The Transient Sky

147237120-1147325503 16/12/31 16:31:44 UTC < 01/01 17:04:47 UTC

Galactic 1day,RGB

Transient Energy Release

 Release a lot of energy in small volume

How do you get the radiation out?

• Time scales:

- Dynamical: ~ r/v
- Relaxation: ~ T^{1.5}/n
- Radiation: ~ E/L

Radiative efficiency

- $L \sim n^2 T^{1/2} \sim p^2/T^{3/2}$ $t_{cool} \sim T^{1/2}/n \sim T^{3/2}/p$ Bremsstrahlung: $L \sim \sigma \gamma_{max}^2 NB^2 \sim p^2$ • Synchrotron: $t_{cool} \sim 1/p$ $L \sim \sigma \gamma_{max}^2 N U_{rad} \sim P^3$ $t_{cool} \sim 1/p^2$ • IC:

- L ~ T⁴ Blackbody:

Dynamics:

 $t_{cool} \sim 1/T^3$

t_{dyn} ~ r/v

Optical depth

• How long does it take for your radiation to escape?

 $t_{esc} \sim r/c \sim t_{dyn}$

 $t_{esc} \sim \tau^2 r/c >> t_{dyn}$

Pair Creation and Compactness

Black holes are messy eaters

Non-thermal spectra

Boettcher+'13

Synchrotron cooling

Radio Galaxy Spectra

Full synchrotron spectrum: low- Γ

log y

log v

log y

Full synchrotron spectrum: high- Γ

CMS/LHC

Shocks and Afterglows

NASA

Outflows and Ejecta

	-
1 × 1	
201	
	-
¥	
10 C	
(H)-	
1001- 	

GW170817

- Mildly relativistic
- Quasi-spherical \bullet
- Lower energy compared to short GRB afterglows

GRB120404

Guidorzi+2014

Cocoon formation

Radio Lobes

Chen+'18

d,

Projected 1.4 GHz NN Emissivity $\left(\frac{Jy}{J_{errec}^{2}}\right)$

-

Ultra-High Energy Cosmic Rays

Extragalactic, but no identification of sources

Auger Collaboration

Ultra-High Energy Cosmic Rays

R. Engel, Auger Collaboration 2011

Are AGN the source?

THE ASTROPHYSICAL JOURNAL, 751:108 (20pp), 2012 June 1

AJELLO ET AL.

HE Jet Emission

Boettcher+'13

Inverse Compton (again)

γ=10

γ=1.06

SSC

Mrk 501, Konopelko+2003

$L_{\rm synch} \propto B^{(1+p)/2}P$ $L_{\rm SSC} \propto PU_{\rm synch} \propto P^2 B^{(1+p)/2}$

Estimate B, P independently

EC

Zacharias+2005

$L_{\rm sync} \propto B^{(1+p)/2} P \delta^{2+\alpha}$

$L_{\rm IC-CMB} \propto P U_{\rm CMB} \Gamma^2 \delta^{2+\alpha}$

Estimate Γ

IceCube Vs

IceCube Vs

TeV Neutrinos

Waxman Bahcall bound

Extragalactic, but no identification of sources

E [TeV]

Ahlers & Halzen, 2015

