Astrophysical neutrino detection Part II: neutrino detectors

Kate Scholberg, Duke University Copenhagen, July 2018 Last time I probably bit off a bit more than I can chew...

Lecture Overview

- Neutrino interactions with matter
- General principles of particle detection
- Survey of neutrino detection techniques
- Specific astrophysical detectors, organized by energy range
 - few to few tens of MeV: core-collapse supernova, solar
 - few hundred MeV to TeV atmospheric v's
 - TeV to EeV + AGNs, GRBs, mergers, ...

Lecture Overview

- Neutrino interactions with matter
- General principles of particle detection
- Survey of neutrino detection techniques
- Specific astrophysical detectors, organized by energy range
 - few to few tens of MeV: core-collapse supernova, solar
 - few hundred MeV to TeV atmospheric v's
 - TeV to EeV + AGNs, GRBs, mergers, ...

What can we learn from the next neutrino burst?

CORE COLLAPSE PHYSICS

explosion mechanism proto nstar cooling, quark matter black hole formation accretion, SASI nucleosynthesis

....

from flavor, energy, time structure of burst

input from photon (GW) observations input from neutrino experiments

$v_e \implies v_\mu$

NEUTRINO and OTHER PARTICLE PHYSICS

 v absolute mass (not competitive)
 v mixing from spectra: flavor conversion in SN/Earth (mass hierarchy)
 other v properties: sterile v's, magnetic moment,...
 axions, extra dimensions, FCNC, ...

+ EARLY ALERT

What do you want in a detector for a supernova burst?

Information is in the *energy, flavor, time* structure of the supernova burst

Wishlist

Size	~kton detector mass per 100 events @ 10 kpc
Low energy threshold	~Few MeV if possible
Energy resolution	Resolve features in spectrum
Angular resolution	Point to the supernova! (for directional interactions)
Timing resolution	Follow the time evolution
Low background	BG rate << rate in burst; underground location usually excellent; surface detectors conceivably sensitive
Flavor sensitivity	Ability to tag flavor components
High up-time and longevity	Can't miss a ~1/30 year spectacle!

Note that many detectors have a "day job"...

	Electrons	
	Elastic scattering	
Charged	$\nu + e^- \to \nu + e^-$	
current		
Neutral current	ve	
	Useful for pointing	

	Electrons	Protons	
	Elastic scattering	Inverse beta decay	
	$\nu + e^- \to \nu + e^-$	$\bar{\nu}_e + p \to e^+ + n$	
Charged current	^[¬] _{ve} ·····► ▼ e [−]	γ e ⁺ γ ν _e γ	
Neutral current	ν e -	Elastic scattering v	
	Useful for pointing	very low energy recoils	

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	e	γ e ⁺ γ ν _e γ	n v _e v _e e+/- Various possible
Neutral current	ν e -	Elastic scattering v	$\nu + A \rightarrow \nu + A^{*}$ $\mu + A \rightarrow \nu + A^{*}$ $\mu + A \rightarrow \nu + A^{*}$ $\mu + A \rightarrow \nu + A^{*}$
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A $ Coherent elastic (CEvNS)

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	^[−] v _e ·····► e [−]	γ e ⁺ γ ν _e γ	r √ n −] √ e ^{+/-} Various possible eiecta and
Neutral current	ve-	Elastic scattering v	$ \nu + A \rightarrow \nu + A^* $ $ \rho = 0 $
	Useful for pointing	very low energy recoils	$ u + A \rightarrow \nu + A $ Coherent elastic (CEvNS)

IBD (electron antineutrinos) dominates for current detectors

Cross-sections in this energy range

Of these, only IBD and ES on electrons well understood theoretically (or experimentally)...

Neutrino interaction thresholds

Current main supernova neutrino detector types

+ some others (e.g. DM detectors)

Water Cherenkov detectors

- See Cherenkov light from the positron (~positron is isotropic) Can't see 0.511 MeV γ 's (why not?)
- More on neutron detection in a bit
- Limited by photocoverage (SK: $\sim 40\% \rightarrow \sim 6 \text{ pe/MeV}$) \bullet

Super-Kamiokande

Water Cherenkov detector in Mozumi, Japan

Supernova signal in a water Cherenkov detector

Pointing in Water Cherenkov: Super-K

http://snews.bnl.gov/snmovie.html

Neutron tagging in water Cherenkov detectors

$$\bar{\nu}_e + p \to e^+ + n \blacksquare$$

detection of neutron tags event as electron antineutrino

- especially useful for DSNB (which has low signal/bg)
- also useful for disentangling flavor content of a burst (improves pointing, and physics extraction)

R. Tomas et al., PRD68 (2003) 093013 KS, J.Phys.Conf.Ser. 309 (2011) 012028; LBNE collab arXiv:1110.6249 R. Laha & J. Beacom, PRD89 (2014) 063007

"Drug-free" neutron tagging

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

~200 μ s thermalization & capture, observe Cherenkov radiation from γ Compton scatters

 \rightarrow with SK-IV electronics, ~18% n tagging efficiency SK collaboration, arXiv:1311.3738;

Enhanced performance by doping!

use gadolinium to capture neutrons

(like for scintillator)

J. Beacom & M. Vagins, PRL 93 (2004) 171101

Gd has a huge n capture cross-section: 49,000 barns, vs 0.3 b for free protons

SK-Gd schedule

- Detailed schedule planning is on-going taking into account T2K beam availability.
- Earliest possible Gd in Super-K would be in late 2019.

- T0: Start date the Super-K tank refurbishment (May 31,2018).
- T1: First Gd loading ; 0.02% of Gd₂(SO₄)₃ 8H₂O (~ 50% cap. Eff)
- T2: Final Gd loading; 0.2% of Gd₂(SO₄)₃ 8H₂O

M. Ikeda, Neutrino 2018

No core collapses allowed for the next ~six months!!

To progenitors of the Galaxy: you *must* hold it in!

Next generation: Hyper-Kamiokande

Long string water Cherenkov detectors

~kilometer long strings of PMTs in very clear water or ice (IceCube, ANTARES)

Nominally multi-GeV energy threshold... but, may see burst of low energy (anti-) v_e 's as *coincident increase in single PMT count rate*

Map overall time structure of burst by tracking the single-PMT hit glow

Long string water Cherenkov detectors

IceCube collaboration, A&A 535, A109 (2011)

Map overall time structure of burst

Scintillation detectors

Liquid hydrocarbon (C_nH_{2n}) that emits (lots of) photons when charged particles lose energy in it

Will see supernova electron antineutrinos, with good energy resolution

$$\bar{\nu}_e + p \to e^+ + n$$

Many examples worldwide of current and future detectors

Scintillation detectors

Liquid scintillator (C_nH_{2n}) volume surrounded by photomultipliers

- Iots of photons:
 few 100 pe/MeV
 →low threshold,
 good energy
 resolution
- little pointing capability

 (light is ~isotropic
 even if interaction were
 directional...)
- can also dope with Gd

retrieve the energy of the n-capture and annihilation γ's

Interaction channels in scintillator

⁵⁰ kt @ 10 kpc

Current and near-future scintillator detectors

KamLAND (Japan) 1 kton

LVD (Italy) 1 kton

NOvA (USA) 14 kton

(on surface, but may be possible to extract counts for known burst)

Borexino (Italy) 0.33 kton

SNO+ (Canada) 1 kton

Future detector proposals

JUNO (China) 20 kton **Jinping** (China) 2 kton

THEIA (TBD) 50-100 kton WbLS

Liquid argon time projection chambers

fine-grained trackers sensitive to **electron neutrinos** (as opposed to antineutrinos)

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

ICARUS (Italy→USA) 0.6 kton

MicroBooNE (USA) 0.2 kton

SBND

(USA)

Low energy neutrino interactions in argon

Charged-current absorption

$$v_{e} + {}^{40}\text{Ar} \rightarrow e^{-} + {}^{40}\text{K}^{*}$$
 Dominant
 $\nabla_{e} + {}^{40}\text{Ar} \rightarrow e^{+} + {}^{40}\text{Cl}^{*}$

Elastic scattering

$$v_{e,x} + e^- \rightarrow v_{e,x} + e^- - can use for pointing$$

In principle can tag modes with deexcitation gammas (or lack thereof)...

Cross sections in argon

Flavor composition as a function of time

Energy spectra integrated over time

For 40 kton @ 10 kpc, Garching model (no oscillations)
Note that the neutronization burst gets substantially suppressed with flavor transitions

Simple MSW assumption (assume OK at early times)

NMO: IMO: $F_{\nu_e} = F_{\nu_x}^0$ $F_{\nu_e} = \sin^2 \theta_{12} F_{\nu_e}^0 + \cos^2 \theta_{12} F_{\nu_x}^0$

(a robust mass ordering signature!)

Deep Underground Neutrino Experiment (DUNE)

4800 mwe undergound in South Dakota 70 kton LAr (40 kton fiducial, 4x10 kton) 1.2 MW beam from FNAL for long-baseline osc first module in 2024, beam in 2026

mass ordering & CPV
supernova burst
nucleon decay

4 x 10 kton DUNE LAr modules

- single-phase and dual-phase TPC designs prototypes for both @ CERN test beam

DUNE Single Phase TPC

horizontal charge drift, collection on wire planes

DUNE Dual Phase TPC

vertical charge drift, charge amplification at top liquid-gas interface

photomultipliers on bottom

Can we tag v_e CC interactions in argon using nuclear deexcitation γ 's?

20 MeV v_e , 14.1 MeV e⁻, simple model based on R. Raghavan, PRD 34 (1986) 2088

MARLEY (Model of Argon Reaction Low-Energy Yields)

- Event generator for low energy v_eCC neutrino interactions on ⁴⁰Ar with realistic final state particles
- Lack of precision models of low-E neutrino argon interactions
- Transition levels are determined by observing de-excitation (gammas and nucleons)

 Large uncertainties in nuclear data and models complicate energy reconstruction

S. Gardiner, marleygen.org

The final state can be complicated... some energy is lost

How well can we *tag* interaction channels in argon?

Lead-based supernova detectors

SNO ³He counters + 79 tons of Pb: ~1-40 events @ 10 kpc

³He counters for neutron detection

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$\gamma + A \rightarrow \gamma + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Nucleon wavefunctions in the target nucleus are **in phase with each other** at low momentum transfer

For QR << 1, [total xscn] ~ A² * [single constituent xscn] A: no. of constituents

See also J. Newstead slides, NMNM 3

Large cross section (by neutrino standards) but hard to observe due to tiny nuclear recoil energies:

The only experimental signature:

tiny energy deposited by nuclear recoils in the target material

→ WIMP dark matter detectors developed over the last ~decade are sensitive to ~ keV to 10's of keV recoils

Now, *detecting* the tiny kick of the neutrino...

This is just like the tiny thump of a WIMP; we benefit from the last few decades of low-energy nuclear recoil detectors

Expected recoil energy distribution

What's Next for COHERENT?

Detector example: XENON/LZ/DARWIN

dual-phase xenon time projection chambers

Lang et al.(2016). Physical Review D, 94(10), 103009. http://doi.org/10.1103/PhysRevD.94.103009

What will be learned?

Lang et al.(2016). Physical Review D, 94(10), 103009. http://doi.org/10.1103/PhysRevD.94.103009

The so-called "neutrino floor" for DM experiments

Think of a SN burst as "the v floor coming up to meet you"

J. Billard, E. Figueroa-Feliciano, and L. Strigari, arXiv:1307.5458v2 (2013). L. Strigari

Summary of supernova neutrino detectors

· بَبَ
>
70
0)
W
S
C
÷
U
σ
(7)

C
1
ច
ā
σ
σ
g
X
ш

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Baksan	Scintillator	Russia	0.33	50	Running
Mini- BooNE	Scintillator	USA	0.7	200	(Running)
HALO	Lead	Canada	0.079	20	Running
Daya Bay	Scintillator	China	0.33	100	Running
NOvA	Scintillator	USA	15	3000	Running
SNO+	Scintillator	Canada	1	300	(Running)
MicroBooNE	Liquid argon	USA	0.17	17	Running
DUNE	Liquid argon	USA	40	3000	Proposed
Hyper-K	Water	Japan	540	110,000	Proposed
JUNO	Scintillator	China	20	6000	Proposed
PINGU	Long string	South pole	(600)	(10 ⁶)	Proposed

plus reactor experiments, DM experiments...

An example of a robust MO signature: the neutronization burst

Normal ordering
Inverted ordering

suppression for IMO, stronger suppression for NMO

Distance reach for future detectors

SK will see ~1 event from Andromeda; HK will get a ~dozen

For supernova neutrinos, the more, the merrier!

SNEWS: SuperNova Early Warning System

- Neutrinos (and GW) precede em radiation by hours or even days
- For promptness, require *coincidence* to suppress false alerts

- Running smoothly for more than 10 years, automated since 2005

SNEWS: SuperNova Early Warning System

Sociological comments...

The neutrinos are coming! Far side of the Milky Way is ~650 light-centuries away... ... ~2000 core collapses have happened already....

(Figure from Sky&Telescope magazine)

And going even farther out: we are awash in a sea of '*relic'* or diffuse SN v's (DSNB), from ancient SNae ...

Energy (MeV)

In water: $\overline{v}_e + p \rightarrow e^+ + n$

LAr? Electron flavor, but low rate... bg unknown Scintillator? Good IBD tagging, but NC bg...

We may get there eventually!

\begin{aside}

Interactions with nuclei (cross sections & products) **very poorly understood**... sparse theory & experiment (*only* measurements at better than ~50% level are for ¹²C)

Fluence at ~50 m from the stopped pion source amounts to ~ a supernova a day! (or 0.2 microsupernovae per pulse, 60 Hz of pulses)

Supported by five 1"-OD steel rods

Summary & Prospects

Vast information to be had from a core-collapse burst!

- Need energy, flavor, time structure

Current & near future detectors:

- ~Galactic sensitivity (SK reaches barely to Andromeda)
- sensitive mainly to the $\overline{\nu_e}$ component of the SN flux
- excellent timing from IceCube
- early alert network is waiting

Future detectors

- huge statistics: extragalactic reach
- richer flavor sensitivity (e.g. v_e in LAr!)
- multimessenger prospects
- DSNB prospects improving

