
Niels Bohr Institute Dark Cosmology Centre
Multi-Messenger Astrophysics Summer School 2018

Solution to Gravitational Waves Question 1:
Computing Background Characteristics

If you have questions, please contact Jonathan Gair, j.gair@ed.ac.uk

1. As in the question description we denote the two masses by m1 and m2, the total
mass byM = m1 +m2, the reduced mass by µ = m1m2/M , and the chirp mass by
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We will use geometric units throughout, i.e., we set c = G = 1 so we don’t need to
worry about keeping track of these factors.

(a) For a Newtonian binary, the motion is equivalent to that of a body of mass
µ orbiting in a fixed Newtonian potential with mass M . Denoting the orbital
radius by a (it is also the semi-major axis for a circular binary), the orbital
frequency is given by
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and the total energy of the binary is

E = −Mµ
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i. The GW amplitude is determined by the quadrupole moment of the space-
time

h ∼ Ïjk
D
, Ijk =

∫
ρxixjdV.

For a binary, the density is only non-zero at the location of the objects.
Using the effective-one-body analogy we deduce

I ∼ µa2 exp(2πift)

where the frequency is now twice the orbital frequency because we are
taking squares of positions, which vary at that frequency. It follows that
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ii. The GW energy loss is determined by

ĖGW ∼ D2ḣ2 =
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iii. The rate of change of frequency is given by
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iv. The Fourier transform of h(t) is given approximately by
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v. The characteristic strain is given by
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vi. The energy density of a GW background generated by a population of
these sources is given by

ρcΩGW(f) =
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For the inspiraling binaries the previous results give
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and so we find
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(b) The energy of the binary is proportional to 1/a, hence we have
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(c) The previous derivation of the background energy density assumed that all of
the energy loss driving the frequency evolution was due to GW emission. If
there are other processes driving energy loss and hence frequency evolution, the
background is suppressed because not all of the orbital energy lost is emitted
as gravitational waves. In general we have f = f(E) and hence ḟ = (df/dE)Ė
and therefore

dEGW
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The final bracketed expression denotes the background energy density in the
pure GW-driven evolution case. In the case of stellar hardening we therefore
find a modified expression for the GW background energy density
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This can be simplified a bit more — for example, we notice that the factor

µM
2
3 in the hardening term is just M

5
3
c — but the above result is all we need

to answer the next few questions.



(d) If the sources are at a common redshift, z0, we can replace N(z) by a delta
function, δ(z− z0), and do the integral explicitly. It is then clear that we have

ΩGW(f) ∼ f
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This is a broken power-law, as required. For f � 1 the term f−
8
3 dominates

in the denominator and we have ΩGW ∼ f
10
3 . This is the stellar hardening

dominated regime. For f � 1 the constant term dominates in the denominator
and we find ΩGW ∼ f

2
3 . This is the GW dominated regime and this is the

standard result for GW backgrounds.

(e) If a broken power law background were detected, it tells us about the pro-
cesses that drive the inspiral of the binary. In this example the power at low
frequencies (where hardening dominates) is suppressed relative to that of a
pure GW background (see Figure 1). The low frequency slope is characteristic
of whatever process drove the early evolution of the binaries — a measurement
of this tells you which physical process was important at that time. The high
frequency slope tells us about the late evolution of the binary, and in this case
the value f

2
3 is consistent with GW-driven inspiral. The turn over point tells

us about the relative efficiencies of the two processes. In this example it occurs
where f ≈ λ

3
8 and so a measurement of that value tells us about the parameters

that go into λ, such as σ, ρ and the typical source redshift, z0.

(f) * No results here. If there is a distribution over masses, then the background
energy density involves an integral over the mass distribution as well as the
redshift. Try playing around with different choices. Try also including some
dependence of ρ and σ on the binary properties. The GW background in the
PTA regime may well be suppressed by stellar processes of the type described
here. If we see that suppression we will want to be able to interpret it in the
context of models of the binary population.

2. (a) The average waveform power is
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We see that beyond
√
QT ∼ few, the waveform is exponentially suppressed.

Hence, the duration of the signal is order ∼ 1/
√
Q. We take |

√
QT | . 2 as a

reasonable approximation.

For this choice, we find
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with a pre-factor that is order 0.few.
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Figure 1: Example backgrounds. We show ΩGW(f) as a function of frequency for λ = 0.01
(purple), λ = 1 (green) and λ = 100 (red). Also shown, as a dashed red line, is the
background in the absence of stellar hardening.



(b) Using standard results for Fourier transforms, F [g] = g̃(f), including F [exp(−t2)] =√
π exp(−π2f 2), F [g(αt)] = g̃(f/α)/|α| and F [exp(2πif0t)g(t)] = g̃(f − f0),

we find
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We can use the fact that the time series is real to wrap onto only positive
frequencies and then we have

h̃(f) =
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We see that the Fourier transform is also proportional to a Gaussian which
goes to zero exponentially when π2(f − f0)2/Q ∼few. Hence the bandwidth is
∆f ∼

√
Q/π.

(c) Using the power ratio formula(
S
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∆fSn(f)

and assuming white noise, Sn(f) = σ2, we have(
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where k is a constant of order unity. This SNR could be achieved by window-
ing the data (to the time range |

√
QT | .a few) and bandpassing it (to the

frequency range π|f − f0|/
√
Q .a few) and then comparing the signal power

to the average off-source noise power.

(d) Using the Fourier transform obtained above, the matched filtering SNR is(
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= 4
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which is also equal to A2/(D2σ2
√
Q) times a constant of order unity.

We have found that the matched filtering SNR is essentially the same as the
burst search SNR, so we are not gaining anything by doing matched filtering.
We argued in lectures that matched filtering gained over a burst search by
a factor of the square root of the number of cycles spent near a particular
frequency. These sine-Gaussian sources are peculiar in that as Q decreases
so that the source spends more time near frequency f0, the bandwidth also
decreases so the burst power is increasingly concentrated — we effectively have
only ‘1 cycle’ in the vicinity of each relevant frequency.

This result does not necessarily mean matched filtering is no better than a
burst search — the SNR does not directly translate to a false alarm probability.
There may be many instrumental artefacts that could give broadband power
in the frequency domain which looks burst like, but those artefacts would look
nothing like the specific sine-Gaussian form of the matched filter. Nonetheless,
this problem illustrates why excess power searches are quite effective for sources
that are burst-like, even if models are available.



(e) The energy distribution can be found from∫
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(f) Assuming the number of objects per unit comoving volume with redshift be-
tween z and z + dz and with f0 between f0 and f0 + df0 is N(z)df0dz, the
background energy density is
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(g) The common redshift assumption allows us to replace the integral over z by
evaluation of the integrand at z0 as before. We then have
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The integral over f0 takes the form∫ ∞
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The exact background computed from this expression is shown in Figure 2,
but we can also find analytic approximations for the low and high frequency
behaviour. If f � 1, then the integral is approximately∫ ∞

0

xα exp
[
−x2

]
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)
with corrections of order λf . Hence, the dominant behaviour is a constant and
ΩGW(f) ∼ f 3 due to the factor out the front of the expression.

For f � 1 we can make a change of variable in the integral∫ ∞
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So we deduce ΩGW ∼ f 3+α.
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Figure 2: Example backgrounds for the burst population model. We show ΩGW(f) as a
function of frequency for λ = 1 and three choices of α: α = −0.75 (purple), α = −0.5
(green) and α = −025 (red).



(h) * No results here again, but things to explore would be how the introduction of
a redshift distribution modifies things, what happens if the distribution of f0
is changed, e.g., by introducing a cut-off in the frequency range, what happens
if we add a distribution for Q etc.


