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Prescriptive Integrands in SYM

+ Exempli gratia: we now have closed formulae for all
amplitude integrands in planar SYM through 3 loops:

(ask me about non-planar, non-SUSY! [JB, Herrmann, McLeod, Trnka (in prep)])
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Roadmap: Polylogs to Traintracks

+ Spiritus Movens(/Loop Integration Polemics)
When has an integrand been integrated?

+ Integrating Loop Integrals Rationally
> dua l"COnfOTmﬂl SuﬁCiency |JB, Dixon, Dulat, Panzer (to appear)|

» momentum twistor reducibility
|JB, McLeod, von Hippel, Wilhelm (2018)]

+ Ubiquity of Non-Polylogarithmicity
» integrals beyond (even elliptic) polylogarithms

|JB, McLeod, Spradlin, von Hippel, Wilhelm (2017)]

|JB, He, McLeod, von Hippel, Wilhelm (2018)]
4



When it’s been Integrated

Obviously, “loop integrands should be integrated”



When it’s been Integrated

Obviously, “loop integrands should be integrated”
but what this really means depends on who’s talking (& why)



When it’s been Integrated

Obviously, “loop integrands should be integrated”
but what this really means depends on who’s talking (& why)

This is so even when the integral is “just” a number



When it’s been Integrated

Obviously, “loop integrands should be integrated”
but what this really means depends on who’s talking (& why)

This is so even when the integral is “just” a number
—0.6569579311583875691643456



When it’s been Integrated

Obviously, “loop integrands should be integrated”
but what this really means depends on who’s talking (& why)

This is so even when the integral is “just” a number
—0.6569579311583875691643456

[
(g Cg-?TQ 10g(2)—|— CQ‘I‘ %)



When it’s been Integrated

Obviously, “loop integrands should be integrated”
but what this really means depends on who’s talking (& why)

This is so even when the integral is “just” a number
—0.6969579311583875691643456

[
(g C3—7T2 10g(2)—|— CQ‘I‘ %)

Are these “numbers” MZVs?

|JB, Heslop, Tran (2015)]



When it’s been Integrated

Obviously, “loop integrands should be integrated”
but what this really means depends on who’s talking (& why)

This is so even when the integral is “just” a number
—0.6969579311583875691643456

[
(g C3—7T2 10g(2)—|— CQ‘I‘ %)

Are these “numbers” MZVs?

|JB, Heslop, Tran (2015)]

implications for BES...



When it’s been Integrated

Obviously, “loop integrands should be integrated”
but what this really means depends on who’s talking (& why)

This is so even when the integral is “just” a number
—0.6969579311583875691643456

[
(g C3—7T2 10g(2)—|— CQ‘I‘ %)

Al‘e these ”numbers i MZVS? YES! |O. Schnetz (private corr.)]

|JB, Heslop, Tran (2015)]

implications for BES...



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

d a

AL:Q,MHV i I 1
n E

a<b<c<d<a



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

L=2MHV __
B )

a<b<c<d<a

m E = (617N1)(€27N2)
g ~ (01,0)(01,a+1)(€1,0) (€1, b+ 1) (1, £2) (0, €) (o, c+ 1) (€3, d) (€2, d+ 1)
b



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

L=2MHV __
B )

a<b<c<d<a

i d*l,d*¢, (¢1,N1)(l2, No)
S 61 CL 21 CH—l 61 b)(€17b+1)(61,82)(82,6)(82,0—1—1)(62,d)(€2,d—|—1)



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria



When's it been Integrated?

When the result is a function, this is more subtle—

depending on various (often valid) criteria
1

a/OQ

.ﬁ obo




When's it been Integrated?

When the result is a function, this is more subtle—

depending on various (often valid) criteria
1

4 (a0, b0)(a1,b1)
W ..bo :>/d 6(57 ao) (4, a1)(€,b1)(£, bo)
b.l

a/OQ




When's it been Integrated?

When the result is a function, this is more subtle—

depending on various (often valid) criteria
<l

©.@)

> > b) 1
1 149 ap, bo)(ay, b :/dga
gl Wl j/ éao )(€:b1)(6,00) ) Y72
by




When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

1

a/OQ

©.@)

o, bo)(a1,b1) 1

@ 4€
° :>
E. / é CL()

by

S
)(£,b1) (¢, bo) _/d . (fitasfa)?

0



When's it been Integrated?

When the result is a function, this is more subtle—

depending on various (often valid) criteria
<l

©.@)

> >
4 o, bo)(a1,b1) /2a 1
Qe | o 0 dt .
4 & g. / é aO é bl (€ bO) / f1f2
b'l




When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

1
1 A (a0, bo)(a1,b1) /2a 1
2| 4 27
Sl B ;‘/ (7, a0)(¢, a1) (4, b1) (£, bo) S
b.l 0
_/JZZ D(= 2,)2T (= 2)2T (1 21+ 22)2 w0

| Symanzik (1972)]

— 200



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

1

a/OQ

74 0, bo)(az,b1) e 1]
0 14 d2%a -
/ (4, a0)(¢,a1)(£,b1)(£,by) / . fif

0
—/dzg F( 21)2F( 22)2F(1+21+22)2

— 200

2
| Symanzik (1972)]
1

oc Liz(u)+ Liz (0)+ 5 log(u) log(v)- log(u) log(v)- G2
|Hodges (1977)]



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

1

a/OQ

74 0, bo)(az,b1) e 1]
14 d“a ——
j/ (4, a0)(£,a1)(€,b1)(£,by) / . fif

0
—/dzg F( 21)2F( 22)2F(1+21+22)2

— 200

2
| Symanzik (1972)]
1

oc Liz(u)+ Liz (0)+ 5 log(u) log(v)- log(u) log(v)- G2
|Hodges (1977)]

4+ built of functions known to



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

1

a/()‘

74 0, bo)(az,b1) e 1]
14 d“a ——
j/ (4, a0)(£,a1)(€,b1)(£,by) / . fif

0
—/sz_) F( 21)2F( 22)2F(1+21+22)2

— 200

2
| Symanzik (1972)]
1

oc Liz(u)+ Liz (0)+ 5 log(u) log(v)- log(u) log(v)- G2
|Hodges (1977)]

4+ built of functions known to
» undergrads (Euler/Abel/ ..

!



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

aq

a/()‘

74 0, bo)(az,b1) e 1]
14 d“a ——
j/ (4, a0)(£,a1)(€,b1)(£,by) / . fif

0
—/sz_) F( 21)2F( 22)2F(1+21+22)2

— 200

2
| Symanzik (1972)]
1

oc Liz(u)+ Liz (0)+ 5 log(u) log(v)- log(u) log(v)- G2
|Hodges (1977)]

4+ built of functions known to

» undergrads (Euler/Abel/ ..
» Mathematica/GiNaC...

!



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

a
ol

a/()‘

74 (ao, bo)(a1,b1) el
I /4 d“a ——
/ (€, a0) (£, a1 )(£,01) (€, bo) /O‘ i fo
0
_/sz_’ [(— 20T (= 20 )AL (1 Z1r o) et
el [Symanzik (1972)]

o Lig i)+ Lia (9)+ 5 log(1) log(v) - log(@) log(@) G

|Hodges (1977)]

4+ built of functions known to
» undergrads (Euler/Abel/ ..
» Mathematica/GiNaC...

» Goncharov/Brown/Bloch. 5

!



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

a
ol

o

S & F
ane| e i
Oo g. / ﬁao

— 200

bol 0
_/sz"’ D(= 21 )2T (= 22) 2T (14 21+ 22)2 w0

ao, bo)(a1,b1) /dzo"é 1
Y(Z,b1) (£, bo) T

| Symanzik (1972)]
1

oc Liz(u)+ Liz (0)+ 5 log(u) log(v)- log(u) log(v)- G2

» numerically fast (and reliable)

|Hodges (1977)]

4+ built of functions known to
» undergrads (Euler/Abel/ ..
» Mathematica/GiNaC...

» Goncharov/Brown/Bloch. 5

!



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

aq
> >
74 (ag, bo)(at, by) ol
® ° = 14 d —
v | %0 b / (€, a0)(Z, a1) (2, b1)(Z, bo) /O‘f
bol 0
_/dz_’ [(— 20T (= 20 )AL (1 Z1r o) et
el [Symanzik (1972)]

o Lig i)+ Lia (9)+ 5 log(1) log(v) - log(@) log(@) G

|Hodges (1977)]

» numerically fast (and reliable)  + built of functions known to

» manifest “(transcendental) weight” » undergrads (Euler/Abel/...)
» Mathematica/GiNaC...
» Goncharov/Brown/Bloch...



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

dq
@ @

74 (a0, bo)(a1,b1) /2_, 1
age | o |ob, = [d* da—
0,6, / (4, a0) (4, a1)(€,b1)(¢, by) Bl

by

0
:/dz_’ ['(—21)°T(— 22)°T(1+ 21+ 2)* u* 02
el [Symanzik (1972)]
1

oc Liz(u)+ Liz (0)+ 5 log(u) log(v)- log(u) log(v)- G2
|Hodges (1977)]

» numerically fast (and reliable)  + built of functions known to
» manifest “(transcendental) weight” » undergrads (Euler/Abel/...)

» minimal cancellation among terms @ Mathematica/GiNaC...
» Goncharov/Brown/Bloch...



AV W AT T

When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

a
ol

o

— 200

@ @
74 (a0, bo)(a1,b1) /2_, 1
ag | o [, = [d* 46
o* | % {*b / (€, a0) (¢, a1) (¢, b1) (£, bo) fif

0
Z/dz_) F( 21)2F( 22)2F(1+21+22)2 A

2
| Symanzik (1972)]
1

oc Liz(u)+ Liz (0)+ 5 log(u) log(v)- log(u) log(v)- G2

numerically fast (and reliable)

manifest “(transcendental) weight” » undergrads (Euler/Abel/ ..

|Hodges (1977)]

4+ built of functions known to

minimal cancellation among terms * Mathematica/GiNaC...

manifest physical symmetries
(non-redundantly)

» Goncharov/Brown/Bloch...

!



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

al 5
17 74 ao, bo)(ay,by) /2_,#
ao.o 'g. j/ ggao €b1 fbo Odaf
b.
; _/sz—» F(—21)2F(—22)2F(1+21+z2)2 U e
Fael [Symanzik (1972)]
1
oc Liz(u)+ Liz (0)+ 5 log(u) log(v)- log(u) log(v)- G2
+ Certifiability [Hodges (1977)]

numerically fast (and reliable)  + built of functions known to
manifest “(transcendental) weight” » undergrads (Euler/Abel/ ..
minimal cancellation among terms *> Mathematica/GiNaC...
manifest physical symmetries » Goncharov/Brown/Bloch...
(non-redundantly)

DA NZ T A T T e

)



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

gt i
17 74 ao, bo)(ay,by) /2_,#
ao.o 'g. j/ ggao €b1 fbo Odaf
b.
; _/sz—» F(—21)2F(—22)2F(1+21+z2)2 U e
Fael [Symanzik (1972)]
1
oc Liz(u)+ Liz (0)+ 5 log(u) log(v)- log(u) log(v)- G2
+ Certifiability [Hodges (1977)]

» against some reference (symbology, fibration bases, .. .)

numerically fast (and reliable)  + built of functions known to
manifest “(transcendental) weight” » undergrads (Euler/Abel/ ..
minimal cancellation among terms *> Mathematica/GiNaC...
manifest physical symmetries » Goncharov/Brown/Bloch...
(non-redundantly)

DA NZ T A T T e

)



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

1

a,Oo o€

+ Certifiability

74 0, bo)(az,b1) e 1]
14 d“a ——
j/ (4, a0)(£,a1)(€,b1)(£,by) / . fif

0
—/dzg F( 21)2F( 22)2F(1+21+22)2

— 200

2
| Symanzik (1972)]
1

oc Liz(u)+ Liz (0)+ 5 log(u) log(v)- log(u) log(v)- G2
|Hodges (1977)]

» against some reference (symbology, fibration bases, .. .)
» by checking physical limits/branch cuts/ ..



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

a1, Gy
¢ ! ¢ ! ¢ .
aoo o ® oboi/dégf
O O @
bo bo 0O
1 2 :/d662
OOO
— |d*a
0
+ Certifiability

|JB, McLeod, Spradlin, von Hippel, Wilhelm (2017)]
(ao, bo)(a1,b1)(az,b2)

(51, aO)(Zla Ql)(€1, 51)(51, 52)(52, a2)(€2, b2)(€2, bo)

% =/c‘f7;7 [F(—zl)Z...} [ui«“l u;ﬂ

— 200

Hj(s)

1 _/ ds
J1J2 g2 \V/483-g25— g3

» against some reference (symbology, fibration bases,...)
» by checking physical limits/branch cuts/ ...



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

C.Ll 6.12 6.13 |JB, He, McLeod, von Hippel, Wilhelm (2018)]
GRERE R - ,bo)(a1,b1)(az,ba)(as, bs)
@ o o o o d12€ (ao L
%0 ® ® ® ¢ bO:> (51,ao)(glyal)(fl,bl)(fla@)“'(fsabo)
b.l b.2 b.g s 02/2 12
:/dS& 71 :/d“w,? {F(—zl)z > } {u’fl ui}f}
0) — 700
1 ds dz
— [d% :/ Hy(s,
0/ i J1/2/393 \/483—92(2)8—93(2) (8,2)
+ Certifiability

» against some reference (symbology, fibration bases,...)
» by checking physical limits/branch cuts/ ...



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

ayy ar |JB, He, McLeod, von Hippel, Wilhelm (2018)]
LTt o faee (@0, bo0)(a1,b1) - - - (ar, br)
EDE ey (£1,a0)(f1,a1)(f1,b1) (€1, £2) - - - (£L, o)
by 1 05 by o2 gy L1 8o oL2—
- 2L%—L+1)= 2 2
:/d 0 =T —/d“( +1); [p(_zl) } [T «
0 — 100 1=1
r deL 22
= d”* / H 7
/ \V/453-g2(2)s—g3(Z L+1(5,2)
+ Certifiability

» against some reference (symbology, fibration bases, .. .)
» by checking physical limits/branch cuts/ ..



When's it been Integrated?

When the result is a function, this is more subtle—
depending on various (often valid) criteria

+ Certifiability
» against some reference (symbology, fibration bases,...)
» by checking physical limits/branch cuts/ ...




Rationalizing Loop Integration

A surprisingly large class of planar UV finite multi-
loop integrals can be directly integrated provided the
right kind of naiveté (and mild cleverness):




Rationalizing Loop Integration

A surprisingly large class of planar UV finite multi-
loop integrals can be directly integrated provided the
right kind of naiveté (and mild cleverness):

+ Feynman parameterize in 4d, one loop at a time



Rationalizing Loop Integration

A surprisingly large class of planar UV finite multi-
loop integrals can be directly integrated provided the
right kind of naiveté (and mild cleverness):

+ Feynman parameterize in 4d, one loop at a time
+ Maintain manifest dual conformal invariance:



Rationalizing Loop Integration

A surprisingly large class of planar UV finite multi-
loop integrals can be directly integrated provided the
right kind of naiveté (and mild cleverness):

+ Feynman parameterize in 4d, one loop at a time
+ Maintain manifest dual conformal invariance:

» regulate IR divergences with "DCI masses’
|JB, Caron-Huot, Trnka (2013)]



Rationalizing Loop Integration

A surprisingly large class of planar UV finite multi-
loop integrals can be directly integrated provided the
right kind of naiveté (and mild cleverness):

+ Feynman parameterize in 4d, one loop at a time
+ Maintain manifest dual conformal invariance:

» regulate IR divergences with "DCI masses’
|JB, Caron-Huot, Trnka (2013)]

» rescale Feynman parameters to trivialize DCI
|JB, Dixon, Dulat, Panzer (in prep)]



Rationalizing Loop Integration

A surprisingly large class of planar UV finite multi-
loop integrals can be directly integrated provided the
right kind of naiveté (and mild cleverness):

+ Feynman parameterize in 4d, one loop at a time
+ Maintain manifest dual conformal invariance:

» regulate IR divergences with "DCI masses’
|JB, Caron-Huot, Trnka (2013)]

» rescale Feynman parameters to trivialize DCI
|JB, Dixon, Dulat, Panzer (in prep)]

+ Parameterize kinematic variables using:
momentum twistors [JB, McLeod, von Hippel, Wilhelm (2018)]
chosen non-redundantly



Rationalizing Loop Integration

A surprisingly large class of planar UV finite multi-
loop integrals can be directly integrated provided the
right kind of naiveté (and mild cleverness):

+ Feynman parameterize in 4d, one loop at a time

+ Maintain manifest dual conformal invariance:
» regulate IR divergences with "DCI masses’
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» rescale Feynman parameters to trivialize DCI
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+ Parameterize kinematic variables using:
momentum twistors [JB, McLeod, von Hippel, Wilhelm (2018)]
chosen non-redundantly

+ Partial fraction to death (e.g. use HyperInt) [panzer 2014)]



Planarity & Dual-Conformality

+ We may parameterize momenta of planar loop
(Feynman) integrals by their dual-graphs



Planarity & Dual-Conformality

+ We may parameterize momenta of planar loop
(Feynman) integrals by their dual-graphs

i a f a
T

52 61 €2 81

d C d @



Planarity & Dual-Conformality

+ We may parameterize momenta of planar loop
(Feynman) integrals by their dual-graphs

T, T ] g
Da1 Pai N, 10
Ly-1 c

Pa = (aja—l—l_ma)



Planarity & Dual-Conformality

+ We may parameterize momenta of planar loop
(Feynman) integrals by their dual-graphs

a
Xz xa+1 f
Pa & b
p -1 pa+1 i) 2 61
! d %

BN =00 = (52, =(pat ...+ pp1) =5..5-1 and (o) ={(C =N



Planarity & Dual-Conformality

+ We may parameterize momenta of planar loop
(Feynman) integrals by their dual-graphs

L, xa+1 f :
pa € b
p —1 pa+1 L0 2 61
:Ca—l d c
S :/ d4€1d4€2 (CL, C) (ba 6) (da f)
Pa= (Za+1~Ta) = 05,00, 5)(1, 0) (81, £2) (e, ) (Ga, €) ey 1)

Bl = (00— (1 2,)°=(pat ...+ Dp-1)°=54.5-1 and (Lo =(C =N



Planarity & Dual-Conformality

+ We may parameterize momenta of planar loop
(Feynman) integrals by their dual-graphs

L, xa+1 f :
o2 e b = e b
p —1 pa+1 L0 2 61
b d C
S :/ d4€1d4€2 (CL, C) (ba 6) (da f)
Pa= (Tat1~Ta) = )00, 0) (@0, 0) (s, 0) (1, £2) (€, ) (2, &) (o )

Bl = (00— (1 2,)°=(pat ...+ Dp-1)°=54.5-1 and (Lo =(C =N

4+ Dual-Conformal Invariance is conformality in x’s

| Drummond, Henn, Smirnov, Sokatchev;

Drummond, Korchemsky, Henn; ... |

8



Planarity & Dual-Conformality

+ We may parameterize momenta of planar loop
(Feynman) integrals by their dual-graphs

f a
Xz xa+1
P € b
p -1 pa+1 i) 2 61
g d @

Pa = (aja—l—l_ma) =

/ d*01d* 0, (a,c)(b,e)(d, f)
(£1,a)(€1,b)(£1,c)(l1, L) (L2, d) (L2, €)(£2, f)

Bl = (00— (1 2,)°=(pat ...+ Dp-1)°=54.5-1 and (Lo =(C =N

4+ Dual-Conformal Invariance is conformality in x’s

(ab'cd) = (a, b) (C’ d) | Drummond, Henn, Smirnov, Sokatchev;
0 (a,0)(b,d) Drummond, Korchemsky, Henn; ... |

8




T'he Dual-Conformal Regulator

+ The basic idea of the dual-conformal regulator is to
give legs masses, but controlled by a parameter ‘5’

that is dimensionless & has no conformal weight
|JB, Caron-Huot, Trnka (2013)]



T'he Dual-Conformal Regulator

+ The basic idea of the dual-conformal regulator is to
give legs masses, but controlled by a parameter ‘5’

that is dimensionless & has no conformal weight
|JB, Caron-Huot, Trnka (2013)]

2 s 5(pa—1+pa)2(pa+pa—l-l)2

pa e pa !
(pa—1+pa+pa+1)2




T'he Dual-Conformal Regulator

+ The basic idea of the dual-conformal regulator is to
give legs masses, but controlled by a parameter ‘5’

that is dimensionless & has no conformal weight
|JB, Caron-Huot, Trnka (2013)]

2 s 5(pa—1+pa)2(pa+pa—l-l)2

pa e pa !
(pa—1+pa+pa+1)2

pa—l pa+1 L, 9



T'he Dual-Conformal Regulator

+ The basic idea of the dual-conformal regulator is to
give legs masses, but controlled by a parameter ‘5’

that is dimensionless & has no conformal weight
|JB, Caron-Huot, Trnka (2013)]

2

a—1+D40)* (Dot Pa
szpz | 5(29 1 p) (p p+21)
(pa—1+pa+pa+1)



T'he Dual-Conformal Regulator

+ The basic idea of the dual-conformal regulator is to
give legs masses, but controlled by a parameter ‘5’

that is dimensionless & has no conformal weight
|JB, Caron-Huot, Trnka (2013)]

2 2 a—2,a
pi LY pCQL | 5(pa—1+pa) (pa+pa+1) T, — Ts = X, ik 5(xa—|—1_xa) ( )
(pa—1+pa+pa+1)2 (&_27 a-+ 1)
:Ea :Ea+1 ;E.a -1
pa Ziaa—l ,/’ ~~~'Q\ZUCHI
pa—l pa+1 xa+2 é I, \\



T'he Dual-Conformal Regulator

+ The basic idea of the dual-conformal regulator is to
give legs masses, but controlled by a parameter ‘5’

that is dimensionless & has no conformal weight
|JB, Caron-Huot, Trnka (2013)]

p2 5 p2 | 5(pa—1+pa)2(pa+pa+1)2 e Wb — b, 5(xa—|—1_$a) (a_27 a)
| i (pa—1+pa+pa+1)2 (&—2, a —I-l)
Pl (a1, o I(aRuEee)
(a,a+1) — (a,a+1) = (a,a+1)+ ¢ PET
’Ta :Ea+1 ;E:a -1
pa Ziaa—l ,/’ ~~~'Q\ZUCHI
Pa-1 Pais N0 j I, \\



T'he Dual-Conformal Regulator

+ The basic idea of the dual-conformal regulator is to
give legs masses, but controlled by a parameter ‘5’

that is dimensionless & has no conformal weight
|JB, Caron-Huot, Trnka (2013)]

2 2 a—2,a
p2 L8 p2 | 5(pa—1+pa) (pa+pa—|—1) T, > To = X, i 5(33&_'_1_:6&) ( )
| i (pa—1+pa+pa+1)2 (&—2, a + 1)
. — (a—1,a+1)(a,a+2)
+1) — +1) = +1)+4+0
(a’7a’ ) (CL?CL ) (a7a ) (&_1701_'_2)
aja :Ea+1 ;E.a -1
pa Ziaa—l ,/’ ~~'Q\ZECHI
Pa-1 U i) é , \
aja—l ! \*/\
'[ xa+2

[:/ﬁd%l S E/ﬁ d*l, (H Eig) T




Persevering Dual-Conformality

+ Using the dual-conformal regularization scheme,

(pa,—l +pa)2(pa _I_pa—|—1)2
(pa—l _I_pa _|_pa—|—1)2

P2 s p2 + 0

all(?) UV-finite planar loop integrals take the form:

10



Persevering Dual-Conformality

+ Using the dual-conformal regularization scheme,

(pa,—l +pa)2(pa _I_pa—|—1)2
(pa—l _I_pa _|_pa—|—1)2

Do > P + 0
all(?) UV-finite planar loop integrals take the form:

2L
I+ ) Ijlogh(s)

k=0
|JB, Dixon, Dulat, Panzer (to appear)]

10



Persevering Dual-Conformality

+ Using the dual-conformal regularization scheme,

(pa—l +pa)2(pa _I_pa,—|—1)2
(pa—l + Da _|_pa—|—1)2

Pa > P +0
all(?) UV-finite planar loop integrals take the form:

2L
I+ ) Ijlogh(s)

k=0
|JB, Dixon, Dulat, Panzer (to appear)]

+ Coefficients of each divergence can be obtained as
strictly finite (Feynman-) parametric integrals—
which can always be rendered manifestly DCI



Analytic Extraction of Divergences

+ Consider an arbitrary, conformally-regulated
Feynman-parametric integral of the form,
da

1) E/ (F@)+3g@)>

11



Analytic Extraction of Divergences

+ Consider an arbitrary, conformally-regulated
Feynman-parametric integral of the form,

N da
0= [ aysgan
+Via a smgle Mellin-Barnes transformation, we have

/da/dz&z 9a W = ()MZ)

—100

11



Analytic Extraction of Divergences

+ Consider an arbitrary, conformally-regulated
Feynman-parametric integral of the form,

N da
0= [ aysgan
+Via a smgle Mellin-Barnes transformation, we have

/da/dz5z g(a /\+Z = )\())\—I-Z)

—’LOO

— 3 B o e )

11



Analytic Extraction of Divergences

+ Consider an arbitrary, conformally-regulated
Feynman-parametric integral of the form,

N da
0= [ aysgan
+Via a smgle Mellin-Barnes transformation, we have

=B 2 ~
/da/dz&z oa W A()+) I(z) = [da f?()i+z

—’LOO

— 3 B o e )

11



Analytic Extraction of Divergences

+ Consider an arbitrary, conformally-regulated
Feynman-parametric integral of the form,

N da
0= [ aysgan
+Via a smgle Mellin-Barnes transformation, we have

=B 2 ~
/da/dz(sz oa W A()+) I(z) = [da f?()i+z

_$ i e T [ st )

+ Easy to see that only one residue survives the limit:

, » pl e L (e 7))
(%I_I}%) I(9) ——E{:e(f)s <d25 TOA) I(z))




Analytic Extraction of Divergences

+ Consider an arbitrary, conformally-regulated
Feynman-parametric integral of the form,

N da
0= [ aysgan
+Via a smgle Mellin-Barnes transformation, we have

=B 2 ~
/da/dz(sz oa W A()+) I(z) = [da f?()i+z

_$ i e T [ st )

+ Easy to see that only one residue survives the limit:

: =R -~ [
(%1_%[(5) :56(.‘)5(6125 TOA) I(z)) I(z) = Z — 1




Analytic Extraction of Divergences

+ Consider an arbitrary, conformally-regulated
Feynman-parametric integral of the form,

N da
0= [ aysgan
+Via a smgle Mellin-Barnes transformation, we have

=B 2 ~
/da/dz(sz oa W A()+) I(z) = [da f?()i+z

_$ i e T [ st )

+ Easy to see that only one residue survives the limit:

O

: SRR 1 = I ~
(%5%1(5) ];{eg(dzé T szlk) L= Z z_k]k

k=0




Restoring Conformality

+ Feynman parameterization is naively at odds with
maintaining (dual) conformal invariance

12



Restoring Conformality

+ Feynman parameterization is naively at odds with
maintaining (dual) conformal invariance

1

4 2 = [d*¢
3

1
(4,1)(4,2)(4,3)(4,4)

12



Restoring Conformality

+ Feynman parameterization is naively at odds with
maintaining (dual) conformal invariance

1

4 2 = [d*¢
3

1 R
(6.1)(0,2)(¢,3)(£,4) O/ 48] 23

g; == OleVQ(

—I—Ck1044(

A 2)—1—042043(2, 3)+()41()43(1, 3
A+ oy (2,4)+agay(3,4)

N d

1
1

12



Restoring Conformality

+ Feynman parameterization is naively at odds with
maintaining (dual) conformal invariance

1 00
4 1 Ll
H;E = [ D@ 2@ 3. O/[d 0] 23

F = aias(l,2)+asas(2,3)+a1as(l,3
+a1a4(1, 4)+agay(2,4)+azay(3,4)

N d

At least when integrating one loop (at a time), conformality
is always restorable by rescaling Feynman parameters:



Restoring Conformality

+ Feynman parameterization is naively at odds with
maintaining (dual) conformal invariance

1 00
4 1 Ll
H;E = [ D@ 2@ 3. O/[d 0] 23

F = aias(l,2)+asas(2,3)+a1as(l,3
+a1a4(1, 4)+agay(2,4)+azay(3,4)

N d

At least when integrating one loop (at a time), conformality
is always restorable by rescaling Feynman parameters:

(1,2)(2,3)

al%oq(Q,S) ()42%042(1,3) &3'%043(1,2) Oy — Oy (2 4)




Restoring Conformality

+ Feynman parameterization is naively at odds with
maintaining (dual) conformal invariance

1 00
4 1 Ll
H;E 1o f(f, 1) (¢, 2)(¢, 3)(¢, 4) O/[d 0] 23

F = aias(l,2)+asas(2,3)+a1as(l,3
+a1a4(1, 4)+agay(2,4)+azay(3,4)

N7

At least when integrating one loop (at a time), conformality
is always restorable by rescaling Feynman parameters:

(15201223
(2,4)
—(1,2)(2,3)(1,3) (a1a2+ Qi3+ g+ oy (a v+ Qo+ agu))

e e et e ER
(fitaaf2)

al%oq(Q,S) ()42%042(1,3) &3'%043(1,2) Oy — Oy




Restoring Conformality

+ Feynman parameterization is naively at odds with
maintaining (dual) conformal invariance

1

4 2 = [d*¢
3

1 R
(0.1)(0,2)(¢,3)(£,4) O/ 48] 23

0 O 0 @)

1 1 1

/[dS@] ﬁoc/[d%j} /da4 Fronfs)? :/[dZ&} I

0 0 0 0

At least when integrating one loop (at a time), conformality
is always restorable by rescaling Feynman parameters:

(1,2)(2,3)
(2,4)
F—(1,2)(2,3)(1,3) (a1a2+a2a3+ a1a3+a4(a1v+a2+agu))

N R RO g e N ma
(fitaaf2)

al%oq(Q,S) ()42%042(1,3) &3'%043(1,2) Oy — Oy




Dual-Conformal Sufficiency

+ We may now (regulate &) represent all of the
following integrals in the space of finite, manifestly
conformal (Feynman-)parametric integrals

13



Dual-Conformal Sufficiency

+ We may now (regulate &) represent all of the
following integrals in the space of finite, manifestly
conformal (Feynman-)parametric integrals

|JB, Dixon, Dulat, Panzer (to appear)|
Illéi}ul

13



Dual-Conformal Sufficiency

+ We may now (regulate &) represent all of the
following integrals in the space of finite, manifestly

conformal (Feynman-)parametric integrals
|JB, Dixon, Dulat, Panzer (fo appear)]

13



Dual-Conformal Sufficiency

+ We may now (regulate &) represent all of the
following integrals in the space of finite, manifestly

conformal (Feynman-)parametric integrals
|JB, Dixon, Dulat, Panzer (fo appear)]

2L ;00 S
k — =)
I — ];)Ik log™(9) Iy, € Spani / da 3@, ) }>

(a,b)(c,d)
(a,c)(b,d)3

where u’s are parity-even cross-ratios: (abcd) =



Dual-Conformal Sufficiency

+ We may now (regulate &) represent all of the
following integrals in the space of finite, manifestly

conformal (Feynman-)parametric integrals
|JB, Dixon, Dulat, Panzer (fo appear)]

2L ;00 S
k — =)
I — ];)Ik log™(9) Iy, € Spani / da 3@, ) }>

(a,b)(c,d)
(a,c)(b,d)3

where u’s are parity-even cross-ratios: (abcd) =



Dual-Conformal Sufficiency

+ We may now (regulate &) represent all of the
following integrals in the space of finite, manifestly
conformal (Feynman-)parametric integrals

[JB, McLeod, von Hippel, Wilhelm (2018)]

6 5 5" 4 3
& e
k e e’
I d
I — ,;_O I} log™(9) k © Spani / o 3@, ) }>

(a,b)(c,d)
(a,c)(b,d)3

where u’s are parity-even cross-ratios: (abcd) =



Dual-Conformal Sufficiency

+ We may now (regulate &) represent all of the
following integrals in the space of finite, manifestly
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1) 2
8 e 3
{@] ..... E@}
6 00 5
1 E/d2L62 48 U (&5(51n%+52n%)+51”%+52n3_1)
& (f1 - fo-1) 91 92 93 g1 g2

. k
fr = (o&+. =) +a’f)5gu2 = (oé+. = +&’§)51u3 + 01 82UsUusUs + Z&ia‘;;

1= froa+ (oot ..oy ) (ar+as)+ar B ugtay (Bi+B2); -1

go= (a+...+ar)+asus+ B+ Bour; g3= (ag+...+ay)+ag+Brus,
(a,b)(c,d)
(a,c)(b,d)3

where u’s are parity-even cross-ratios: (abcd) =



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

14



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number
o the “wrong” variables...

14



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number
o the “wrong” variables...

# rescaling-independent cross ratios: n(n-5)/2



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number
o the “wrong” variables...

# rescaling-independent cross ratios: n(n-5)/2
# actually independent cross ratios: 3n-15



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number

o the “wrong” variables...
1

4 3
# rescaling-independent cross ratios: n(n-5)/2

# actually independent cross ratios: 3n-15



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number
o the “wrong” variables...

(g ol
6 %

D 3
4

# rescaling-independent cross ratios: n(n-5)/2
# actually independent cross ratios: 3n-15 14



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number
o the “wrong” variables...

(g ol
6 %

4 5
# rescaling-independent cross ratios: n(n-5)/2
# actually independent cross ratios: 3n-15 14



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number
o the “wrong” variables...

6 % [ 2

# rescaling-independent cross ratios: n(n-5)/2
# actually independent cross ratios: 3n-15



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number
o the “wrong” variables...

» over-count the degrees of freedom

# rescaling-independent cross ratios: n(n-5)/2
# actually independent cross ratios: 3n-15



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number
o the “wrong” variables...

» over-count the degrees of freedom
» insensitive to the rank of the Gramian

T 2

D 4

# rescaling-independent cross ratios: n(n-5)/2
# actually independent cross ratios: 3n-15



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number

o the “wrong” variables...

» over-count the degrees of freedom - 3 1 5
» insensitive to the rank of the Gramian
» do not rationalize Gramian dets

D 4

# rescaling-independent cross ratios: n(n-5)/2
# actually independent cross ratios: 3n-15



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number

o the “wrong” variables...

» over-count the degrees of freedom - 3 1 5
» insensitive to the rank of the Gramian
» do not rationalize Gramian dets
0
vV (1-u—v—w)2—4duvw 3 ::

# rescaling-independent cross ratios: n(n-5)/2
# actually independent cross ratios: 3n-15



Conformal Complications

+ Although a good start, we haven’t yet eliminated
all conformal redundancies—just the rescalings

—which is to say that parity-even cross-ratios are:
e t0O great in number
o the “wrong” variables...

over-count the degrees of freedom - 3 1 5
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Further Novelties Found...

+ It turns out that traintracks do not saturate
functional complexity at fixed loop-order...

|JB, McLeod, von Hippel, Wilhelm (in progress)]
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