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Wilson loops in N=4 SYM

• In N=4 SYM, it is natural to study Wilson loop operators that include 
couplings to the six adjoint scalars  FI (“Maldacena-Wilson” loop)

where xm(t) is a loop in spacetime and qI (t) a unit 6-vector.

• Special choices of (xm,qI) lead to families of Wilson loop operators 
preserving various fractions of the superconformal symmetry 
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Half-BPS Wilson loop

• The most supersymmetric case is the 1/2-BPS Wilson loop:
 xm(t):  an infinite straight line, or circle (related by conformal transformation)

 qI :  a constant unit 6-vector

• E.g. take the line x0=t, and qI =dI6

• This preserves 8 Q’s and 8 S’s (superconformal charges): 1/2-BPS. 
(Similarly for a circle, but it preserves 16 lin. combinations of Q and S)



Correlators on the Wilson loop

• We will be interested in the following observables: given some local 
operators Oi(t) in the adjoint of the gauge group, consider

• Gauge invariant, due to path-ordering and Wilson-line factors 

• For the 1/2-BPS straight line <W>=1 and normalization is trivial. But when 
we work on the circle, then <W> is non-trivial and normalization is 
important (the conformal symmetry maps correlators on the line and circle 
normalized by <W>)



Correlators on the Wilson loop

• We will be interested in the following observables: given some local 
operators Oi(t) in the adjoint of the gauge group, consider

• Correlators of this kind arise naturally when we consider small 
deformations of the Wilson loop (Drukker, Kawamoto ’06)

• Knowledge of these correlation functions therefore encodes information on 
the expectation value of Wilson loops of more general shape



Half-BPS Wilson line as conformal defect

• To understand the structure of these correlators, it is useful to recall the 
symmetries preserved by the 1/2-BPS Wilson line. The bosonic 
symmetries are
 SO(3): rotations in the directions orthogonal to the line (i=1,2,3)

 SO(5): R-symmetry rotations of the five scalars Fa, a=1,…,5 that do not couple to 
the Wilson line

 SL(2,R): translations, dilatations and special conformal transformation on the line. 
1d conformal symmetry

• Together with the 16 supercharges, these combine into the 1d 
superconformal group OSp(4*|4)  Ↄ  SL(2,R)xSO(3)xSO(5)

• Since it preserves a 1d (super)conformal subgroup of the 4d conformal 
symmetry, the 1/2-BPS Wilson loop can be regarded as a conformal defect 
of the 4d theory



Correlators on the defect

• The operators Oi(t) inserted on the WL are the defect operators living 
on the line. As usual, they can be organized in defect primaries and 
descendants

• Defect primaries are labelled by their scaling dimension D and 
SO(3)xSO(5) representation, e.g. (D, j ; m1,m2)

• Correlation functions of defect primaries are constrained by the SL(2,R) 
conformal symmetry as usual in CFTd



Correlators on the defect
• For 4-point functions

With c the 1d conformal cross ratio 

• It has an OPE expansion 

where 2F1(h,h,2h,c) is the exact d=1 conformal block,                                                    
and                                                    the OPE coefficients

• As usual, finding all scaling dimensions and structure constants would amount to 
solving the system of correlators on the Wilson line

• Perhaps simple enough 1d system to be studied and solved by bootstrap 
techniques 

(Liendo, Meneghelli ‘16; Liendo, Meneghelli, Mitev ‘18) 



The super-displacement multiplet
• Among the possible defect primaries, a special role is played by a set of 8B+8F

“elementary insertions” forming a short multiplet of Osp(4*|4). 

• The 8 bosonic insertions are 
 The 5 scalars not coupled to the loop

 The “displacement operator”   

• These operators have protected scaling dimensions, due to being in short 
multiplet

(The displacement operator, which is related to deformations of the defect in 
the transverse directions, has in fact protected scaling dimension D=2 for any 
line defect more generally, independently from supersymmetry) 



Two-point functions
• Because they have protected scaling dimensions, their exact 2-point 

functions take the form

• The normalization factors are related to the “Brehmsstrahlung function”, and 
can be determined exactly using localization (Correa, Maldacena, Sever ’12) . In the 
planar limit: 



Four-point functions

• 3-point functions of these elementary protected insertions vanish by 
symmetry

• 4-point functions, on the other hand, have a non-trivial dependence on the 
coupling constant and conformal cross ratio. They encode in particular 
scaling dimensions and structure constants of unprotected operators 
appearing in the OPE

• At weak-coupling, these 4-point functions are known up to 1-loop order   
(Cooke, Dekel, Drukker, ‘17; Kyriu, Komatsu, to appear)  

• At strong coupling, they can be computed from string theory using the AdS2
worldsheet dual to the Wilson loop (SG, Roiban, Tseytlin ‘17)



Wilson loop from string theory

• In AdS/CFT dictionary, the Wilson loop operator is dual to a minimal 
string surface ending on the contour defining the operator at the 
boundary

• The bosonic part of the AdS5xS5 string action reads (taking Poincare 
coordinates and using Nambu-Goto form)

where sm=(t,s) are worldsheet coordinates, r=(0,i), i=1,2,3 label the 
coordinates of the (Euclidean) boundary, and a=1,…,5 are S5 directions



AdS2 minimal surface

• The minimal surface dual to the 1/2-BPS Wilson line is given by

• The induced metric is just that of AdS2 in Poincare coordinates

• Similarly, one can describe the minimal surface for the circular Wilson 
loop, which is given by AdS2 with the hyperbolic disk coordinates



AdS2 minimal surface

• So the minimal surface dual to 1/2-BPS Wilson loop is an AdS2 embedded 
in AdS5, and sitting at a point on S5

• It preserves the same superconformal symmetry OSp(4*|4)

• In particular, the SL(2,R) is realized as the isometry of AdS2

• The SO(3)xSO(5) correspond to rotations of the transverse coordinates 
xi(t,s) (i=1,2,3) and ya(t,s) (a=1,…,5)

• By expanding the string sigma model around this minimal surface, we can 
study the dynamics of small fluctuations of the worldsheet



Worldsheet fluctuations as fields in AdS2

• It is convenient to adopt a static gauge where x0 and z (which coincide with the 
AdS2 coordinates) do not fluctuate

• Then we get a Lagrangian for the transverse fluctuations xi(t,s) and ya(t,s), 
which can be viewed as fields propagating in AdS2

etc.



Worldsheet fluctuations as fields in AdS2

• From the quadratic Lagrangian we find

 5 massless scalars ya

 3 scalars xi with m2=2

• Since these may be viewed as scalar fields in AdS2, they should be dual to 
operators inserted at the d=1 boundary, with dimension given by D(D-1)=m2

• Hence, we recover the eight bosonic operators in the super-displacement 
multiplet



Four-point functions

• The four-point functions of the dual operators at strong coupling can then 
be obtained from familiar AdS/CFT techniques by computing Witten 
diagrams in AdS2

• E.g., the leading tree level connected term just involves contact 4-point 
interactions, with Witten diagram



Some comments

• These calculations are technically very similar to Witten diagram 
calculations in SUGRA in AdS5xS5, but the interpretation is quite different

• In the SUGRA case, one computes correlation functions of single trace local 
operators like, trZJ, dual to closed string states. The expansion parameter is 
GN ~ 1/N2

• In our case, we compute correlators of insertions inside the Wilson loop 
trace (it is an expectation value of a single trace operator), dual to open 
string fluctuations. The expansion parameter is the worldsheet coupling                



Some comments

• Because the string theory is UV finite, the Witten diagram calculations on 
the worldsheet should be in principle well-defined to all orders in            (of 
course, one would need to include fermions)

• In particular, loop calculations should make sense and this could be an 
interesting toy model where to apply recent techniques to compute loops 
in AdS

• For instance, from loop corrections to the two-point functions (“boundary-
to-boundary” propagator) of the transverse coordinates one should 
recover the strong coupling expansion of the Bremsstrahlung function



Some comments
• Recall that the AdS2 worldsheet is embedded in a higher dimensional theory. Here I 

am focusing mainly on correlators of defect operators, which should be captured 
by the AdS2 worldsheet theory  

• But more generally one can consider also “bulk-defect” correlators: correlation 
functions of the Wilson loop (with or without extra insertions in it) and single-trace 
operators inserted away from the loop, e.g. <W trZJ>, <W[O(t)] trZJ> etc.         
(“bulk” here means away from the defect, but still in the 4d gauge theory)

• This correspond to an “open-closed” string amplitude of the schematic form (to 
leading order):                                                                   

These are 1/N suppressed compared                                                                        to 
purely defect correlators



Summary of 4-point function result

• Let us consider just the 4-point function of the S5 fluctuations ya , dual to 
the D=1 operator insertions Fa .

• It is convenient to multiply ya (or Fa) by an auxiliary null polarization 5-
vector Ya . The result then takes the form 

• The 3 functions of c correspond to the singlet (S), symmetric traceless (T) 
and antisymmetric (A) channels, and the cross ratios are



Summary of 4-point function result

• Explicitly, they are found to be (SG, Roiban, Tseytlin)

• One can check that this result for the 4-point satisfies the relevant 
superconformal Ward identity (Liendo, Meneghelli, Mitev ‘18)

• From the small c expansion we can read off the anomalous dimensions 
and OPE coefficients of “two-particle” operators appearing in the OPE



Scaling dimensions

• In the symmetric-traceless channel, we see a protected operator with D=2. 
This corresponds to the operator              in the symmetric traceless of SO(5): 
it sits in a short multiplet and has protected dimension. [More generally, 
there are defect primaries            with D=J, analog to chiral primaries 
(though J=1 here is allowed)]

• In the singlet sector, we find the anomalous dimension of the unprotected 
2-particle operator ya ya (this heads a long supermultiplet)



The dimension of F6

• At weak coupling, the lowest dimension unprotected operator in the defect 
primary spectrum is F6: the insertion of the scalar that appears in the 
Wilson loop exponent

• Its dimension is known to 1-loop order (Alday, Maldacena ‘07; Polchinski,Sully ‘11)

• Assuming no level crossing, it is natural to expect that this operator goes to 
the lowest unprotected singlet at strong coupling: this is the “2-particle” 
operator ya ya . So we expect at strong coupling



The dimension of F6

• These results are consistent with a smooth interpolation from weak to strong 
coupling

• Can the exact function of l be fixed by integrability? 

• More generally, can we use integrability to fully solve for the spectrum of insertions 
on the Wilson loop and their correlation functions? 

• This is somewhat analogous to the problem of finding the spectrum of excitations 
and S-matrix on top of the GKP string (Basso ‘10) . But here instead of S-matrix we 
have Witten diagrams in AdS2/correlators in d=1 CFT. Is there an AdS2 analog of e.g. 
S-matrix factorization of integrable theories? Mellin representation? 



Exact results from localization

• It turns out to be possible to derive a number of exact results for the 
correlators of a special type of protected insertions on the Wilson loop

• To use localization, we consider the 1/2-BPS circular loop rather than straight 
line. Correlators on the circle are related to those on the line by a conformal 
transformation, e.g.

and similarly for 4-point functions, with cross ratio now given by



Exact results from localization

• Note that the expectation value of the circular loop is non-trivial, and given 
at large N by the well-known expression

and in mapping the correlators from line to circle as above, we have to 
normalize by this 

• To use localization in our system, we need to embed the circular loop into a 
family of 1/8-BPS Wilson loops constructed in Drukker, SG, Ricci, Trancanelli ’07

• These Wilson loops are defined on generic contours on an S2 subspace of R4

(or S4), and couple to three of the six scalar fields, say F1, F2, F3



The 1/8-BPS Wilson loops
• Explicitly, take an S2 given by                               in Cartesian coordinates, and define 

the Wilson loop operator

• This preserves 1/8 of the superconformal symmetries for generic contour

• The 1/2-BPS circle is a special case: it corresponds to the contour being a great 
circle of S2 . E.g. taking the equator at x3=0, we get the 1/2-BPS loop which couples 
to F3  (what I was calling F6 before)

• It was conjectured in Drukker et al ‘07, and essentially proved in Pestun ’09 by 
localization, that their expectation value (as well as correlators of any number of 
Wilson loops on the S2) is captured by 2d YM theory



The 1/8-BPS Wilson loops
• This in particular implies that the expectation value only depend on the area 

singled out by the loop on S2

• The expectation value is given by the same function as for the 1/2-BPS circular 
loop, but with a rescaled coupling constant. E.g. in the planar limit: 

with A=2p being the 1/2-BPS case



1/8-BPS Wilson loops and local operators
• More generally, localization applies to general correlation functions of Wilson loops 

and local operators (SG, Pestun ‘09-’12)

• The relevant local operators may be inserted outside or inside the loop, and 
they involve the position-dependent combination of scalars



1/8-BPS Wilson loops and local operators

• These are just chiral primaries of the form            , with Y a null vector which is 
taken to be position dependent. They were first studied in Drukker, Plefka ’09

• A crucial property is that their correlation functions are position independent (with 
or without Wilson loops)

• In the localization setup, they are mapped to insertions of powers of the Hodge 
dual of 2d YM



Correlators on the Wilson loop

• Now focusing on our problem of correlators on the circular loop, it means that 
localization allows us to study correlators of insertions of

• These operators form a topological subsector of the defect CFT, as their n-point 
correlation functions 

are completely position independent



Defect CFT data from topological correlators

• Since 2-point and 3-point functions of the general defect chiral primaries are 
completely fixed by symmetries up to overall functions of the coupling

we can use localization for the topological operators to find the exact 2-point     
normalization and structure constants in this protected sector. Note that these are 
non-trivial functions of the coupling. 

• Of course, for higher-point functions, one cannot fully reconstruct the general 
correlators from the topological ones. 



Correlators from localization

• Let us start from the correlators of “length 1” insertions. Using the 
correspondence 

and area-preserving invariance in 2d YM, one can simply obtain the field 
strength insertions by taking area-derivatives of the Wilson loop VEV

• E.g. for the 2-point function, we get for the normalized correlator

which gives the Bremsstrahlung function



Four-point function from localization

• For the 4-point function

• This can be compared to our Witten diagram string calculation above. We 
had



Four-point function
• Specializing to the topological configuration by setting                                       

this reduces as expected to the position independent result

• Including the contribution of disconnected diagrams to the same order, 
the AdS2 result can be seen to match the strong coupling expansion of the 
localization result (alternatively we can directly select the connected part 
of the localization result by taking derivatives of the log of <W>)



The general operators  
• For general length operators                                 , one needs to understand 

how to define the properly normal-ordered operators (that in particular 
have zero one-point functions and diagonal 2-point functions). 

• Recall the correlator of L single-letter insertions is given by area derivatives

• Using the topological natural of the correlators, we can bring some of the 
operators together without affecting the correlator, and use the OPE to 
rewrite the product in terms of a basis of normal ordered operators 

• E.g. at length 2: 



The general operators  
• In other words, we can get the normal ordered operator by taking two area 

derivatives and subtracting the extra terms 

where the constants are fixed by 



General operators from Gram-Schmidt 
• In practice, what we are doing is constructing a set of orthogonal operators 

with the requirements 

• The operator basis with these properties can be conveniently constructed 
using the Gram-Schmidt orthogonalization procedure, starting from the set 
of single-letter products 



General operators from Gram-Schmidt 
• In practice, what we are doing is constructing a set of orthogonal operators 

with the requirements 

• Note: this construction works in the planar limit, where we can focus on 
single-trace operators given by operator insertions inside the Wilson loop 
trace only. At non-planar level, it appears to be necessary to enlarge the set 
of operators to include double (and multi) trace objects like                                                      
(SG, Komatsu,  in progress) 



General operators from Gram-Schmidt 
• Applying the Gram-Schmidt algorithm, one gets the explicit form of the 

length-L operators as a determinant 

with

• In particular this gives the 2-point functions as ratio of determinants



Some explicit 2-point function results
• For example, one finds 



Generalized Bremsstrahlung
• As an explicit application, we can reproduce from localization the results for 

the “Generalized Bremsstrahlung function” previously obtained from 
integrability (Gromov, Sever ‘12; Gromov, Levkovich-Maslyuk, Sever ’13)

Near BPS:



Generalized Bremsstrahlung
• By mapping to a cusped Wilson loop on S2 , we can relate the near BPS 

expansion of the cusp anomalous dimension to our localization correlators

• The localization result can be seen to precisely match the integrability one 



General correlators in the planar limit
• In the planar limit, the Wilson loop VEV and its derivatives may be 

represented by the contour integral

• From this one finds that the general topological correlators take the form of 
integrals

where QL(x) are polynomials in g(x-1/x),  orthogonal with respect the given 
measure



• The functions QL(x) turn out to coincide with analogous function PL(x) defined in 
the integrability solution of Gromov, Sever et al 

• Later (Gromov, Levkovich-Maslyuk ‘15)  these functions were shown to be directly related 
to the so-called “Q-functions” appearing in the Quantum Spectral Curve approach 
(Gromov, Kazakov, Leurent, Volin ‘15)

• In our localization result, we find that integrals of products of these “Q-functions” 
encode all correlators, in particular the structure constants of BPS insertions on the 
Wilson line

• A similar observation was made recently in the integrability context for the 
structure constants of Wilson lines with three cusps (Cavagli, Gromov, Levkovich-Maslyuk
‘18)

• It would be interesting to further explore the connection and interplay 
between localization and integrability approaches



Weak and Strong coupling results
• It is interesting to derive explicitly the weak and strong coupling expansion of 

the results.

• E.g., at weak coupling one finds that QL(x) are related to Chebyshev
polynomials, and the explicit result for 2 and 3-point function reads

• This precisely matches the number of planar free Wick contractions of the 
matrices inserted on the loop

• The subleading one-loop term can also be seen to match the available results



Weak and Strong coupling results
• At strong coupling, one finds that QL(x) are instead related to Hermite

polynomials

• The explicit calculation gives 

• Now, this instead precisely matches the number of Wick contractions of 
operators made of products of commuting free fields in AdS2 ! 

• The subleading term at strong coupling can be computed as well, and we 
have also checked that it matches the string theory calculation in AdS2



String theory calculation
• On the string theory side, we essentially need to compute correlation functions of 

products of S5 fluctuations                            , bringing the insertion points of these 
operators to the boundary of AdS2

• E.g. Witten diagrams for 2-point and 3-point functions 

• With a bit of combinatorics, and using the 4-point function result in SG, Roiban, Tseytlin , 
they can be evaluated explicitly and match precisely the localization prediction



Conclusion
• Correlation functions on the 1/2-BPS Wilson loop have the structure of a d=1 

conformal system living on the defect

• Correlators on the loop are dual to AdS2 amplitudes for the transverse 
worldsheet fluctuations
• Is there a manifestation of integrability in the AdS2 amplitudes? 

• Exact results may be obtained in a “topological subsector” of special operator 
insertions 
 Can these exact results for correlation functions be reproduced by integrability?

• More generally, can some of the non-protected data (e.g. the scaling dimension 
of F6) be fixed exactly by integrability? 

• Perhaps an exact solution of this d=1 system may be obtained from an interplay 
of localization, integrability and conformal bootstrap techniques



Conclusion

• Some other concrete directions

• Loops in AdS2

• Non-planar corrections and Bulk-defect correlators

• Wilson loop in higher representations and D3/D5 branes with AdS2xS2

and AdS2xS4 worldvolumes

• Non-supersymmetric circular Wilson loop                                              
(Beccaria, SG, Tseytlin ‘17; Beccaria, Tseytlin ‘18)


