NBIA \& DARK Summer School: Multi-Messengers from Compact Sources

WARMUP \#1

Solution: Interaction rate is given by $R_{\text {int }}=\sigma \phi N_{t}$, where σ is the cross section, ϕ is the flux and N_{t} is the number of targets. For this back-of-theenvelope estimate we will take the σ and ϕ as constant, although a more accurate calculation would fold both σ and ϕ as a function of energy.
The number of targets is $N_{t} \sim \frac{M t N_{A}}{A}$, where M is the mass, N_{A} is Avogadro's number, A is the molar mass and t is targets per atom or molecule. Plugging in $M=80 \mathrm{~kg}, t=10$ electrons per water molecule, $A=18 \mathrm{~g} / \mathrm{mol}$ for water, and $N_{A}=6 \times 10^{23}$, and then plugging in (eyeballing from the plots in lecture) $\sigma \sim 5 \times 10^{-44} \mathrm{~cm}^{2}$ (electron scattering cross-section above a few MeV) and $\phi \sim 2 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (flux above a few MeV , mostly from ${ }^{8} \mathrm{~B}$ neutrinos), and then multiplying by 80 years 1, we get about 7 solar neutrino interactions per lifetime.

WARMUP \#2

Here we employ the same relation $R_{\text {int }}=\sigma \phi N_{t}$. For the cross section we take $\sigma \sim 2 \times 10^{-41} \mathrm{~cm}^{2}$, and for $N_{t}=1$ we plug in $M=4 \times 10^{10} \mathrm{~g}$, $A=40 \mathrm{~g} / \mathrm{mol}$ for argon. To find the total fluence (flux integrated over time) at the center of the Milky Way ($\sim 8.5 \mathrm{kpc}$), we assume the neutron star binding energy is about $E_{b} \sim 2.5 \times 10^{53}$ ergs, and that this energy goes entirely into neutrinos, equally distributed among flavors. If each neutrino has about $E_{\nu} \sim 15 \mathrm{MeV}$, then the fluence per flavor is $F=\frac{E_{b}}{6 \cdot 4 \pi d^{2} E_{\nu}} \sim 2 \times 10^{11}$ cm^{-2} at $d=8.5 \mathrm{kpc}$.

Plugging this in, we get an expected number of neutrino events of 2600 . (Note that a high-energy tail in the spectrum will increase this, as cross section goes as E_{ν}^{2}.)

WARMUP \#3

[^0]The Poisson probability of detecting n events if the mean is μ is given by $\frac{\mu^{n}}{n!} e^{-\mu}$. The probability of detecting $n=0$ is $e^{-\mu}$, so the probability of detecting 1 or more is $1-e^{-\mu}$. The mean number of events expected scales as the inverse square of the distance, and as detector mass.

[^0]: ${ }^{1}$ Useful fact: one year is close to $\pi \times 10^{7}$ seconds.

