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A key component of the correlation functions,

arising from summing some particular Feynman

diagrams, turns out to be a 6] symbol for the
conformal group.

In fact, this talk will be centered around the 6] symbol.

We will discuss the appearance of the 6] symbol
in CFT, as the crossing kernel, and the
appearance of the 6] symbol in AdS loop
diagrams. We will compute the 6] symbol.
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Addition of three spins T T T’

6] symbols: products of 4 Clebsch-Gordan
coefficients, summed over m;

edges: spins

vertex: Clebsch-Gordan
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This was for SU(2). We would like to study the Euclidean
conformal group, SO(d+1,1)

SU(2) SO(d+1,1)
angular momentum J dimension A, spin J
Z-component angular .
momentum posItioN X
Clebsch-Gordan 3-pt function
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Where does the 6] symbol appear?

A CFT tfour-point function can be expanded in terms
of conformal blocks.

One can expand in either the s-channel blocks \ /

or the t-channel blocks / \
N

/N

Conformal bootstrap: equality between the two
expansions gives constraints on the OPE
coefficients
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Summary:
The 6] symbol Is a group-theoretic quantity.
It Is clearly important to know it.

It appears in the bootstrap as the crossing kernel.

We compute the 6] symbol in dimensions 1,24,
for external scalars. | will describe the computation later.



n fact, the conformal 6] symbol also appears
in an entirely different, and dynamical context.
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Consider summing the following Feynman diagrams,
ina CFT.

These appear as the planar diagram contribution
of the three-point function of bilinears in SYK.

The melons are not important here. What is important is
that we are gluing three 3-point functions.



In the notation from before, with each vertex
denoting a three-point function,
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This Is a tetrahedron: a 6] symbol
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AdS
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AdS

There Is a third context in which the 6] symbol
appears: loop diagrams in AdS.

he preamplitude for
the triangle diagram is
a 6] symbpol




Outline

1. SYK and SYK-like models, and all point correlation
functions.

2. Computation of 6] symbols

3. AdS triangle diagram.
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SYK

1 1
S = / dr (5)(7287)(@' TRGL: XinXle)

72
2 _ 91 Sachdev & Ye
O(N) Jijr = 3 N3 Kitaev

Tensor Model
Different symmetry,

same leading large N diagrams
1 1
S = /dT (§wabcﬁ7'¢abc T Zg wabcwadewfbewfdc)

O(N)3 Gurau; Witten; Carrozza & Tanasa
Klebanov & Tarnopolsky
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* Matrix model: ¢ab Tr(¢4) = QupPoePedPda

* Vector model: ¢, (¢ ¢)°

Easy

Hard

 [ensor model: ¢abc ¢abc¢ade¢fbe¢fdc %@
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We can compute all large N correlation functions in SYK by
summing all Feynman diagrams.
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Sachdev & Ye

2-pt: Melons -> Conformal in IR 6-pt: glue three 4-pt functions

JUOG j;

Kitaev; Polchisnki+ V.R.;: Maldacena & Stanford

- no exchanged melons
+ 4-pt contact

/& + cross-channels

Gross & V.R.

4-pt: Ladders: geometric sum 8-pt: glue 4-pt functions

(the lines on the higher-point functions are
really dressed propagators)
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Higher Dimensions

| > 1
£ = 5000 + i+

Bosonic d-dimensional model would give same
diagrams, but has negative directions. It is only
formally defined.

One can construct a well-defined two-dimensional
supersymmetric SYK model. Murugan, Stanford, Witten

Perhaps a bosonic higher dimensional model will be
found Giombi, Klebanov, Popov, Prakash, Tarnopolsky



Fishnet theory

Talks by Basso, Gromov, Kazakov
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A generalization of SYK diagrams. Can have n parallel
ines, corresponding to a two-point function of,

schematically, tr(¢n)




SYK 6-pt function of fundamentals
(3-pt of bilinears)
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Let us look at the planar diagram. As we said
before, it corresponds to three 3-pt functions glued
together.
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We extract the coefficient by contracting with the functional
form of a shadow three-point function.

d%x d’xodcs dz,d%xyd?e. ~ N
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A 6] symbol, as advertised earlier



One can derive a simple formula for the diagrams
appearing in the higher point functions.

‘??\ O O O /gy In 1d, h is dimension
£ %

dh h
/C () , 2h Chahyh hz- (7;)

4-pt function 3-pt fu'nction
fundamentals bilinears
(sum of ladders)

Conformal Block
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* These are simple rules for summing an infinite number of
diagrams. It doesn’'t matter that the four-point function is

made up of ladders. These apply to any four-point
functions.
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* These are simple rules for summing an infinite number of
diagrams. It doesn’'t matter that the four-point function is

made up of ladders. These apply to any four-point
functions.

* This is not just an OPE expansion. The Ch,hyhs are the
analytically extended OPE coefficients of the single-trace
operators. The four-point function is a sum of conformal

blocks of single-trace operators and double-trace

operators. This emerges upon closing the contour.




Computing the 6] Symbol
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In 1d, the conformal block is the hypergeometric function oF+ of a
single cross ratio. One can evaluate the integral for the 6] symbol

directly, to find a 4F3

In higher dimensions, the integral is harder. One would like to
somehow make the integral factorize, into a product of one-
dimensional integrals. It turns out one can do this, by an
appropriate analytic continuation of the contour into Lorentzian

sighature.
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partial waves
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Trivially, using the orthogonality of the partial waves, one can
invert this

X dexq - d%xy X
In 7= ({(O)--O4). T2 ) = Oy ---O)NT2 (2,
& (< ! 1) A,J) / vol(SO(d+1,1)) (O 1) A,J(I )



Deforming the contour gives Caron Huot’s Lorentzian inversion
formula
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Deforming the contour gives Caron Huot’s Lorentzian inversion
formula

_ dxdx
I =« —1 J/ /
&) & _( ) 0o Jo (XX)

<[] a-

x| 2Gj+d 1a—dr1 (G X) - ;Ai -

(|04, 05|01, O3])
J+d 1,A— d+1(X X) TA,;

Caron-Huot
Simmons-Duffin, Stanford, Witten

Applying this we find the 6] symbols in 2d and 4d. It is expressed
in terms of a product of two aF3’s



6] symbol, d=4
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Finally, do the three bulk integrals. This leaves an integral
involving three CFT 3-point functions.



sSummary

* We gave three contexts in which the conformal 6]
symbol appears: the crossing kernel, Feynman
diagrams in SYK, and a Witten loop diagram in AdS

* We computed the 6] symbol in d=1, 2, 4
 We gave a simple tormula for all-point correlation

functions in SYK, by summing all Feynman
diagrams.



