

New astrophysical frontiers from the binary black holes with LIGO and Virgo's observations

Samaya Nissanke

GRAPPA, University of Amsterdam, the Netherlands

Lecture 1: July 5th, NBIA and DARK summer school Copenhagen

A few words of background about myself

Education: BSci & MSci in Physics, Cambridge UK

(Summer research: got hooked on GWs & Exoplanets)

PhD in 2007 at the IAP, Paris: Gravitational Waveforms using the post-Newtonian approximation in General Relativity (with Luc Blanchet)

Postdocs: CITA fellow, Caltech/JPL, Radboud University, NL

Faculty since 2016: Radboud University, NL -> (GRAPPA) University of Amsterdam, NL

GW @ GRAPPA, Amsterdam

(+ great collabs. in Nijmegen)

Masses in the Stellar Graveyard

1915: GR1916: GWs; Schwarzschild metric1919: Eddington's expedition

1939: gravitational collapse

1957: Chapel Hill conference1960: Weber bars

1967: "black hole", no-hair theorem

1971: Cygnus X-11972: GW interferometer design1974: PSR B1913+16

1990, 1999: LIGO approved, inaugurated

2002: Sgr A* as black hole 2002–2010: initial LIGO runs

2015: aLIGO; GW150914

Cosmological backgrounds

Pulsars

First-order phase transitions, superstring kink & cusps, inflationary signature, new sources!

GW sources

GW detectors

GW detectors

Gravitational and Electromagnetic Radiation: different probes for our universe

Oscillations of spacetime itself	Electric and magnetic fields propagating through spacetime
Coherent: dynamical state	Incoherent superposition of many emitters: thermodynamic state
Weakly interacting	Strongly interacting
h ~ l/r	Energy flux ~ I/r ²
wavelength ~/> size of source: analogous to <mark>sound</mark>	wavelength << size of emitting source: image</td
all sky sensitivity; poor angular resolution	deep imaging on small area; high angular resolution

Main papers referenced in this lecture

Discovery Paper: "Observation of Gravitational Waves from a Binary Black Hole Merger," arXiv:1602.03837, Physics Review Letters 116, 061102 (2016).

Astrophysical paper: "Astrophysical Implications of the Binary Black-Hole Merger GW150914," Astrophys. J. Lett. 818, L22 (2016).

Testing General Relativity: "Tests of general relativity with GW150914," arXiv: 1602.03841, Physics Review Letters 116, 221101 (2016).

Parameter Estimation: "Properties of the binary black hole merger GW150914," arXiv: 1602.03840, Physics Review Letters 116, 241102 (2016).

Stochastic Paper: "GW150914: Implications for the stochastic gravitational wave background from binary black holes", arXiv: 1602.03847, Physics Review Letters 116, 131102 (2016).

<u>GW151226 discovery:</u> "GW151226: Observation of Gravitational Waves from a 22 Solar-mass Binary Black Hole Coalescence," arXiv:1606.04755, Physics Review Letters 116, 241103 (2016)

<u>O1 BBH paper:</u> "Binary Black Hole Mergers in the first Advanced LIGO Observing Run," arXiv:1606.09619

Part I: Retrieving BH parameters [if General Relativity is correct]

First Observation of GWs September 14 2015, 09:50:45.39 UTC

 \Rightarrow fundamental properties of BHs, astrophysics (how and

where?) & tests of General Relativity

2. Simplest "Newtonian" model explains frequency chirp

 $E_{\rm orb}$

i) Newtonian Orbital Dynamics:

ii) Quadrupole formula:

iii) Enforce energy balance:

iv) Orbital shrinkage:

iv) Frequency chirp:

$$\frac{d\Omega}{dt} = \frac{96G^{5/3}}{5c^5} \mu M^{2/3} \Omega^{11/3} = \frac{96}{5} \left(\frac{G\mathcal{M}}{c^3}\right)^{5/3} \Omega^{11/3}$$

$$= -\frac{1}{2r} \qquad M = \sqrt{\frac{1}{r^3}}$$
$$L = \frac{dE_{\rm rad}}{dt} = \frac{32G}{5c^5} \Omega^6 \mu^2 r^4$$

 $GM\mu$

$$\left(\frac{dE}{dt}\right)_{\rm rad} + \left(\frac{dE}{dt}\right)_{\rm orb} = 0$$

$$\frac{dr}{dt} = -\frac{64G^2}{5c^5}\mu M\Omega^2$$

|GM|

Simplest "Newtonian" model explains frequency chirp

 \Rightarrow Frequency chirp:

$$\frac{df}{dt} = \frac{96\,\pi}{5} \left(\frac{\pi\,G\mathcal{M}}{c^3}\right)^{5/3} f^{11/3}$$

Chirp mass:

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

The GW waveform encapsulates Binary Black Hole Evolution

Chirp mass drives inspiral waveform

Decades of theoretical effort in source modelling

[LVC, arXiv:1602.03837, PRL 116, 061102, 2016]

The GW waveform encodes source parameters

 $\Phi_{GW}(t) \Rightarrow$ chirp mass, reduced mass (1PN), spin-orbit (1.5PN), ...

The GW chirp gives the progenitor masses and spins

 $a_1^i = -\frac{Gm_2n_{12}^i}{r_{12}^2}$ $+\frac{1}{c^2} \left\{ \left[\frac{5G^2 m_1 m_2}{r_{10}^3} + \frac{4G^2 m_2^2}{r_{10}^3} + \frac{Gm_2}{r_{10}^2} \left(\frac{3}{2} (n_{12} v_2)^2 - v_1^2 + 4(v_1 v_2) - 2v_2^2 \right) \right] n_{12}^i$ $+\frac{Gm_2}{r_{12}^2}(4(n_{12}v_1)-3(n_{12}v_2))v_{12}^i$ $+\frac{1}{c^4} \Biggl\{ \Biggl[-\frac{57G^3m_1^2m_2}{4r_{12}^4} - \frac{69G^3m_1m_2^2}{2r_{12}^4} - \frac{9G^3m_2^3}{r_{12}^4} \Biggr]$ $+\frac{Gm_2}{r_{r_2}^2}\left(-\frac{15}{8}(n_{12}v_2)^4+\frac{3}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2(v_1v_2)-2(v_1v_2)^2+\frac{9}{2}(n_{12}v_2)^2v_1^2-6(n_{12}v_2)^2+\frac{9}{2}$ $+4(v_1v_2)v_2^2-2v_2^4$ $+\frac{G^2m_1m_2}{r_{12}^3}\left(\frac{39}{2}(n_{12}v_1)^2-39(n_{12}v_1)(n_{12}v_2)+\frac{17}{2}(n_{12}v_2)^2-\frac{15}{4}v_1^2-\frac{5}{2}(v_1v_2)+\frac{16}{4}v_1^2+\frac{16}{2}v_1^2+\frac{$ $+\frac{G^2m_2^2}{r_{22}^3}\left(2(n_{12}v_1)^2-4(n_{12}v_1)(n_{12}v_2)-6(n_{12}v_2)^2-8(v_1v_2)+4v_2^2\right)\left[n_{12}^i\right]$ $+ \left[\frac{G^2 m_2^2}{r_{12}^3} \left(-2(n_{12}v_1) - 2(n_{12}v_2) \right) + \frac{G^2 m_1 m_2}{r_{12}^3} \left(-\frac{63}{4}(n_{12}v_1) + \frac{55}{4}(n_{12}v_2) \right) \right]$ + $\frac{Gm_2}{r_{12}^2} \left(-6(n_{12}v_1)(n_{12}v_2)^2 + \frac{9}{2}(n_{12}v_2)^3 + (n_{12}v_2)v_1^2 - 4(n_{12}v_1)(v_1v_2)\right)$ $+4(n_{12}v_2)(v_1v_2)+4(n_{12}v_1)v_2^2-5(n_{12}v_2)v_2^2\Big]v_{12}^i\Big\}$ $+\frac{1}{c^5}\Bigg\{\left[\frac{208G^3m_1m_2^2}{15r_{12}^4}(n_{12}v_{12})-\frac{24G^3m_1^2m_2}{5r_{12}^4}(n_{12}v_{12})+\frac{12G^2m_1m_2}{5r_{12}^3}(n_{12}v_{12})v_{12}^2\right]n_{12}^i$ + $\left[\frac{8G^3m_1^2m_2}{5r_{12}^4} - \frac{32G^3m_1m_2^2}{5r_{12}^4} - \frac{4G^2m_1m_2}{5r_{12}^3}v_{12}^2\right]v_{12}^i$ $+\frac{1}{c^6}\bigg\{\bigg[\frac{Gm_2}{r_{12}^2}\bigg(\frac{35}{16}(n_{12}v_2)^6-\frac{15}{8}(n_{12}v_2)^4v_1^2+\frac{15}{2}(n_{12}v_2)^4(v_1v_2)+3(n_{12}v_2)^2(v_1v_2)^2$ $-\frac{15}{2}(n_{12}v_2)^4v_2^2+\frac{3}{2}(n_{12}v_2)^2v_1^2v_2^2-12(n_{12}v_2)^2(v_1v_2)v_2^2-2(v_1v_2)^2v_2^2$ $+\frac{15}{2}(n_{12}v_2)^2v_2^4+4(v_1v_2)v_2^4-2v_2^6$ $+\frac{G^2m_1m_2}{r_{12}^3}\left(-\frac{171}{8}(n_{12}v_1)^4+\frac{171}{2}(n_{12}v_1)^3(n_{12}v_2)-\frac{723}{4}(n_{12}v_1)^2(n_{12}v_2)^2\right.$ $+\frac{383}{2}(n_{12}v_1)(n_{12}v_2)^3-\frac{455}{8}(n_{12}v_2)^4+\frac{229}{4}(n_{12}v_1)^2v_1^2$ $-\frac{205}{2}(n_{12}v_1)(n_{12}v_2)v_1^2 + \frac{191}{4}(n_{12}v_2)^2v_1^2 - \frac{91}{8}v_1^4 - \frac{229}{2}(n_{12}v_1)^2v_1v_1 + 244(n_{12}v_1)(n_{12}v_2)(v_1v_2) - \frac{225}{2}(n_{12}v_2)^2(v_1v_2) + \frac{91}{2}v_1^2(v_1v_2)$ $-\frac{177}{4}(v_1v_2)^2+\frac{229}{4}(n_{12}v_1)^2v_2^2-\frac{283}{2}(n_{12}v_1)(n_{12}v_2)v_2^2$ $+\frac{259}{4}(n_{12}v_2)^2v_2^2-\frac{91}{4}v_1^2v_2^2+43(v_1v_2)v_2^2-\frac{81}{8}v_2^4\Big)$ $+\frac{G^2m_2^2}{r^3}\Big(-6(n_{12}v_1)^2(n_{12}v_2)^2+12(n_{12}v_1)(n_{12}v_2)^3+6(n_{12}v_2)^4$ $+4(n_{12}v_1)(n_{12}v_2)(v_1v_2)+12(n_{12}v_2)^2(v_1v_2)+4(v_1v_2)^2$ $-4(n_{12}v_1)(n_{12}v_2)v_2^2 - 12(n_{12}v_2)^2v_2^2 - 8(v_1v_2)v_2^2 + 4v_2^4$ $+\frac{G^3m_2^3}{r_{12}^4}\left(\!-(n_{12}v_1)^2+2(n_{12}v_1)(n_{12}v_2)+\frac{43}{2}(n_{12}v_2)^2+18(v_1v_2)-9v_2^2\right)$ $+\frac{G^3m_1m_2^2}{r_{12}^4}\left(\frac{415}{8}(n_{12}v_1)^2-\frac{375}{4}(n_{12}v_1)(n_{12}v_2)+\frac{1113}{8}(n_{12}v_2)^2-\frac{615}{64}(n_{12}v_{12})^2\pi^2\right)$ $+18v_1^2+\frac{123}{64}\pi^2v_{12}^2+33(v_1v_2)-\frac{33}{2}v_2^2$

$$\begin{split} + & \frac{G^3 m_1^2 m_2}{r_{12}^4} \left(-\frac{45887}{168} (n_{12}v_1)^2 + \frac{24025}{42} (n_{12}v_1) (n_{12}v_2) - \frac{10469}{42} (n_{12}v_2)^2 + \frac{48197}{840} v_1^2 \\ & - \frac{36227}{420} (v_{12}) + \frac{36227}{840} v_2^2 + 110 (n_{12}v_{12})^2 \ln \left(\frac{r_{12}}{r_1}\right) - 22v_{12}^2 \ln \left(\frac{r_{12}}{r_1}\right) \right) \\ + & \frac{16G^4 m_2^4}{r_{12}^2} + \frac{G^4 m_1^2 m_2^2}{r_{12}^2} \left(175 - \frac{41}{16} \pi^2 \right) + \frac{G^4 m_1^3 m_2}{r_{12}^2} \left(-\frac{1317}{1260} + \frac{44}{3} \ln \left(\frac{r_{12}}{r_1}\right) \right) \\ + & \frac{G^4 m_1 m_2^3}{r_{12}^2} \left(\frac{110741}{630} - \frac{41}{16} \pi^2 - \frac{44}{3} \ln \left(\frac{r_{12}}{r_2}\right) \right) \right] n_{12}^4 \\ + & \left[\frac{Gm_2}{r_{12}^2} \left(\frac{15}{2} (n_{12}v_1) (n_{12}v_2)^4 - \frac{45}{8} (n_{12}v_2)^6 - \frac{3}{2} (n_{12}v_2)^3 v_1^2 + 6(n_{12}v_1) (n_{12}v_2)^2 (v_{12}v_2) \\ & - 6(n_{12}v_2)^3 (v_{12}) - 2(n_{12}v_2) (v_{12}v_2)^2 - 12(n_{12}v_1) (n_{12}v_2)^2 v_2^2 + 12(n_{12}v_2)^3 v_2^2 \\ & + (n_{12}v_2)v_1^2 v_2^2 - 4(n_{12}v_1) (v_{12}v_2)^2 + 8(n_{12}v_1) (n_{12}v_2)^2 v_2^2 + 4(n_{12}v_1) v_2^4 \\ & - 7(n_{12}v_2)v_2^4 \right) \\ + & \frac{G^2 m_2^2}{r_{12}^3} \left(-2(n_{12}v_1)^2 (n_{12}v_2) + 8(n_{12}v_1) (n_{12}v_2)^2 + 2(n_{12}v_2)^3 + 2(n_{12}v_1) (v_{12}v_2) \\ & + 4(n_{12}v_2) (v_{1}v_2) - 2(n_{12}v_1)v_2^2 - 4(n_{12}v_1)^2 (n_{12}v_2) + 2(n_{12}v_2)v_2^2 \right) \\ + & \frac{G^2 m_1^2}{r_{12}^3} \left(-\frac{243}{4} (n_{12}v_1)^3 + \frac{565}{4} (n_{12}v_1)^2 (n_{12}v_2) - \frac{269}{4} (n_{12}v_1) (n_{12}v_2)^2 \\ & - 9\frac{512}{12} (n_{12}v_2)^3 + \frac{207}{8} (n_{12}v_1)v_1^2 - \frac{137}{8} (n_{12}v_2)v_1^2 - 36(n_{12}v_1) (v_{1}v_2) \\ & + \frac{27}{4} (n_{12}v_2) (v_{1}v_2) + \frac{81}{8} (n_{12}v_1)v_2^2 - \frac{88}{8} (n_{12}v_2)v_2^2 \right) \\ + & \frac{G^3 m_1^3 m_2}{r_{12}^4} \left(\frac{3397}{(n_{12}v_1)} + \frac{479}{105} (n_{12}v_2) - \frac{44(n_{12}v_{12}) \ln \left(\frac{r_{12}}{r_{1}^2}\right) \right) \right] v_{12}^1 \right\} + C$$

$$\begin{split} &+ 158(n_{12}v_2)^3 + \frac{3568}{105}(n_{12}v_{12})v_1^2 - \frac{2864}{35}(n_{12}v_1)(v_1v_2) \\ &+ \frac{10048}{105}(n_{12}v_2)(v_1v_2) + \frac{1432}{35}(n_{12}v_1)v_2^2 - \frac{5752}{105}(n_{12}v_2)v_2^2) \\ &+ \frac{G^2m_1m_2}{r_{12}^3} \left(-56(n_{12}v_{12})^5 + 60(n_{12}v_1)^3v_{12}^2 - 180(n_{12}v_1)^2(n_{12}v_2)v_{12}^2 \\ &+ 174(n_{12}v_1)(n_{12}v_2)^2v_{12}^2 - 54(n_{12}v_2)^3v_{12}^2 - \frac{246}{35}(n_{12}v_{12})v_1^4 \\ &+ \frac{1068}{35}(n_{12}v_1)v_1^2(v_1v_2) - \frac{984}{35}(n_{12}v_2)v_1^2(v_1v_2) - \frac{1068}{35}(n_{12}v_1)(v_{1}v_2)^2 \\ &+ \frac{180}{7}(n_{12}v_2)(v_1v_2)^2 - \frac{534}{35}(n_{12}v_1)v_1^2v_2^2 + \frac{90}{7}(n_{12}v_2)v_1^2v_2^2 \\ &+ \frac{984}{35}(n_{12}v_1)(v_1v_2)v_2^2 - \frac{732}{35}(n_{12}v_2)(v_1v_2)v_2^2 - \frac{204}{35}(n_{12}v_1)v_2 \\ &+ \frac{24}{7}(n_{12}v_2)v_2^4 \right) \Big] n_{12}^4 \\ &+ \left[- \frac{184}{21}\frac{G^4m_1^3m_2}{r_{12}^5} + \frac{6224}{105}\frac{G^4m_1^2m_2^2}{r_{12}^6} + \frac{6388}{105}\frac{G^4m_1m_2^3}{r_{12}^6} \\ &+ \left(- \frac{184}{21}\frac{G^4m_1^3m_2}{r_{12}^5} + \frac{6224}{105}\frac{G^4m_1^2m_2^2}{r_{12}^6} + \frac{6388}{105}\frac{G^4m_1m_2^3}{r_{12}^6} \\ &+ \frac{G^3m_1^2m_2}{r_{12}^4} \left(\frac{52}{15}(n_{12}v_1)^2 - \frac{56}{15}(n_{12}v_1)(n_{12}v_2) - \frac{44}{15}(n_{12}v_2)^2 - \frac{132}{35}v_1^2 + \frac{152}{35}(v_{1}v_2) \\ &- \frac{48}{35}v_2^2 \right) \\ &+ \frac{G^3m_1m_2}{r_{12}^4} \left(\frac{454}{15}(n_{12}v_1)^2 - \frac{372}{5}(n_{12}v_1)(n_{12}v_2) + \frac{854}{15}(n_{12}v_2)^2 - \frac{152}{21}v_1^2 \\ &+ \frac{2864}{105}(v_{1}v_2) - \frac{1768}{105}v_2^2 \right) \\ &+ \frac{G^2m_1m_2}{r_{12}^3} \left(60(n_{12}v_{12})^4 - \frac{348}{5}(n_{12}v_1)^2v_{12}^2 + \frac{684}{5}(n_{12}v_1)(n_{12}v_2)v_{12}^2 \\ &- 66(n_{12}v_2)^2v_{12}^2 + \frac{334}{35}v_1^4 - \frac{1336}{35}v_1^2(v_{1}v_2) + \frac{1308}{35}(v_{1}v_2)^2 + \frac{654}{35}v_1^2v_2^2 \\ &- \frac{1252}{35}(v_{1}v_2)v_2^2 + \frac{292}{35}v_4^4 \right) \right]v_{12}^4 \right\} \\ \mathcal{D}\left(\frac{1}{c^8}\right). \end{split}$$

[Nissanke et al. 2005]

[Blanchet 2015; see also Nissanke et al. 2005, Nissanke 2006, Blanchet, Faye, Nissanke 2005, MacDonald, Nissanke, Pfeiffer 2011]

Necessity of Numerical Relativity

[LVC, arXiv:1602.03837, PRL 116, 061102, 2016]

Unprecendented high velocity, dynamic regime of strong-field gravity

[LVC, arXiv:1602.03837, PRL 116, 061102, 2016]

GW150914: numerical relativity simulation [SXS collaboration 2016]

Different flavors of numerical relativity waveforms

[e.g., SXS Collaboration 2014; see also simulations by Cardiff, UIB, RIT and GATech; combined analysis with several hundred simulations from all groups for GW150914 detailed in arXiv: 1606.01262]

Measured GW encodes fundamental and geometric source parameters

 $h_M = \sum_{a=+,\times}$ Antenna function (source position, orientation) × h_a

 $h_{+,\times} \sim \frac{g_{+,\times} \text{ (inclination angle) } h(\text{ redshifted masses/spins, frequency chirp...)}}{\text{Luminosity distance}}$

Polarisation gives inclination angle.

Triangulation and antenna response give sky localisation.

Strong degeneracy between amplitude parameters: {source position, orientation and distance}

Measured GW encodes fundamental and geometric source parameters

 $h_M = \sum_{a=+,\times}$ Antenna function (source position, orientation) × h_a

$$h_{+}(t) = 2\left(\frac{G\mathcal{M}_{z}}{c^{3}}\right)^{5/3} \frac{\Omega(t)^{2/3}}{D_{L}} (1 + \cos^{2}(\mathbf{\hat{L}}.\mathbf{\hat{n}})) \left[2\int \Omega(t)dt\right]$$

Chirp mass has dimensions of time \Rightarrow masses are redshifted.

Phase of GWs can be measured to within a fraction of a radian \Rightarrow chirp mass with fractional accuracy ~ 1/total accumulated phase.

Amplitude with precision $1/SNR \Rightarrow$ need multiple detectors and polarization.

Extract source information from GWs

h(t): 9-15 dimensions

- + Masses
- + Spins
- + Geometric properties:
 - Inclination angle
 - Source Position
 - Luminosity distance

[see e.g. Cutler and Flanagan 1994, Poisson and Will 1996...]

Extract source information from GWs

h(t): 9-15 dimensions

- + Masses
- + Spins
- + Geometric properties:
 - Inclination angle
 - Source Position
 - Luminosity distance

[[]figure courtesy of Chris North/Mark Hannam]

[see e.g. Veitch et al. 2015; LVC, arXiv: 1602.03840, PRL 116, 241102, 2016]

Extract source information from GWs

[see LVC, arXiv: 1602.03840, PRL 116, 241102, 2016]

Large degeneracies when retrieving BH parameters: errors are several 10s of %

... errors depend on what part of waveform is in the detector noise bucket!

How well can we localise the source on the sky?

[Image credit: LIGO/L. Singer/A. Messinger]

Credit: LIGO/Virgo/NASA/Leo Singer

Part II: Tests of General Relativity in dynamical strong-field gravity

Deviations from GR Waveform Coefficients

Introduce parameterized violations of GR: $p_i
ightarrow p_i (1 + \delta \hat{p}_i)$

$$\Psi_{\rm GW}(f) = \sum_{i} [\psi_i + \psi_{il} \log f] f^{(i-5)/3} + \Phi^{\rm MR}[\beta_i, \alpha_i]$$

[[]LVC, arXiv:1606.09619, 2016; arXiv: 1602.03841, PRL 116, 221101, 2016]

Deviations from GR Waveform Coefficients

Introduce parameterized violations of GR: $p_i
ightarrow p_i (1 + \delta \hat{p}_i)$

$$\Psi_{\rm GW}(f) = \sum_{i} [\psi_i + \psi_{il} \log f] f^{(i-5)/3} + \Phi^{\rm MR}[\beta_i, \alpha_i]$$

tail - backscattering of GWs by curved spacetime
$$\int_{i}^{0} \int_{i}^{0} \int$$

[LVC, arXiv:1606.09619, 2016; arXiv: 1602.03841, PRL 116, 221101, 2016]
... two events constrain different parts of waveform (LVC, arXiv:1606.09619, 2016)

... GW150914 merger + ringdown in the detector noise bucket!

[LVC, arXiv:1606.09619, 2016]

GW150914: Inspiral vs. merger-ringdown consistency

GW150914: Massive Graviton Bounds

massive graviton dispersion relation:

$$E^2 = p^2 c^2 + m_g^2 c^4$$

where $\lambda_g = rac{h}{m_g c}$

-

-

higher frequencies arrive earlier:

$$\left(\frac{v_g}{c}\right)^2 = 1 - \frac{h^2 c^2}{\lambda_g^2 E^2}$$

waveform distortion:

$$\delta \Phi(f) = \frac{\pi Dc}{\lambda_g^2 (1+z) f}$$

[LVC, PRL 116, 221101, 2016]

Part III: Implications for Astrophysics

i) how to form heavy BHs?
ii) how & where do binary black holes (BBH) form?
iii) astrophysical rates ?
iv) absence of an EM counterpart ?

Challenge: how, when and where do BBHs form?

Exotic: e.g. single star core splitting

Primordial BHs from density fluctuations in early Universe

[LVC, ApJL 818, L22, 2016]

How to make a stellar-mass BH?

Stellar core collapse at end of lives of massive stars: direct formation or fallback? first stars?

Low metallicity with Z < 0.5 Z_{\odot} (solar) and weak massive stellar winds

Recipe for making heavy BHs

Low metallicity with Z < 0.5 Z_{\odot} (solar) and weak massive stellar winds

Tale of two binaries

[see review by Miller 2016; LVC, ApJL 818, L22, 2016]

Isolated Binary in Field [0.15 pc⁻³]

range of binary interactions

low redshift to Pop III

rapidly rotating massive stars

[e.g., Tutukov & Yungelson 1993, Lipunov+97, ... Belczynski+10, Mandel+deMink 16, Marchant+16, Belczynski+04, Kinugawa+14]

Dense Environments [10⁵-10⁹ pc⁻³] (e.g., Clusters)

BHs sink towards cluster core

Dynamical interaction -> pairs

Binaries ejected with inspiral < Hubble time

[e.g., Portegies Zwart+00, O'Leary+06, Downing+10, Morscher+13, Ziosi+14.; NB Galactic Center: Miller+Lauburg+09, O'Leary+09, Koscis+12, Bartos+16, Stone+16]

Lifecycle of Isolated Binary Massive Stars

- Rare but important (feedback, chemical enrichment)
- Complex physics in multi-staged evolutionary process

- Supernova, Common Envelope, Mass Transfer, BH natal kicks
- ~ 6 to 9 steps: survival is 0.01-10%

Astrophysical rates could soon probe formation scenarios

12 - 240 Gpc⁻³ yr⁻¹

Excludes < 10 Gpc⁻³ yr⁻¹
$$\Rightarrow$$

Isolated

Disfavours a v. low common envelope binding energy or

v. high BH natal kicks

(> several hundred km s⁻¹)

Dynamical

Disfavours low-mass clusters

[LVC, arXiv:1606.09619, 2016]

2030s: Einstein Telescope & Cosmic Explorer Concepts

Target sensitivity a factor of > 10 improvement to current advanced detectors

10 km long, Underground, cryogenic Xylophone configuration, 6 interferometers

Formal Design Study completed in 2011:

http://www.et-gw.eu/etdsdocument

Cosmic Explorer

Above ground, 40 km arm length, L configuration, signal grows with length (not most noise sources), room temperature, modest laser improvements

No formal design study yet but in proposal LSC, arXiv: 1607.08697

Einstein Telescope and Cosmic Explorer have cosmological reach

https://dcc.ligo.org/public/0125/T1600119/004/wp2016.pdf

Einstein Telescope and Cosmic Explorer have cosmological reach

How well can we constrain SFR? Dependence on metallicity Cosmic (redshift-dependent) Merger Rate? Mass gaps: NS and BH, intermediate BH desert?

End of lecture 1

Stellar Remnants from Massive Stars

Table	16.4.	End	produ	cts of	stella	ir evol	lution	as a	function	t of	initial	mass

		Final product			
Initial mass	He-core mass	Single star			
$<\!2.3M_{\odot}$	$<\!0.45M_{\odot}$	CO white dwarf			
$2.3-6\mathrm{M}_\odot$	$0.5\!-\!1.9\mathrm{M}_\odot$	CO white dwarf			
$6 - 8 \mathrm{M}_{\odot}$	$1.9{-}2.1M_{\odot}$	O-Ne-Mg white dwarf or C-deflagration SN?			
$8\!-\!12M_{\odot}$	$2.1\!-\!2.8M_\odot$	neutron star			
$12-25\mathrm{M}_\odot$	$2.8\!-\!8M_{\odot}$	neutron star			
$>\!25M_{\odot}$	$> 8 M_{\odot}$	black hole			

[Tauris and van der Heuvel 2006]

Evolution: self-gravitating gas in hydrostatic equilibrium (virial theorem) — radiative loss of energy causes it to contract and hence, due to release of gravitational potential energy, T \uparrow .

Negative heat capacity: while the star tries to cool itself by radiating away energy from its surface, it gets hotter instead of cooler.

Unstable virial theorem: the more it radiates to cool itself, contract \uparrow , T \uparrow and the more it is forced to go on radiating.

Massive Star Evolution: three timescales

Dynamical timescale:

when the hydrostatic equilibrium of a star is disturbed

$$\tau_{\rm dyn} = \sqrt{R^3/GM} \simeq 50 \, \min \, (R/R_\odot)^{3/2} (M/M_\odot)^{-1/2}$$

Kelvin-Helmholtz timescale:

when the thermal equilibrium of a star is disturbed, time taken to emit all of its thermal energy content at its present luminosity

$$\tau_{\rm th} = GM^2/RL \simeq 30 {\rm ~Myr} {(M/{\rm M}_{\odot})}^{-2}$$

Nuclear timescale

time needed for the star to exhaust its nuclear fuel reserve ($\propto M$), at its present fuel

consumption rate (
$$\propto$$
 L) $au_{
m nuc} \simeq 10~{
m Gyr}~(M/{
m M_{\odot}})^{-2.5} \qquad R \propto M^{0.5} \ L \propto M^{3.5}$

Massive Stellar Evolution: Hertzsprung Russell Diagram

log T_{eff} (K)

 $L = 4\pi R^2 \sigma T_{\rm eff}^4$

Important Evolutionary Stages

$\underline{5\ M\ }\odot\ ZAMS$

- 1->2. long-lasting phase of core H burning (nuclear timescale).
- H ignites in a shell around the He core.
 For massive stars, the entire star briefly contracts causing its central temperature to rise.
- 4. When the central temperature reaches ~ 10⁸
 K, core He ignites -> red giant, with a dense core and a very large radius. During He burning, we have a loop in the H-R diagram.
- 2->4. thermal timescale; helium-burning loop on a (helium) nuclear timescale.
- 5. During He shell burning, the outer radius expands again and at C ignition the star has become a red supergiant on the asymptotic giant branch (AGB) $\Rightarrow e^-$ degenerate C core.

Important Evolutionary Stages

$> 10 \odot ZAMS$

- Massive stars continue to burn nuclear fuel beyond H and He burning and ultimately form an Fe core.
- Alternation of nuclear burning and contraction phases.

carbon burning (T ~ 6×10^8 K) oxygen burning (T ~ 10^9 K) silicon burning: photodisintegration of complex nuclei, hundreds of reactions \Rightarrow iron

- form iron core
- iron is the most tightly bound nucleus ⇒ no
 further energy from nuclear fusion
- iron core surrounded by onion-like shell structure

H→He	For a 25 solar mass star:				
	Stage	Duration			
	H → He	7x10 ⁶ years			
	He \rightarrow C 7x1	7x10 ⁵ years			
	C→O	600 years			
	O → Si	6 months			
	Si → Fe	1 day			
	Core Collapse	1/4 second			

Step 1 — GW: how many? how far?

Г

Epoch			2015-2016	2016-2017	2018-2019	2020+	2024+
Planned run duration			4 months	9 months	12 months	(per year)	(per year)
Expected burst range/Mpc		LIGO	40-60	60-75	75-90	105	105
		Virgo		20 - 40	40 - 50	40 - 70	80
		KAGRA			—	—	100
		LIGO	40-80	80-120	120 - 170	190	190
Expected BNS range/Mpc		Virgo		20 - 65	65-85	65-115	125
		KAGRA			—	—	140
		LIGO	60-80	60-100	—		
Achieved BNS	range/Mpc	Virgo		25-30	—	—	
		KAGRA			—	—	
Estimated BNS detections			0.002 - 2	0.007 - 30	0.04 - 100	0.1 - 200	0.4 - 400
Actual BNS detections			0		—	—	
	0% within	5 deg ²	< 1	1-5	1-4	3-7	23-30
90% CR	% wiuiiii	20 deg^2	< 1	7-14	12-21	14 - 22	65-73
	median/deg ²		460-530	230-320	120-180	110-180	9-12
Coursel and arrest	07	5 deg ²	4-6	15-21	20-26	23-29	62-67
Searcheu area	% wiuiiii	20 deg^2	14-17	33-41	42-50	44-52	87-90

[LIGO Scientific and Virgo Collaborations (LVC), Living Reviews in Relativity 19, 1, 2016]

Part 2 — GW mHz regime (entirely new in 2030s!): Laser Interferometer Space Antenna

ESA L3 selected (06/17), joint with NASA, 2034+

Three spacecraft in △,
earth-trailing,
2.5 Mkm arms, 6 laser links
4 year mission (10 yr goal),
Timing measurement between
masses in space

see <u>https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf</u>, arXiv: 1702.00786

Rich diversity of mHz GW sources with LISA

1. Trace the origin, growth & merger history of massive BH (MBH) mergers

Wealth of source information from GWs alone

- 100+ detections with sky localization to 10 deg.² and individual masses to 1%
- 50 systems with primary and secondary spins determined to 0.01 and 0.1.
- 50 systems with spin direction determined to within 10 deg.

[Klein et al., Phys. Rev. D 93, 024003 (2016)]

Insights into MBH formation:

MBH seeding mechanism (heavy vs. light) Metallicity feedback Accretion efficiency (Eddington?) Accretion geometry

Wealth of source information from GWs alone

- 100+ detections with sky localization to 10 deg.²
 and individual masses to 1%
- 50 systems with primary and secondary spins determined to 0.01 and 0.1.
- 50 systems with spin direction determined within 10 deg.

[Klein et al., Phys. Rev. D 93, 024003 (2016)]

Associated EM signature ?:

Simulations (MHD, hydro) show significant mass inflow of the binary + cavity in a circumbinary disk.

2. A hundred resolvable stellar-mass BBHs by space-based GW detectors before they enter LIGO- Virgo band

- time of coalescence to 1 min
- mass and eccentricity to better than 0.01 and 0.001

3. Extreme-mass ratio inspirals for fundamental physics and astrophysics

Mass distn. of stellar remnants at galactic centers. Mass segregation & relaxation for stellar populations. Extreme Kerr Spacetimes: 10³-10⁵ cycles. 10 - 60 M_☉ BHs into 10⁵ - 10⁶ M_☉ BH out to z ~ 4 with SNR ≥ 20.

1-1000 detections yr⁻¹.

Sky localization and distance to 10 deg.² and better than 10%.

MBH and compact object masses to 0.01 and 0.001%.

MBH spin to better than 0.001.

Eccentricity and deviation from Kerr Quadruple moment to better than 0.0001 and 0.001.

[Babak et al. Phys. Rev. D 95, 103012 (2017)]

4. Galactic compact object binaries

~25 000 resolvable Galactic binaries (detached white dwarfs and AM CVns, NS-NS, NS-WD, NS-BH)

For ~5000 systems, measure mass, distance, sky location with dP/P < 10⁻⁵ within 15 kpc

For \sim 500 systems, measure sky location to 1 deg.²

For ~100 systems, measure sky location to 1 deg.² with Pdot to better than 10%.

[figure courtesy of E. Rossi, Korol et al. 2017]

Part I: Stellar Evolution 101 (a compact object's perspective!)

Stellar Remnants from Massive Stars

		Final product			
Initial mass	He-core mass	Single star			
$< 2.3 M_{\odot}$	$<\!0.45M_{\odot}$	CO white dwarf			
$2.3-6\mathrm{M}_{\odot}$	$0.5 - 1.9\mathrm{M}_\odot$	CO white dwarf			
$6-8\mathrm{M}_{\odot}$	$1.9 - 2.1 \mathrm{M_{\odot}}$	O-Ne-Mg white dwarf			
C	C	or C-deflagration SN?			
$8 - 12 \mathrm{M}_{\odot}$	$2.1\!-\!2.8M_\odot$	neutron star			
$12 - 25 M_{\odot}$	$2.8 - 8 \mathrm{M_{\odot}}$	neutron star			
$> 25 \mathrm{M_{\odot}}$	$> 8 \mathrm{M}_{\odot}$	black hole			

Table 16.4. End products of stellar evolution as a function of initial mass

[Tauris and van der Heuvel 2006]

Evolution: self-gravitating gas in hydrostatic equilibrium (virial theorem) — radiative loss of energy causes it to contract and hence, due to release of gravitational potential energy, T \uparrow .

Negative heat capacity: while the star tries to cool itself by radiating away energy from its surface, it gets hotter instead of cooler.

Unstable virial theorem: the more it radiates to cool itself, contract \uparrow , T \uparrow and the more it is forced to go on radiating.

Massive Star Evolution: three timescales

Dynamical timescale:

when the hydrostatic equilibrium of a star is disturbed

$$\tau_{\rm dyn} = \sqrt{R^3/GM} \simeq 50 \, \min \, (R/R_\odot)^{3/2} (M/M_\odot)^{-1/2}$$

Kelvin-Helmholtz timescale:

when the thermal equilibrium of a star is disturbed, time taken to emit all of its thermal energy content at its present luminosity

$$\tau_{\rm th} = GM^2/RL \simeq 30 {\rm ~Myr} {(M/{\rm M}_{\odot})}^{-2}$$

Nuclear timescale

time needed for the star to exhaust its nuclear fuel reserve ($\propto M$), at its present fuel

consumption rate (
$$\propto$$
 L) $T_{
m nuc} \simeq 10~{
m Gyr}~(M/{
m M_{\odot}})^{-2.5}$ $L \propto M^{3.5}$

Massive Stellar Evolution: Hertzsprung Russell Diagram

log T_{eff} (K)

 $L = 4\pi R^2 \sigma T_{\rm eff}^4$

Important Evolutionary Stages

$\underline{5\ M\ }\odot\ ZAMS$

- 1->2. long-lasting phase of core H burning (nuclear timescale).
- H ignites in a shell around the He core.
 For massive stars, the entire star briefly contracts causing its central temperature to rise.
- When the central temperature reaches ~ 10⁸
 K, core He ignites -> red giant, with a dense core and a very large radius. During He burning, we have a loop in the H-R diagram.
- 2->4. thermal timescale; helium-burning loop on a (helium) nuclear timescale.
- 5. During He shell burning, the outer radius expands again and at C ignition the star has become a red supergiant on the asymptotic giant branch (AGB) $\Rightarrow e^{-}$ degenerate C core.

Important Evolutionary Stages

$> 10 \odot ZAMS$

- Massive stars continue to burn nuclear fuel beyond H and He burning and ultimately form an Fe core.
- Alternation of nuclear burning and contraction phases.

carbon burning (T ~ 6×10^8 K) oxygen burning (T ~ 10^9 K) silicon burning: photodisintegration of complex nuclei, hundreds of reactions \Rightarrow iron

- form iron core
- iron is the most tightly bound nucleus ⇒ no
 further energy from nuclear fusion
- iron core surrounded by onion-like shell structure

H → He	For a 25 solar mass star:				
	Stage	Duration			
	$H \rightarrow He$ 7x10	7x10 ⁶ years			
	He → C	7x10 ⁵ years			
	C→O	600 years			
	O → Si	6 months			
	Si → Fe	1 day			
	Core Collapse	1/4 second			

How to make a stellar-mass BH?

Stellar core collapse at end of lives of massive stars: direct formation or fallback? first stars?

Recipe for making heavy BHs

Low metallicity with Z < 0.5 Z_{\odot} (solar) and weak massive stellar winds