kpc

Blue: X-rays (Chandra), Green: Optical (Hubble Space Telescope), Yellow: Optical & Peak Radio, Red: Radio (Very Large Array)

How do we recognize particle acceleration?

3C273: Jester et al. (2006), ~30kpc

Blue: X-rays (Chandra), Green: Optical (Hubble Space Telescope), Yellow: Optical & Peak Radio,

Marscher++2008, 2014; Cohen++2014/ **MOJAVE** picture: Standing/recollimation shock where most of the "action" takes place, 10^{3} - 10^{5} r_g from the black hole

Best view of inner jets so far: M87

dominated by thermal particles (1000:1)

(Kim++2018; Walker++2018; Hada++14,16,18; Acciari++10; Abramowski++12, etc.)

Timing analysis of γray flares **→** 40-100r_g, but jets near core estimated to be

Best view of inner jets so far: M87

dominated by thermal particles (1000:1)

(Kim++2018; Walker++2018; Hada++14,16,18; Acciari++10; Abramowski++12, etc.)

Timing analysis of γray flares **→** 40-100r_g, but jets near core estimated to be

Schematic of thermal/nonthermal jet spectrum

(SM, Falcke & Fender 2001; SM, Nowak & Wilms 2005)

N(y)~f(T)

V

Schematic of thermal/nonthermal jet spectrum

N(y)~f(T)

•

V

"Next gen" XRB monitoring campaigns: MAXI J1836-194

(TRussell, Miller-Jones,++ 2014; TRussell ++ in prep.; see also Koljonen++ 2015)

"Next gen" XRB monitoring campaigns: MAXI J1836-194

(TRussell, Miller-Jones, ++ 2014; TRussell ++ in prep.; see also Koljonen++ 2015)

"Next gen" XRB monitoring campaigns: MAXI J1836-194

(TRussell, Miller-Jones, ++ 2014; TRussell ++ in prep.; see also Koljonen++ 2015)

o o v -o -o -o -o).14).12 0.1
0 0 V-ray/IB cc 0 • • • •).1: 0.).08
0 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	0. ⁻ 0.08
0 0 -0 • X-ray/IR ccf	0.08
O O −O ► Broac	
	0.06
-0 -0 Broa c).0 ₄
-0 Broa c).02
-0 Broa	(
Broad).02
Broa	
► Broa	
	dk
with all 0.	st sp 1-
(Kalam	

bendent determination of Zacc

band noise: IR lags X-ray by ~110ms scale ~ 2x10⁹cm (few 10³ r_g), consistent bectral fitting. Now found in three sources, 0.2ms!

r++2016; Gandhi++ 2017)

0.14 0.12 0.1 0.08 ccf X-ray/IR 0.02 0 -0.02 all 0.1-0.2ms!

Independent determination of Zacc

Broadband noise: IR lags X-ray by ~110ms largest scale ~ 2x10°cm (few 10³ r_g), consistent with spectral fitting. Now found in three sources, all 0.1-0.2ms!

(Kalamkar++2016; Gandhi++ 2017)

Z_{acc} offset real, responds to changes in the accretion flow

 $N(\gamma) \sim f(T)$

•

V

Studying causality in GRMHD

Tchekhovskov, SM,

σ₀=10

(Chatterjee, Liska,

70

Alfvén Surface

in prep.)

20

30

50

40

 x/R_g

60

Entrainment

K-H eddies pick up matter from disk (~800 r_g), reconnect inside jet, freeing matter to travel with the jet

Explains deceleration we see, changes jet collimation profile

(Chatterjee, Liska, Tchekhovskoy, SM++, in prep.)

5000

4500

2500

 z/r_g

2000

 $\log \rho$ at time 344705 (r_q/c)

Entrainment

K-H eddies pick up matter from disk (~800 r_g), reconnect inside jet, freeing matter to travel with the jet

Explains deceleration we see, changes jet collimation profile

(Chatterjee, Liska, Tchekhovskoy, SM++, in prep.)

5000

4500

2500

 z/r_g

2000

 $\log \rho$ at time 344705 (r_q/c)

QUESTIONS FROM LECTURES/ - flow docs warp of Spacetma affect jets? - PIC similations => connection to layer scale sims/models? - What would we need to varify shake & NS-NS merger Scenario? - Structured jarts =) can we see/constrain in all BHs? - What are The most arciting open greathers in nuclear astropys. - How do jets in NS-NS binaries affect GW Warkforms? - to constroin models : better to go deep on one source or broady h/ population (spec. for jets??? - Connector blu juts in XNBS/AAN & GRB/GW-EM Mayers? - What is physical process dry state transitions in BHS/NS?

