Yangian Symmetry
and Correlation Functions
in Planar $\mathcal{N} = 4$ SYM

Niklas Beisert

ITP, ETH Zürich

Integrability in Gauge and String Theory
Niels Bohr Institute
22 August 2018

work with A. Garus (1804.09110)
and with A. Garus, M. Rosso (1803.06310, 1701.09162).
Introduction and Overview

Aim:

Prove Yangian symmetry in integrable planar gauge theories.

Outline:

• Yangian Symmetry of Planar $\mathcal{N} = 4$ SYM
• Yangian Algebra and Gauge Transformations
• Correlation Functions

General Assumptions:

• $\mathcal{N} = 4$ supersymmetric Yang–Mills theory
• Planar limit
• Most results also apply to ABJM ($\mathcal{N} = 6$ supersymmetric Chern–Simons theory)
I. Yangian Symmetry of Planar $\mathcal{N} = 4$ SYM
AdS/CFT Integrability

Integrability: Curious feature of planar $\mathcal{N} = 4$ SYM (and related); enables efficient computations:

- planar spectrum of anomalous dimensions (finite λ)
- correlation functions of local operators
- colour-ordered scattering amplitudes
- null polygon Wilson loops
- planar loop integrands (integrals?)
- ...

What (precisely) is integrability? How to prove it?

- several ansätze or definitions in particular situations
- ...
- hidden symmetry enhancement:

 superconformal $\mathfrak{psu}(2, 2|4) \rightarrow$ Yangian $Y[\mathfrak{psu}(2, 2|4)]$
Yangian Symmetry

“Symmetry” in what sense?
- Spectrum is not invariant (boundary conditions).
- Scattering amplitudes are IR divergent (massless particles).
- Null polygon Wilson loops are UV divergent.
- Smooth Maldacena–Wilson loops are finite and invariant.
- Symmetry for other observables less evident.
- Ordering principle, tools, . . .

Invariance of the action!
Complications:
- representation non-linear in fields,
- cyclic boundary conditions,
- implementation of planar limit,
- non-local properties,
- quantum anomalies?
Yangian Algebra

Defined in terms of level-zero and level-one generators J^A, \hat{J}^A:

Algebra Relations:

\[
\begin{align*}
[J^A, J^B] &\sim f^{AB}_C J^C , \\
[J^A, \hat{J}^B] &\sim f^{AB}_C \hat{J}^C , \\
[\hat{J}^A, [\hat{J}^B, J^C]] &+ \text{cyclic} \approx \{J, J, J\}.
\end{align*}
\]

\hat{J} in adjoint; satisfies Serre relation. J/\hat{J} acts locally/bi-locally.

Coproduct:

\[
\begin{align*}
\Delta J^C &\sim J^C \otimes 1 + 1 \otimes J^C , \\
\Delta \hat{J}^C &\sim \hat{J}^C \otimes 1 + 1 \otimes \hat{J}^C \\
&+ f^{C}_{AB} J^A \otimes J^B.
\end{align*}
\]

Level-one momentum (dual conformal) \hat{P} easiest:

\[
\Delta \hat{P} \sim \hat{P} \otimes 1 + 1 \otimes \hat{P} + P \wedge D + P \wedge L + Q \wedge \bar{Q}.
\]

- based on super-Poincaré (P, L, Q) and dilatation (D);
- can be defined in many (other, related) models.
Field Polynomials

Consider field monomials:

\[Z_1 Z_2 \ldots Z_n \]

- all (covariant) fields \(Z_k \) are \(N \times N \) matrices;
- product monomial is (covariant) \(N \times N \) matrix;
- ordering of fields matters (for sufficiently large \(N \)).

Field polynomials relevant for various objects and observables in QFT:

- local operators \(\mathcal{O}(x) = \text{tr} Z_1(x) \ldots Z_n(x) + \ldots \),
- Wilson lines \(W = \text{P} \exp \int A = 1 + \int A + \frac{1}{2} \int \int A_1 A_2 + \ldots \),
- colour-ordered correlators \(F_n(x_1, \ldots, x_n) = \langle \text{tr} Z_1(x_1) \ldots Z_n(x_n) \rangle \),
- action \(S = \int dx^4 \mathcal{L}(x) \sim \int dx^4 \text{tr}(F^{\mu\nu} F_{\mu\nu}) + \ldots \).
Yangian Bi-local Representation

Superconformal action (level-zero Yangian): local insertion

\[J^C(Z_1 \ldots Z_n) = \sum_{k=1}^{n} Z_1 \ldots J^C Z_k \ldots Z_n. \]

Level-one Yangian action: bi-local insertion follows coproduct

\[\hat{J}^C(Z_1 \ldots Z_n) = f_{AB}^C \sum_{k<l=1}^{n} Z_1 \ldots J^A Z_k \ldots J^B Z_l \ldots Z_n \]

\[+ \sum_{k=1}^{n} Z_1 \ldots \hat{J}^C Z_k \ldots Z_n. \]

Issues:
- local term \(\hat{J}Z_k \) as completion of bi-local terms;
- non-linear action of \(JZ_k \) and \(\hat{J}Z_k \).
Invariance of the Action

Aim: Show planar Yangian invariance of the action

\[\hat{\mathcal{J}} S = 0. \]

Essential features of the action \(S \):
- single-trace, conformal, finite (disc, level zero, no anomalies?);
- cyclic, integrated, non-homogeneous polynomial

Task: Reconcile non-linear, bi-local representation with cyclicity.

Found definition for \(\hat{\mathcal{J}} Z \) (local contribution) and “\(\hat{\mathcal{J}} S \)” such that:
- \(\hat{\mathcal{J}} S = 0 \) for \(\mathcal{N} = 4 \) SYM and other planar integrable models
- \(\hat{\mathcal{J}} S \neq 0 \) for non-integrable models (plain \(\mathcal{N} < 4 \) SYM)

Invariance of the action shown for \(\hat{P} \) and others (\(\sim 1000 \) terms).

Proper definition of integrability!
Potential Yangian Anomalies

More elegant proof: Consider classical anomaly term

\[\hat{A}^\mu := \hat{P}^\mu S \equiv 0. \]

From level-one algebra \([J, \hat{J}] \sim \hat{J}\) a consistent anomaly requires:

\[\hat{P} \hat{A}^\mu = Q \hat{A}^\mu = 0, \quad \hat{A}^\mu \text{ is a vector of dimension 1}. \]

Therefore \(\hat{A}^\mu = \int dx^4 \hat{O}^\mu\) with local operator \(\hat{O}^\mu\):
- dimension-5 vector operator \(\hat{O}\)
- top component of supermultiplet

However: top components of long multiplets at dimension \(\geq 10\).
No suitable short supermultiplets. No classical anomaly terms!

Even better: level-one bonus symmetry \(\hat{B} \sim Q \wedge S\):

\[\hat{B} = \hat{B} S; \quad \hat{P} \hat{B} = L \hat{B} = R \hat{B} = D \hat{B} = 0, \quad \Pi \hat{B} = -\hat{B}. \]

No \(\Pi\)-odd dimension-4 scalar operator \(\hat{O}\) with \(\hat{B} = \int dx^4 \hat{O}\)!
Yangian Symmetry in Quantum Theory

Yangian symmetry in classical action shown! Implications for QFT? Noether: Conserved currents/charges? Bi-local representation?!

Consider general correlators of fields:

\[F_{1\ldots n}(x_1, \ldots, x_n) := \langle Z_1(x_1) \ldots Z_n(x_n) \rangle. \]

Ward–Takahashi identities for \(F_{1\ldots n}(x_1, \ldots, x_n) \):

\[
\begin{align*}
J \langle \ldots \rangle &= \sum_k \langle Z_1(x_1) \ldots J Z_k(x_k) \ldots Z_n(x_n) \rangle \tag{1} = 0, \\
\hat{J} \langle \ldots \rangle &= \sum_{k<l} \langle Z_1(x_1) \ldots J Z_k(x_k) \ldots J Z_l(x_l) \ldots Z_n(x_n) \rangle \\
&\quad + \sum_k \langle Z_1(x_1) \ldots \hat{J} Z_k(x_k) \ldots Z_n(x_n) \rangle \tag{2} = 0.
\end{align*}
\]

Complication: \(\mathcal{N} = 4 \) SYM is gauge theory.

- gauge fixing
- unphysical d.o.f.
- Yangian closes onto gauge.
II. Yangian Algebra

and

Gauge Transformations
Extended supersymmetry necessarily involves gauge transformations

\[\{Q, Q\} \sim G[\Phi]. \]

Supersymmetry closes onto translations: translations generate gauge

\[\{Q, \bar{Q}\} \sim \mathbb{P}, \quad [P_\mu, J] = [P_\mu, J]_{\text{alg}} + G[J A_\mu]. \]

Now consider level-one momentum \(\hat{P} =: P^{(1)} \otimes P^{(2)} \) (Sweedler)

\[[P_\mu, \hat{P}] = G[P^{(1)} A_\mu] \wedge P^{(2)}. \]

From \(PS = \hat{P}S = 0 \) it follows

\[0 = [P, \hat{P}] S = (G[P^{(1)} A] \wedge P^{(2)}) S. \]

Additional bi-local symmetry: gauge but not ordinary local.
Bi-local Gauge Transformations

Significance of bi-local gauge transformations $G[X] \wedge J$?

Action of ordinary local gauge transformations $G[X]$:

$$G[X](Z_1 \ldots Z_n) \sim [X, Z_1 \ldots Z_n].$$

Action of bi-local gauge transformations $G[X] \wedge J$:

$$(G[X] \wedge J)(Z_1 \ldots Z_n) \sim \{X, J(Z_1 \ldots Z_n)\}.$$

Invariance of action follows from:

$$G[X]S = 0, \quad JS = 0 \quad \text{and also} \quad JX = 0 \text{ (for cyclicity)}.$$

Requirements hold for all superconformal gauge theories:

- bi-local gauge transformations form an ideal of Yangian algebra;
- gauge ideal less restrictive than full Yangian.
Gauge Fixing

Fix gauge by Faddeev–Popov method:
- introduce ghost and auxiliary fields C, \bar{C}, B;
- extra terms S_{gf} in action;

BRST symmetry Q (Q no longer supersymmetry)

\[QZ \sim G[C], \quad QC \sim CC, \quad Q\bar{C} \sim B, \quad QB = 0; \quad QQ = 0. \]

Consider BRST cohomology:
- action closed $QS = 0$ (physical);
- gauge fixing terms exact $S_{gf} = Q\mathcal{K}_{gf}$ (irrelevant).

Extra terms needed for superconformal symmetry

\[JS = Q\mathcal{K}[J], \quad \mathcal{K}[J] := JK_{gf}; \]

project out unphysical d.o.f. from invariance.
BRST and Yangian Symmetry

BRST is a residual gauge symmetry.
→ additional bi-local BRST generators $Q \wedge J$ and $Q \otimes Q$.

Invariance of action requires further terms:

\[
(Q \otimes Q) S = Q \mathcal{K}[Q \otimes Q], \\
(Q \wedge J) S = Q \mathcal{K}[Q \wedge J] + (Q \otimes Q) \mathcal{K}[J] + J \mathcal{K}[Q \otimes Q], \\
\hat{J} S = Q \mathcal{K}[\hat{J}] + (Q \wedge J^{(1)}) \mathcal{K}[J^{(2)}] + J^{(1)} \mathcal{K}[Q \wedge J^{(2)}].
\]

Identities hold in gauge-fixed $\mathcal{N} = 4$ SYM (and ABJM).

- bi-local BRST generators needed for bi-local Yangian symmetry.
Slavnov–Taylor identities

Ward–Takahashi identities receive extra terms: Slavnov–Taylor identity

\[\langle J \mathcal{O} + \mathcal{K}[J] Q \mathcal{O} \rangle = 0. \]

Holds by virtue of invariance of gauge-fixed action; variational identity.

Slavnov–Taylor identity for bi-local Yangian

\[0 = \langle \hat{J} \mathcal{O} \rangle + \langle \mathcal{K}[J^{(1)}] (Q \wedge J^{(2)}) \mathcal{O} \rangle + \langle \mathcal{K}[J^{(1)}] \mathcal{K}[J^{(2)}] (Q \otimes Q) \mathcal{O} \rangle \\
+ \langle (\mathcal{K}[J] + \mathcal{K}[Q \wedge J^{(1)}] \mathcal{K}[J^{(2)}] + \mathcal{K}[Q \otimes Q] \mathcal{K}[J^{(1)}] \mathcal{K}[J^{(2)}]) Q \mathcal{O} \rangle \\
+ \langle (\mathcal{K}[Q \wedge J^{(1)}] + \mathcal{K}[Q \otimes Q] \mathcal{K}[J^{(1)}]) J^{(2)} \mathcal{O} \rangle. \]

Note:
- analogous identities for bi-local BRST \(Q \otimes Q \) and \(Q \wedge J \).
- uses conjectural bi-local variational identity of planar path integral.
III. Correlation Functions
Correlators of Fields

Test Slavnov–Taylor identities for some correlators:

\[
\langle \text{tr } Z_1 Z_2 \rangle = 1,
\]

\[
\langle \text{tr } Z_1 Z_2 Z_3 \rangle = i,
\]

\[
\langle \text{tr } Z_1 Z_2 Z_3 Z_4 \rangle = -1 - 1 + i,
\]

\[
\langle \text{tr } Z_1 Z_2 Z_3 \rangle_{(1)} = -i - i - 1.
\]

- restrict to planar / colour-ordered contributions;
- off-shell: no complications due to mass shell condition;
Symmetries of Propagators

Conformal symmetry for propagators $\langle Z_1 Z_2 \rangle$

$$JZ \quad Z + Z \quad JZ \simeq 0.$$

Invariance for matter fields

$$J^C \langle Z_1 Z_2 \rangle = \langle J^C Z_1 Z_2 \rangle + \langle Z_1 J^C Z_2 \rangle = 0;$$

invariance for gauge fields $\langle A_1 A_2 \rangle$

$$J^C \langle A_1 A_2 \rangle = \langle J^C A_1 A_2 \rangle + \langle A_1 J^C A_2 \rangle = d_1 H^C_1 + d_2 H^C_2.$$

Yangian symmetry for propagator $\langle Z_1 Z_2 \rangle$

$$\hat{J}^C \langle Z_1 Z_2 \rangle = f^C_{AB} \langle J^A Z_1 J^B Z_2 \rangle = 0,$$

$$\hat{J}^C \langle A_1 A_2 \rangle = d_1 d_2 \hat{R}^C_{12}.$$

Level-one generators almost annihilate gauge propagator $\langle A_1 A_2 \rangle$.
Conformal Symmetry of 3-Point Function

Start simple: tree-level conformal invariance at 3 points

\[J \langle \text{tr} \, Z_1 Z_2 Z_3 \rangle \]

\[= i \begin{array}{c} 3 \\ 2 \end{array} + i \begin{array}{c} 3 \\ 1 \end{array} + i \begin{array}{c} 3 \\ 2 \end{array} \]

\[= -i \begin{array}{c} 3 \\ 2 \end{array} - i \begin{array}{c} 3 \\ 1 \end{array} - i \begin{array}{c} 3 \\ 2 \end{array} \]

\[= -i \begin{array}{c} 3 \\ 1 \end{array} = 0. \]

Invariance of action implies invariance of correlator.
Also confirmed invariance for properly gauge-fixed correlator.
Yangian Symmetry of 3-Point Function

Yangian action on correlator of 3 fields at tree level

\[\hat{J} \langle \text{tr} Z_1 Z_2 Z_3 \rangle \simeq 3 + i \quad + \quad + \quad + \]

\[\simeq -3i \quad + \quad i \quad + \quad i \quad - i \]

\[\simeq -i = 0. \]

Invariance based on:
- conformal invariance of propagator and 3-vertex,
- Yangian invariance of 3-vertex.

Also showed \(Q \wedge J \) invariance of gauge-fixed correlator.
Yangian Symmetry of 4-Point Function

Yangian action on tree-level correlator of 4 fields $\hat{J}\langle \text{tr } Z_1 Z_2 Z_3 Z_4 \rangle$

\[\simeq -2 \quad -2 \quad +2i \]
\[+2i \quad -2i \quad -2i \quad +2i \]
\[+2 \quad +4i \quad +4i \quad \simeq \ldots = 0. \]

- conformal invariance of propagator, 3-vertex and 4-vertex,
- Yangian invariance of 3-vertex and 4-vertex,
- commutativity of constituents $[J^{(1)}, J^{(2)}] = 0$.

IGST 2018, Niklas Beisert
3-Function at One Loop

Yangian action on one-loop correlator of 3 fields $\hat{J}\langle \text{tr } Z_1 Z_2 Z_3 \rangle_{(1)}$

\[\simeq -i + 3 - i + i + i + i + i \]

\[\simeq -i - i + i - 3 - i + i + 3i + i + i - i \]

\[\simeq -3 - i - i + i + i + i - i \]

\[\simeq -3 + i + i - i - i - i \]

\[\simeq \ldots = 0. \]

Invariance shown modulo gauge fixing and divergences.
Anomalies?

Classical symmetries may suffer from quantum anomalies:
• No established framework for anomalies of non-local symmetries (in colour-space not necessarily in spacetime).
• Violation of (non-local) current? Cohomological origin?

Potential anomaly terms:
• quantum analysis similar to classical one?
• consider gauge fixing . . .
• consider regularisation . . .

However:
• Not an issue for Wilson loop expectation value at one loop.
• Integrability “works” at finite coupling: no anomaly expected?
IV. Conclusions
Conclusions

Yangian Symmetry of Planar $\mathcal{N} = 4$ SYM:
- classical action of planar $\mathcal{N} = 4$ SYM Yangian invariant
- model classically integrable (same for ABJM)

Yangian Algebra and Gauge Transformations
- Yangian algebra produces non-local gauge transformations
- gauge transformations form an ideal
- after gauge fixing: bi-local and mixed BRST transformations
- additional terms to eliminate unphysical d.o.f.
- Yangian compatible with gauge fixing

Correlation Functions
- Ward–Takahashi/Slavnov–Taylor identities tested
- No quantum anomalies to be expected?!

Outlook: Apply to scattering amplitudes (LSZ), Wilson loops, ... Derive algebraic integrability methods?!