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• Nonplanar effects (1/Nc) in a theory with nice planar 
limit.  What remains of integrability?

• How does 10D supergravity on AdS5xS5 emerge 
from CFT?!?  
Get concrete data about string theory at low energies

• Eventual comparison with integrability results
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We’ll study 4-point correlators in N=4 SYM 
at strong ’t Hooft coupling



General CFT framework:

1. Spectrum:
-Protected single-traces: 

O
p
' Tr[�i1 . . .�ip ] � = p � 2,

-Unprotected single-traces � ⇠ �1/4 � 1 heavy

-Multi traces

This talk’s focus: composites of various single-traces

p=2: stress tensor
p>2: S5 graviton spherical harmonics

O
p@n

O
q � ⇡ p+ q + n+ �/N2

c



General CFT framework:

2. Operator Product Expansion (OPE)

hO
p
O

q
O

r
O

s
i =

X
+

+

O
p0 [Op0

O
p00
]n,`

+ …

tree-level

one-loop

Multi-traces encode supergravity loop expansion

⇠ 1/N2
c

⇠ 1/N4
c



Main tool:  recall Kramers-Kronig relation

 
Ex:   Re(f) ~ phase velocity of light  
       Im(f) ~ absorption by medium

Determines propagation from absorption

consequence of causality (analyticity at complex energies)

f(E) = f(1) +

Z
dE0 Disc f(E0)

2⇡(E0 � E � i0)



+ =CFT dispersion relation

Reconstructs double-traces from single traces:

coeff.[ [= X

finite  
sum

Z
+[ [

‘absorptive part’  
~ single traces

[SCH ’17]



Part I
• Lorentzian inversion formula

• Superconformal Ward identities & OPE

• Bootstrapping double-trace dimensions
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Part II
An unexpected SO(10,2) symmetry



s-channel  
OPE coefficients

absorptive 
part

block with  
J and Δ 

exchanged

converges for J>1
(boundedness in Regge limit)

Lorentzian inversion formula

[SCH ’17]

c(J,�) =

Z

⌃

⇥
G�+1�d,j+d�1

⇤
⇥

⇥
dDiscG

⇤

[see also: Simmons-Duffin, Stanford& Witten;  
Kravchuk& Simmons-Duffin ‘18]

causal  
diamond

+
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Input: double commutator

x2
x3

x4
x1

time

space

Positive-definite and bounded object.  Simplifications:

1. Large J (z→1): low twists in cross-channel

⇒ 1/J expansion [cf Fernando Alday’s talk!]

2. Large Nc:  dominated by single-traces

dDisc G ⌘ � 1
2 h0|[�4,�1][�2,�3]|0i



x2
x3

x4
x1

Commutators kill double-traces:

�1�4 ⇠
X

j,�

cj,�((x1 � x4)
2)

���1��4
2

[�1,�4] ⇠
X

j,�

cj,�|(x1 � x4)
2|

���1��4
2 sin(⇡

���1 ��4

2
)

/ �/N2
c

dDisc ~ imaginary part of Witten diagrams!

=
P

⇥
single
traces

Figure 1. Correlators in any large-N theories can be reconstructed from singularities that are
saturated by single-trace operators. Theories with a gravity dual correspond to the case where the
sum is e↵ectively finite.

where the regular terms contain at most a single logarithm as v ! 0, in contrast with terms

which we will call “singular” due to either poles or double logarithms at v ! 0. So far the

discussion has been general. In the present paper we will consider solutions consistent with

crossing in a large central charge expansion, in the regime of large t’ Hooft coupling �:

H(u, v) = H(0)(u, v) +
1

c
H(1)(u, v) +

1

c2
H(2)(u, v) + · · · (2.9)

In this regime the intermediate operators contributing to H(u, v) are double trace operators

with twist four and higher. The pole terms as v ! 0 present on the r.h.s. of (2.8) arise

from the protected, single-trace sector. Following general arguments, we see that these poles

are consistent with, and actually require, the existence of double trace operators of twist

�� ` = 4+2n. As we will see, their precise form at c = 1 su�ces to fix the OPE coe�cients

to

⌦
a(0)

↵
n,`

= 2(`+ 1)(6 + `+ 2n) . (2.10)

We use the bracket to denote the sum over all operators of approximate twist 4 + 2n and

spin `, emphasizing the fact that in general many nearly-degenerate operators contribute.

As we take into account 1/c corrections both the scaling dimensions and OPE coe�cients of

individual operators acquire corrections

�n,` = 4 + 2n+ `+
1

c
�(1)n,` +

1

c2
�(2)n,` + · · · (2.11)

an,` = a(0)n,` +
1

c
a(1)n,` +

1

c2
a(2)n,` + · · · (2.12)

As we will see in the next two sections �(1)n,` and a(1)n,` are again fully determined by the singular

terms in (2.8). We obtain

⌦
a(0)�(1)

↵
n,`⌦

a(0)
↵
n,`

= � n
(1 + `)(6 + `+ 2n)

,
⌦
a(1)

↵
n,`

=
1

2
@n

⌦
a(0)�(1)

↵
n,`

, (2.13)

– 4 –



dDiscG

1⇠ 1/�2
gap

0

1

⇠ 1/N2
c

light
(computable)

unknown
(heavy/non-  

perturbative)

[see also: Alday,Bissi&Perlmutter; Li,Meltzer&Poland]

Nonperturbative picture:

z ⇠ z̄

Knowing just light single-traces, dispersion relation yields:  
       ⇒ full OPE data w/ controlled 

perturbative+nonperturbative corrections!



Superconformal OPE
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We study correlator of four half-BPS primaries in

O
p(x, y) ⌘ yi1 · · · yip Tr[�i1 · · ·�ip ]� (multi traces)

Null six-vectors y conveniently tracks R-symmetry indices

[0, p, 0]

Correlator depends on cross-ratios:

which will be normalized in this paper so that

hOp(x1, y1)Op(x2, y2)i =
✓
y212
x212

◆p

(2.2)

where x2ij = (xi � xj)2, y2ij = yi · yj . Due to the BPS condition, the scaling dimension of Op

is exactly p, where p � 2. At strong ‘t Hooft coupling, they admit a dual description as
Kaluza-Klein modes of the graviton on AdS5⇥ S5.

Four-point correlators depend, up to an overall factor, on the AdS5 and S5 cross-ratios:

u =
x212x

2
34

x213x
2
24

= zz̄, v =
x223x

2
14

x213x
2
24

= (1� z)(1� z̄), (2.3)

� =
y212y

2
34

y213y
2
24

= ↵↵̄, ⌧ =
y223y

2
14

y213y
2
24

= (1� ↵)(1� ↵̄), (2.4)

with the prefactor given as follows:

hOp1(x1, y1) · · · Op4(x4, y4)i ⌘
✓
y212
x212

◆ p1+p2
2

✓
y234
x234

◆ p3+p4
2

✓
x214y

2
24

x224y
2
14

◆ p2�p1
2

✓
x214y

2
13

x213y
2
14

◆ p3�p4
2

⇥ G{pi}(z, z̄,↵, ↵̄) . (2.5)

We will be studying the correlator in the regime appropriate to the gauge-gravity duality,
where the ’t Hooft coupling � = g2YMN is large but finite, and work order by order in the
gravity loop expansion 1/c where c = N2�1

4 :

G{pi} = G(0)
{pi} +

1

c
G(1)
{pi} +

1

c2
G(2)
{pi} + ... (2.6)

The Operator Product Expansion (OPE) provides a natural series expansion of the
correlator. In its most straightforward form, where we do not try to exploit supersymmetry,
the terms involve standard four-dimensional conformal blocks, times S5 spherical harmonics
for each R-symmetry representation which can be exchanged. The conformal blocks for a
given spin and dimension are written as

Gr,s
`,�(z, z̄) =

zz̄

z̄ � z


kr,s��`�2

2

(z)kr,s�+`
2

(z̄)� kr,s�+`
2

(z)kr,s��`�2
2

(z̄)

�
, (2.7)

kr,sh (z) = zh 2F1

⇣
h+

r

2
, h+

s

2
; 2h, z

⌘
, (2.8)

with r = p21, s = p34. Since SO(6)R and the SO(4,2) Lie algebra are analytic continuations
of each other, the S5 spherical harmonics are given by an identical expression with some
quantum numbers reversed:

Zr,s
m,n(↵, ↵̄) = (�1)mG�r,�s

m,�n (↵, ↵̄), (2.9)

where the labels m,n are related to the R-symmetry Dynkin labels by [m,n�m,m]. In the

– 4 –
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In principle we should use superconformal blocks

[Nirschl& Osborn ’04]

For four half-BPS ops, really only need Ward identity:

the z dependence disappears when 𝛼=z

General solution:

literature these are often written as Jacobi polynomials, see [? ]. The OPE decomposition
of the correlator (2.5), in the (12) or s-channel, is then

G{pi}(z, z̄,↵, ↵̄) =
X

`,�,m,n

c̃{pi}(`,�,m, n)Gp21,p34
`,� (z, z̄)Zp21,p34

m,n (↵, ↵̄). (2.10)

The summations over m,n are finite and range over the R-symmetry representations
which can appear in the tensor product of each of the pairs (1, 2) and (3, 4). Using the
general formula for the tensor product of two representations (see [? ]):

[0, p1, 0]⇥ [0, p2, 0] =
p1X

m=0

p1�mX

s=0

[m, p21 + 2s,m], (2.11)

where pij = pi � pj and we have assumed p1  p2, we get the summation range in eq. (2.10):

0  m  min{pi}, max(|p12|, |p34|) +m  n  min(p1 + p2, p3 + p4)�m, (2.12)

where the difference between n and its lower/upper bound is restricted to be an even integer.
The OPE (2.10) accounts for all the bosonic symmetries of the correlator but is rather

redundant because it does not exploit supersymmetry. The natural refinement is to use
superconformal blocks instead, but here we will follow a simpler route which is applicable
thanks to the half-BPS nature of our external operators.

2.1 Superconformal Ward identities

A half-BPS supermultiplet is annihilated by half of the 32 supercharges of the theory. Since
the remaining charges split into raising and lowering operators among the multiplet, only 1/4
of the supercharges actually act nontrivially on a given bosonic primary Op(x, y). Because we
are considering a correlator of four operators, these 1/4 are generically linearly independent
of each other and span the full algebra. Thus the correlators of superconformal descendents
are fully determined from those of the primaries [].

However, when the x and y cross-ratios are aligned in a specific way, linear independence
fails, which leads to a Ward identity satisfied by the bosonic correlator []:

@z
⇣
G(z, z̄,↵, ↵̄)

���
↵=z

⌘
= 0. (2.13)

That is, the z dependence of the correlator disappears upon setting ↵ = z.
Since the dependence of the correlator on ↵, ↵̄ is purely rational (the left-hand-side of

eq. (2.5) being polynomial in the y2ij), the Ward identities can be solved by factoring out
powers of z � ↵, and its conjugates under the (z $ z̄) and (a $ ↵̄) symmetries. The most
general solution, consistent with these symmetries, is [? ? ]:

G{pi}(z, z̄,↵, ↵̄) = k�(z,↵)�(z̄, ↵̄) +
(z � ↵)(z � ↵̄)(z̄ � ↵)(z̄ � ↵̄)

(↵� ↵̄)(z � z̄)

⇥
✓
��(z̄, ↵̄)f(z,↵)

↵z(z̄ � ↵̄)
+

�(z̄,↵)f(z, ↵̄)

↵̄z(z̄ � ↵)
+

�(z, ↵̄)f(z̄,↵)

↵z̄(z � ↵̄)
� �(z,↵)f(z̄, ↵̄)

↵̄z̄(z � ↵)

◆

– 5 –

+
(z � ↵)(z � ↵̄)(z̄ � ↵)(z̄ � ↵̄)

(zz̄)2(↵↵̄)2
H{pi}(z, z̄,↵, ↵̄), (2.14)

where � is a fixed function satisfying �(z, z) = 1, given shortly. Note that all the functions
above depend on {pi}, which we omitted for simplicity. In practice, starting from a correlator
which fulfills the Ward identity (2.13), k, which we will call the unit contribution, is obtained
simply by setting z = ↵, z̄ = ↵̄. The chiral correlator f is obtained by taking only one such
limit and subtracting the unit:

k{pi} = G{pi}(z, z̄, z, z̄)

f{pi}(z̄, ↵̄) =
↵̄z̄

z̄ � ↵̄

�
G{pi}(z, z̄, z, ↵̄)� k{pi}�{pi}(z̄, ↵̄)

� (2.15)

Finally, the reduced correlator H can be extracted from G by subtracting everything else
that comes before it in eq. (2.14).

There is a rather unique, convenient choice for the function �(z, ↵̄), which ensures that
the superconformal Casimir equation commutes with the preceding decomposition [? ]:

�{pi}(z,↵) =
⇣ z

↵

⌘max(p21,p34)/2
✓
1� a

1� z

◆max(p21+p34,0)/2

. (2.16)

The Casimir operator then annihilates the k contribution, in particular. In fact there are
four possible solutions to this constraint, obtained by replacing either “max” by a “min”:
the above solution is singled out by the fact that it does not introduce spurious negative
exponents at z ! 0 and ↵ ! 1. The same solution was used in [? ] (who discussed the
specific case that the pi’s are ordered).

We now review the implications of the Casimir equations, following []. Its action on the
chiral correlator takes on a separated form, whose general solution involves products of the
hypergeometric functions in eq. (2.7), thus giving the OPE:

f{pi}(z,↵) =
1X

j=0

X

m

b{pi}(j,m)kp21,p341+m/2+j(z)k
�p21,�p34
�m/2 (↵). (2.17)

The sum over m is finite since f is a polynomial in 1/↵, whose degree determines the range:

max(|p12|, |p34|)  m  min(p1 + p2, p3 + p4)� 2, (2.18)

where in addition m should differ from its lower bound by an even integer. Single-valuedness
of the correlator (2.5) forces j to be an integer. It must be nonnegative due to the unitarity
bound, since the superconformal Casimir eigenvalue (m+ j)(m+ j + 1)�m(m+ 1) must
be nonnegative.

The Casimir equation for the reduced correlator H also takes separated form, and its
solution is similar to the naive OPE (2.10) but with the dimension shifted by 4 in accordance

– 6 –

k
f(z,↵) =protected H(z, z̄,↵, ↵̄)=dynamical

i



Superconformal Casimir commutes with decomposition

f{pi}(z,↵) =
X

j,m

b{pi}(j,m)k1+m+j(z)k�m(↵)

H{pi}(z, z̄,↵, ↵̄) =
X

j,�,m,n

a{pi}(j,�,m, n)Gj,�(z, z̄)Zm,n(↵, ↵̄)

k ⇠ 2F1, G ⇠ zz̄

z � z̄
(kk � kk), Z ⇠ similar

These are standard bosonic blocks:

In practice, we won’t need ‘superconformal blocks’:  
  a(j,∆;m,n) and b(j;m) contain all information!

[cf Bissi& Lukowksi ‘15]



Disconnected correlator
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At order N0, correlator is very simple:

Figure 1: ihewfi

normalization. The disconnected correlator itself is simply

G(0)
pqqp = �p,q +

⇣u
�

⌘ p+q
2

h⇣⌧
v

⌘q
+ �p,q

i
. (3.1)

The OPE decomposition of such correlators is well known [? ]. However, we want to first
apply the supersymmetry decomposition (2.14). While we find that the unit part is given by
a simple general formula: k(0)pqqp = 1 + 2�pq, the chiral and reduced correlators are generally
given by more lengthy expressions. To give a few examples:

f (0)
2222 =

z2(1� a)

(1� z)2a
+

z

1� z
+ z +

z2

a2
, H(0)

2222 = u2 +
u2

v2
,

f (0)
2332 =

(1� a)z3/2

(1� z)3a3/2
(a+ z � 2az), H(0)

2332 =
⌧u5/2

�1/2v3
.

(3.2)

Generally, starting from p, q � 3, neither f nor H are simple sums and the expressions
quickly grow lengthier with increasing p and q. Nonetheless, the corresponding OPE data
admits a simple uniform expression, as we now describe.

3.1 OPE coefficients

The OPE coefficients ha(0)(h, h̄,m, n)ipqqp for a given correlator depend on h, h̄, the scaling
dimensions p, q and the R-symmetry representation labels m,n of the exchanged operator.
They are obtained by applying the R-symmetry projection (2.21) and inversion integral
(2.28) to the double-discontinuity of H(0). (We will discuss the chiral part f (0) below.) Since
there are no branch cut at z̄ = 1, the double-discontinuity here simply picks out the polar
terms. For instance, in the above examples, switching to the variables x = z

1�z and y = 1�z̄
z̄ ,

we find for the poles in y:

z̄ � z

zz̄
dDiscH(0)

2222 = Z0,0
0,0 (↵, ↵̄)⇥ dDisc


x

y2
� x2

y

�
,

z̄ � z

zz̄
dDiscH(0)

2332 = Z1,1
0,1 (↵, ↵̄)⇥

1p
zz̄

dDisc

x2

y3
� x3

y2

�
. (3.3)

– 11 –

SUSY decomposition gives mess, however

Trick: magic differential operator which kills protected stuff
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Multiplet Dynkin labels Dimension � and spin `
Half-BPS B0,n [0, n, 0] � = q, ` = 0

Quarter-BPS Bm,n [m,n�m,m] � = m+ n, ` = 0, m � 1
Semi-short C`,m,n [m,n�m,m] � = m+ n+ 2 + `

Long A`,�,m,n [m,n�m,m] � > m+ n+ 2 + `

Table 1: Supermultiplets which can appear in the four point function of half-BPS operators.

An effective way to group these contributions is to use the superconformal (quadratic)
Casimir invariant. The different types of supermultiplets that can contribute to the four-point
function are listed in table 1. The corresponding Casimir eigenvalues are

C2 ⌘ 1
2 (�(�+ 4) + `(`+ 2)�m(m+ 2)� n(n+ 4)) (3.11)

=

8
><

>:

0, Half-BPS B0,n ,

m(n+ 1), Quarter-BPS Bm,n ,

(`+m+ 2)(`+ n+ 3), Semi-short C`,m,n .

(3.12)

As mentioned, the superconformal Casimir commutes with the supersymmetry decomposition
(2.14) and is diagonalized by the OPE expansions (2.17) and (2.19). For convenience let us
recall the eigenvalues:

C2

8
><

>:

k

fj,m(z,↵) ⌘ k1+m/2+j(z)k�m/2(↵)

H`,�,m,n(z, z̄, a, ↵̄) ⌘ G�+4,`(z, z̄)Zm,n(↵, ↵̄)

=

8
><

>:

0

j(m+ j + 1)
1
2 (�(�+ 4) + `(`+ 2)�m(m+ 2)� n(n+ 4))

(3.13)

Equating the eigenvalues (3.11) and (3.13) will give a simple way of understanding the
k, f,H-decomposition of superconformal blocks.

Let us first discuss the short half-BPS blocks B0,�. These are the only blocks for which
the Casimir eigenvalue vanishes, and therefore the only blocks which can have k 6= 0. We
find that the normalization used before in eq. (3.1) gives k = 1 in all cases. However, for
each R-symmetry representation, both the chiral and reduced correlator can also contain a
term with vanishing Casimir eigenvalues: the functions f0,m(z,↵) and Hm,n,m,n(z, z̄, a, ↵̄).
Looking at the disconnected OPE data a(0)m,n,m,n and b(0)0,m in eqs. (3.8) and (3.10), we find
that these come with unit coefficient for all the allowed R-symmetry representations. On
the other hand, only the half-BPS block with double-trace dimension � = p+ q is expected
physically to contribute to the disconnected correlator. Consistency thus requires this
half-BPS block to be equal to the sum over all the vanishing-Casimir contributions to f (0)

– 14 –

Supermultiplets which can appear in [0,p,0] correlators:

[Drummond, Gallot & Sokatchev ’06]

3.3 �(8)
: A remarkable eighth-order differential operator

The combination �(8) which appears in the denominator of a(0) in eq. (3.8) will play an
important role below. It depends only on Casimir invariants like h(h� 1) and can in fact
be viewed as a eight-order differential operator:

�(8)H{pi} ⌘
zz̄↵↵̄

(z � z̄)(↵� ↵̄)
(Dz �D↵) (Dz �D↵̄) (Dz̄ �D↵) (Dz̄ �D↵̄)

(z � z̄)(↵� ↵̄)

zz̄↵↵̄
H{pi}

(3.20)
where

Dx ⌘ x2@x(1� x)@x � 1
2(r + s)x2@x � 1

4rsx (3.21)

with r = p21, s = p34. Acting on the product G`,�+4(z, z̄)Zm,n(↵, ↵̄) this has precisely the
eigenvalue in eq. (3.9).

This operator has two important properties. First, it annihilates all the protected
multiplets, as listed in table 1. Second, one can show that �(8)H{pi} transforms under
z 7! z/(z � 1) crossing like the correlator of four scalar primaries of dimension pi + 2 and
R-symmetry [0, pi�2, 0]. These are precisely the quantum numbers of the superconformal
descendant Lpi�2 ⌘ Q4Opi . We can thus identify �(8)H{pi} as the correlator of the two
scalar primaries Lpi�2 with their complex conjugates, since this operator also decouples all
protected multiplets due to the large number of Q’s. (The Lpi�2 are primaries with respect
to the bosonic subgroup of the superconformal group.) This generalizes the p = 2 case
studied in [? ], where L0 was the chiral Lagrangian density.

The presence of �(8) in the denominator of eq. (3.8) suggests that �(8)H(0) is a simple
function; indeed by looking at individual cases we find that:

�(8)H(0)
pqqp =

u
p+q
2 +2

�
p+q
2 �2

✓
⌧ q�2

vq+2
+ �p,q

◆
⇥ C(p)C(q) (3.22)

which is precisely the expected form for such a correlator of complex scalars, up to a
normalization C(p) = p2(p2 � 1). The correlators with different p’s will be combined into a
single ten-dimensional dilaton amplitude in section 5.

4 Tree-level correlator at strong coupling: order 1/c1

At order 1/c in the limit of strong ‘t Hooft coupling, the correlator can be computed in
principle in terms of tree-level Witten diagrams in IIB supergravity on AdS5⇥S5 []. The
present formalism offers a powerful alternative which relies only on CFT ideas. The only
input from supergravity is the assumption that all the single-trace operators are the half-BPS
ones. The double-discontinuity of the correlator comes exclusively from their exchange in
the cross-channels, which can be computed easily. The inversion integral then reconstructs
the full tree-level correlator, in the form of its OPE data.

The double-discontinuity is computed explicitly by inserting in the cross-channel the
half-BPS blocks given in eq. (3.15) or equivalently eq. (3.14), together with the crossing

– 17 –

All but longs are killed by a 8th order operator:

3.3 �(8)
: A remarkable eighth-order differential operator

The combination �(8) which appears in the denominator of a(0) in eq. (3.8) will play an
important role below. It depends only on Casimir invariants like h(h� 1) and can in fact
be viewed as a eight-order differential operator:
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(z � z̄)(↵� ↵̄)

zz̄↵↵̄
H{pi}

(3.20)
where

Dx ⌘ x2@x(1� x)@x � 1
2(r + s)x2@x � 1

4rsx (3.21)

with r = p21, s = p34. Acting on the product G`,�+4(z, z̄)Zm,n(↵, ↵̄) this has precisely the
eigenvalue in eq. (3.9).

This operator has two important properties. First, it annihilates all the protected
multiplets, as listed in table 1. Second, one can show that �(8)H{pi} transforms under
z 7! z/(z � 1) crossing like the correlator of four scalar primaries of dimension pi + 2 and
R-symmetry [0, pi�2, 0]. These are precisely the quantum numbers of the superconformal
descendant Lpi�2 ⌘ Q4Opi . We can thus identify �(8)H{pi} as the correlator of the two
scalar primaries Lpi�2 with their complex conjugates, since this operator also decouples all
protected multiplets due to the large number of Q’s. (The Lpi�2 are primaries with respect
to the bosonic subgroup of the superconformal group.) This generalizes the p = 2 case
studied in [? ], where L0 was the chiral Lagrangian density.

The presence of �(8) in the denominator of eq. (3.8) suggests that �(8)H(0) is a simple
function; indeed by looking at individual cases we find that:

�(8)H(0)
pqqp =

u
p+q
2 +2

�
p+q
2 �2

✓
⌧ q�2

vq+2
+ �p,q

◆
⇥ C(p)C(q) (3.22)

which is precisely the expected form for such a correlator of complex scalars, up to a
normalization C(p) = p2(p2 � 1). The correlators with different p’s will be combined into a
single ten-dimensional dilaton amplitude in section 5.

4 Tree-level correlator at strong coupling: order 1/c1

At order 1/c in the limit of strong ‘t Hooft coupling, the correlator can be computed in
principle in terms of tree-level Witten diagrams in IIB supergravity on AdS5⇥S5 []. The
present formalism offers a powerful alternative which relies only on CFT ideas. The only
input from supergravity is the assumption that all the single-trace operators are the half-BPS
ones. The double-discontinuity of the correlator comes exclusively from their exchange in
the cross-channels, which can be computed easily. The inversion integral then reconstructs
the full tree-level correlator, in the form of its OPE data.

The double-discontinuity is computed explicitly by inserting in the cross-channel the
half-BPS blocks given in eq. (3.15) or equivalently eq. (3.14), together with the crossing
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properties, up to a h, h̄-independent constant. It can be written in general as:

ha(0)pqqpi(h, h̄,m, n) =
⇣
1 + �p,q(�1)`

⌘ rq�p,q�p
h rq�p,q�p

h̄

rq�p,q�p
1+n�m

2

rq�p,q�p
2+m+n

2

(3.7)

⇥
�(h+ p+q

2 )�(h̄+ p+q
2 )

�(h� p�q
2 )�(h̄� p+q

2 )

h̄(h̄� 1)� h(h� 1)

�(8)
m,n(h, h̄)

⇥ (3 +m+ n)(1 + n�m)(m+ 1)(n+ 2)

�(p+q+4+m+n
2 )�(p+q+2+n�m

2 )�(p+q�(n�m)
2 )�(p+q�(2+m+n)

2 )
, (3.8)

where

�(8)
m,n(h, h̄) =

✓
h� n�m+ 2

2

◆✓
h+

n�m

2

◆✓
h� m+ n+ 4

2

◆✓
h+

m+ n+ 2

2

◆

⇥
✓
h̄� n�m+ 2

2

◆✓
h̄+

n�m

2

◆✓
h̄� m+ n+ 4

2

◆✓
h̄+

m+ n+ 2

2

◆
.

(3.9)

Note that the product �(8) simply provides zeros at the locations (3.6) and their orbits
under h 7! 1� h and h 7! h̄.

For the chiral correlator f , which depends only on z,↵, we similarly apply the one-
dimensional inversion formula in eq. (2.30). We find a structurally similar result (loosely,
one drops all the factors which depend either on h or m+ n, and substitutes n�m

2 7! m
2 ):

hb(0)pqqpi(j,m) =
⇣
1 + �p,q(�1)j

⌘rq�p,q�p
h̄

rq�p,q�p
1+m/2

⇥
�(h̄+ p+q

2 )

�(h̄� p+q
2 )

(�1)m+(p+q�2)/2

(h̄�m/2� 1)(h̄+m/2)

�����
h̄=1+m/2+j

⇥ m+ 1

�(p+q+m
2 + 1)�(p+q�m

2 )
. (3.10)

The last line of both eqs. (3.8) and (3.10) contains a h, h̄-independent normalization factor,
which in all cases is determined by the following nice property: the coefficient becomes unity
when setting h = 1 + n�m

2 and h̄ = 2 + m+n
2 (or j = 0 in the chiral case). This corresponds

to the half-BPS contribution to the correlator as we now explain.

3.2 Reorganizing into superconformal blocks

Although this will not be needed below, for future reference let us describe the decomposition
of the above results in terms of superconformal blocks.

A general expectation is that only operators with double-trace dimensions contribute
to the disconnected correlator (with the lone exception of the identity operator). However,
looking at the result for a(0)pqqp in eq. (3.8), we found contributions to H below the double-trace
threshold h � p+q+2

2 , exemplified by eq. (3.6). Looking more closely into them, we find that
these can always be paired with contributions to the chiral part f in eq. (3.10) which appear
with identical coefficients. These contributions together organize into superconformal blocks
with double-trace dimensions.
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h = 1 +
�� j

2
, h̄ = 2 +

�+ j

2

Since ∆(8)H =generalized free field, OPE takes simple form:

Here we have divided by the eigenvalue: 

[cf Drummond et al ’18]

a{pi}(j,�,m, n) =
1

�(8)
m,n(h, h̄)

⇥ (�-functions)
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From this N0 OPE data, can derive formulas 
for various superconformal blocks

Ex: half-BPS block with [0,p+q,0]
= sum of all contributions with Casimir eigenvalue 0
and H(0):

Br,s
0,� =

8
>>>>><

>>>>>:

k = 1, f(z,↵) =
��2X

i=max(|r|,|s|)

kr,s
1+ i

2

(z) k�r,�s
� i

2

(↵),

H(z, z̄,↵, ↵̄) =
��4X

i=max(|r|,|s|)

(��i)/2X

j=0

Gr,s
j,i+j+4(z, z̄) Z

r,s
j,i+j(↵, ↵̄).

(3.14)

Since this must hold for all correlators, this gives a formula for half-BPS blocks with any �.

For half-BPS blocks, an alternative is made possible by generalizing the results from
[? ] where they considered the case of r = s. To generalize their results, one uses the
Casimir equation to write the bosonic blocks with r, s dependence, and by imposing the
Ward identity of eq. (2.13). The generalized result becomes

Br,s
0,� = Gr,s

0,�Z
r,s
0,�

+ ⇣(�)Gr,s
1,�+1Z

r,s
1,��1 + ⇣(�)⇣(�+ 2)Gr,s

2,�+2Z
r,s
0,��2

+ ⇣(�� 2)⇣(�)Gr,s
0,�+2Z

r,s
2,��2 + ⇣(�� 2)⇣(�)⇣(�+ 2)Gr,s

1,�+3Z
r,s
1,��3

+ ⇣(�� 2)⇣2(�)⇣(�+ 2)Gr,s
0,�+4Z

r,s
0,��4, (3.15)

where ⇣(�) = (�2�r2)(�2�s2)
24�2(�2�1) . Let us describe the contributions from each line of eq. (3.15).

The block in the first line is always present and can be identified with the identity k in
eq. (3.14). However, because of the coefficient ⇣(�), the blocks in the second line only
contribute for � � 2 + min(|r|, |s|), while the ones in the last two lines only contribute
for � � 4 + min(|r|, |s|). One can shift the labels in the bounds of the sums in eq. (3.14)
to see that the contributions from the second line in eq. (3.15) can be identified with the
contribution from the chiral correlator, while contributions from the last two lines can be
identified with the reduced correlator.

Although eq. (3.14) was derived using the disconnected correlator (where r = s), we
find that this expression is precisely equal to eq. (3.15) for the large set of values of � and
r 6= s that we have verified. We believe that this equality is an exact mathematical identity.

For the semi-short multiplets C`,m,n, equating the Casimirs in eqs. (3.11) and (3.13) we
find (for generic integer m,n) a single matching chiral block:

f`+m+2,n�m(z,↵). (3.16)

For the H part, on each of the two families (3.6) we find a one-parameter family of solutions,
and looking at the coefficients ha(0)ipqqp we find that they all appear with the same coefficient
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Agrees with earlier formulas for superconformal blocks
[Dolan& Osborn, …]
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At this order, dDisc saturated by single-traces (thus half-BPS)

dDisc G =
X

O
p0

=
X

fpqp0frsp0Bp0

finite  
sum

Inversion formula (thank you SUSY!) converges for J>-2

In particular, we get a crossing equation for the half-BPS f ’s



Ex:

2

3

2

3

2

3

2

3

2 3

+…

3 3

2 2

3
= f2

233 B0,3

From this we deduce:

of the t- and u-channel OPE force its half-BPS part to be

f2323
���
1/2�BPS

=

✓
1

3
f222f233 +

7

9
f2
233

◆
B0,3 +

✓
1 +

1

3
f222f233 +

1

9
f2
233

◆
B0,5 +O(1/c2).

(4.8)
Focusing on the first term, which is the only single-trace block, the s-channel OPE is satisfied
only if the coefficient of B0,3 is f2

233. Thus crossing symmetry requires that

f233

✓
1

3
f222 �

2

9
f233

◆
= O(1/c2), (4.9)

which has a nontrivial solution, f233 = 3
2f222, in precise agreement with eq. (4.3). The

trivial solution f233 = 0 could be ruled out using the stress tensor Ward identities: the
O2 multiplet contains the stress tensor, whose coupling to any pair of identical scalars is
nonzero and proportional to their dimension (consistent with the nontrivial solution). More
generally, the 2p2p crossing relation requires that

f2pp

✓
1

p
f222 �

2

p2
f2pp

◆
= O(1/c2), (4.10)

which has the nontrivial solution f2pp = p/2f222 in agreement with both eq. (4.3) and the
stress tensor Ward identity. We find empirically that it seems possible to rule out the trivial
solutions without relying on the Ward identities: for example, setting f233 = 0 (but not
the other ones) would eventually lead to a crossing equation with no solution for a higher
correlator (namely 5566).

We include O(1/c2) errors in the above, because double-trace operators, such as semi-
short ones, generally contribute to the double-discontinuity at this order. A full analysis of
the crossing relations at finite c would be very interesting but is beyond our scope. [Is it
something that Rastelli/Beem have already done, actually?]

Further coefficients can be fixed by looking at more correlators. For example, the 3p3p

correlators gives two equations each, from the coefficients of the two single-trace blocks
B0,p�1 and B0,p+1. From these we can uniquely fix the f3p p+1 and f4pp three-point functions
for all p. We find that the solution is always unique (up to an overall sign ambiguity for
each operator: Op 7! ±Op, which we fix by taking all three-point functions to be positive).

From the 4p4p correlators one similarly fixes all f4p p+2 and f6pp three-point functions,
then from 5p5p with p � 5 one can fix f5p p+1, f5p p+3 and f8pp, and so on. There appears
to be a simple pattern: the qpqp family with a given q, once families with lower q’s have
been used, fixes all the fqmn coefficients in the range of eq. (4.3) as well as f2q�2 pp.

We conclude that, under the assumption that the only single-trace operators are the
half-BPS ones (as expected at strong ‘t Hooft coupling), crossing symmetry at order 1/c

uniquely determines the three-point functions to have the values in eq. (4.3) at this order.

4.2 Chiral (protected) correlator: deducing the free correlator

Interestingly, from this solution for the chiral correlator obtained at strong coupling (this is
how we justified having all single-traces operators being half-BPS), we can recover Feynman
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In this way we bootstrap all 3-point couplings!  
Matches known @weak&strong coupling
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get full protected part             at order 1/N2
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Figure 3: ihewfi

4.3 Reduced correlator: Anomalous dimensions at order 1/c

Let us now turn to our main target, the correlator at order 1/c for external operators with
general R-symmetry representations. This gives information on both the 1/c anomalous
dimensions of double-trace operators and 1/c corrections to their OPE coefficients.

Our input again is the double-discontinuity written as a sum of half-BPS blocks with
coefficients in eq. (4.3), and crossing relation (4.1). Explicitly, it is:

dDiscG{pi} = dDisc
⇣u
�

⌘ p1+p2
2

⇣⌧
v

⌘ p2+p3
2

min(p2+p3,p1+p4)�2X

�=max(|p23|,|p14|)+2

p
p1p2p3p4�

4
Bp23,p14
� (z0, z̄0,↵0, ↵̄0)

(4.16)
where x0 = (1� x). To get information on unprotected operators we first extract the H part
following the SUSY decomposition (2.14); in the context of the 2222 correlator (discussed at
length in []), this gives, for reference,

dDiscH(1)
2222 = dDisc


u3(1� 3u)

(1� u)3v
� 2u5 log u

(1� u)4v

�
(4.17)

where we have dropped all terms with no poles at v = 0.3 We then plug into the Lorentzian
inversion integral (2.28).

Loosely speaking, the log u term informs us about anomalous dimensions, whereas
the constant term corrects in addition the OPE coefficients. We begin with the former.
Converting to x = z

1�z and y = 1�z̄
z̄ variables, the above gives

dDisc
z̄ � z

zz̄
H(1)

2222

���
log u

= �2x3 dDisc
1

y
(4.18)

and the integral () gives straightforwardly, using formulas (??) and (??) for the x and y

powers,
ha(0)�(1)(h, h̄, 0, 0)i2222 = �2(h+ 1)(h)(h� 1)(h� 2)r0,0h r0,0

h̄
Z0,0
0,0 . (4.19)

This is in agreement with []. The bracket notation indicates that the result is generally the

3For unequal operators, one can generally drop all powers of v higher than 1
2min(0, p1 + p4 � p2 � p3), as

these correspond to double-trace dimensions. These vanish upon integration as can be seen from the zeros
of the 1/� factors in eq. (??).
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dimensions of double-trace operators and 1/c corrections to their OPE coefficients.

Our input again is the double-discontinuity written as a sum of half-BPS blocks with
coefficients in eq. (4.3), and crossing relation (4.1). Explicitly, it is:

dDiscG{pi} = dDisc
⇣u
�

⌘ p1+p2
2
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v

⌘ p2+p3
2

min(p2+p3,p1+p4)�2X
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p1p2p3p4�

4
Bp23,p14
� (z0, z̄0,↵0, ↵̄0)

(4.16)
where x0 = (1� x). To get information on unprotected operators we first extract the H part
following the SUSY decomposition (2.14); in the context of the 2222 correlator (discussed at
length in []), this gives, for reference,

dDiscH(1)
2222 = dDisc


u3(1� 3u)

(1� u)3v
� 2u5 log u

(1� u)4v

�
(4.17)

where we have dropped all terms with no poles at v = 0.3 We then plug into the Lorentzian
inversion integral (2.28).

Loosely speaking, the log u term informs us about anomalous dimensions, whereas
the constant term corrects in addition the OPE coefficients. We begin with the former.
Converting to x = z

1�z and y = 1�z̄
z̄ variables, the above gives

dDisc
z̄ � z

zz̄
H(1)

2222

���
log u

= �2x3 dDisc
1

y
(4.18)

and the integral () gives straightforwardly, using formulas (??) and (??) for the x and y

powers,
ha(0)�(1)(h, h̄, 0, 0)i2222 = �2(h+ 1)(h)(h� 1)(h� 2)r0,0h r0,0

h̄
Z0,0
0,0 . (4.19)

This is in agreement with []. The bracket notation indicates that the result is generally the

3For unequal operators, one can generally drop all powers of v higher than 1
2min(0, p1 + p4 � p2 � p3), as

these correspond to double-trace dimensions. These vanish upon integration as can be seen from the zeros
of the 1/� factors in eq. (??).
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In fact enough to fully reconstruct free theory!

[1D inversion: Simmons-Duffin, Stanford& Witten]

f(z,↵)

+ +Gfree =
X

where each line represents ≥0 Wick contractions

✓



Double-trace mixing

The log(z) term gives anomalous dimensions

sum of multiple nearly-degenerate operators. The set of correlators really gives a matrix of
anomalous dimensions matrix, whose eigenvalues are the actual anomalous dimensions.

The operators which can mix with each other have the same R-symmetry representation
[m,n�m,m] and twist ⌧ = ��`. To obtain their matrix element in the basis of disconnected
theory operators, we need to divide by the disconnected OPE data in eq. (), and since
ha(0)ipqqp = ha(0)iqppq, we have:

�(1)pq,rs ⌘
ha(0)�(1)ipqrsq

ha(0)ipqqpha(0)irssr
=

ha(0)�(1)itpqrs + (�1)`ha(0)�(1)iuqprsq
ha(0)ipqqpha(0)irssr

, (4.20)

where the t and u superscripts denote the t and u-channel exchanges respectively. For a
given twist and R-symmetry representation, one can find the list of pairs pq, with p  q, for
which double-trace operators [pq]`,�,m,n exist, and construct the matrix in eq. (4.20). Its
eigenvalues are then the actual OPE coefficients of the double-trace operators.

To perform the computation, we wish to organize our data in terms of twist ⌧ and
R-symetry representations labelled by [m,n�m,m]. One must also consider separately the
cases where the spin ` is either even or odd. For a given twist and representation, one must
find the possible scaling dimensions of the operators in the four-point function. One can
simply consider the constraints on the three-point vertices. Given the possible (pqrs) scaling
dimensions and values of twist, R-symmetry Dynkin labels and spin, one can diagonalize
the corresponding matrix.

For example, let us consider the nontrivial representation [0, 2, 0]. The minimal twist
associated with this representation is ⌧ = 6. For odd spin, the only three-point vertex is
given by external operators pq = 24, in which case it is straightforward to diagonalize. For
even spin, one has 24 and 33. The corresponding matrix is

0

BBB@

ha(0)�(1)i2442 + (�1)`ha(0)�(1)i4242p
ha(0)i2442ha(0)i2442

ha(0)�(1)i2433 + (�1)`ha(0)�(1)i4233p
ha(0)i2442ha(0)i3333

ha(0)�(1)i3342 + (�1)`ha(0)�(1)i3342p
ha(0)i3333ha(0)i2442

ha(0)�(1)i3333 + (�1)`ha(0)�(1)i3333p
ha(0)i3333ha(0)i3333

1

CCCA
. (4.21)

Consider the 2442 component. One finds that the only possible R-symmetry representa-
tion is [0, 2, 0]. The reduced correlator inversion integral yields

c(`,�, 0, 2) =

Z 1

0

dz

z2
(1� z)2k2,21�h(z)z

�1
Z 1

0

dz̄

z̄2
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⇥
"
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z
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� 4
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� 4
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◆5
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(4.22)

where we have omitted non-singular terms. To extract the anomalous dimension ha(0)�(1)i2442,
we focus on the term with the log(z) dependence.

While the full z integral, to our knowledge, cannot be trivially computed explicitly, one
can understand part of the expected result. One can expand the log term and apply eq. (A.3)
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from the dDisc of the correlator, get all OPE data:

=dDisc G2442

Ex:
2442

All integrals give just bunch of 𝜞 ’s

SO(10,2) symmetry controls not only the log term, but also the finite part.
This suggests a surprising possible generalization, which we shall not dare conjecture:

that at each loop order the complete set of correlators can be written in the form H(k) =⇥
�(8)

⇤k�1Dpqrsg(k)(z, z̄) for some function g(k)(z, z̄). Such functions, if they exist, would be
extremely constrained since crossing symmetry for each correlator like Hpppp amounts to
infinite family of differential equation constraints that g(k) would have to satisfy.

6 Conclusion

Acknowledgments

A Basic inversion integrals

Let us record generic results of the inversion integral. It will be convenient to isolate powers
of z̄

1�z̄ and z
1�z since they integrate nicely. We now perform the z̄ integral first as shown in

equation 4.7 of [? ]. First, we compute the double discontinuity using eq. (2.27) to find that
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To evaluate the z integral, we first rewrite the hypergeometric function in its integral
form (with dummy variable v) and use the change of variable t = z̄(1�v)

1�z̄v . Details of the
computation can be found in [? ]. The z̄ integral yields
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where rr,sh is defined in eq. (2.2).
A similar result can be found for the z integral. This integral differs from the previous

one by the double discontinuity term which only acted on the z̄ sector, and the extra gamma
functions from ̃. We therefore have
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sum of multiple nearly-degenerate operators. The set of correlators really gives a matrix of
anomalous dimensions matrix, whose eigenvalues are the actual anomalous dimensions.

The operators which can mix with each other have the same R-symmetry representation
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where the t and u superscripts denote the t and u-channel exchanges respectively. For a
given twist and R-symmetry representation, one can find the list of pairs pq, with p  q, for
which double-trace operators [pq]`,�,m,n exist, and construct the matrix in eq. (4.20). Its
eigenvalues are then the actual OPE coefficients of the double-trace operators.

To perform the computation, we wish to organize our data in terms of twist ⌧ and
R-symetry representations labelled by [m,n�m,m]. One must also consider separately the
cases where the spin ` is either even or odd. For a given twist and representation, one must
find the possible scaling dimensions of the operators in the four-point function. One can
simply consider the constraints on the three-point vertices. Given the possible (pqrs) scaling
dimensions and values of twist, R-symmetry Dynkin labels and spin, one can diagonalize
the corresponding matrix.

For example, let us consider the nontrivial representation [0, 2, 0]. The minimal twist
associated with this representation is ⌧ = 6. For odd spin, the only three-point vertex is
given by external operators pq = 24, in which case it is straightforward to diagonalize. For
even spin, one has 24 and 33. The corresponding matrix is
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Consider the 2442 component. One finds that the only possible R-symmetry representa-
tion is [0, 2, 0]. The reduced correlator inversion integral yields
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where we have omitted non-singular terms. To extract the anomalous dimension ha(0)�(1)i2442,
we focus on the term with the log(z) dependence.

While the full z integral, to our knowledge, cannot be trivially computed explicitly, one
can understand part of the expected result. One can expand the log term and apply eq. (A.3)
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Anomalous dimension are really mixing matrices

�(1)
6,0,2 =
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24,24 �(1)
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For example, at twist 6 and R-symmetry rep [0,2,0]:

termwise. This is equivalent to taking the derivative @h cot
�
⇡(�� p34

2 � h)
�

multiplying the
remaining gamma functions in eq. (A.3). This produces a double-pole as csc2(⇡h), therefore
one can deal with the z integral by using eq. (A.3) and substituting the cotangent function
by csc2(⇡h).

The full z integral will also have a subleading pole which will contribute to ha(1)i. To

obtain this contribution, one would need to integrate explicitly
⇣

z
1�z

⌘�
log(z) for arbitrary

positive integer �. However, this won’t be necessary as we will not compute the a(1) OPE
contribution, and restrict our future discussions to the level of the double-discontinuity and
not the full correlator, thus relieving the requirement to solve this problem.

Using eqs. (A.2)-(A.3), the above matrix with h = 1 + ⌧
2 gives

⇣
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which has the two eigenvalues:
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o
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where (...)6 is the Pochhammer symbol and �(8) is the polynomial introduced in eq. (3.9).
This way of writing the result was suggested by a recent conjecture by [? ], discussed shortly.
For ⌧ = 8, again for the [0, 2, 0] representation, the matrix is somewhat bigger:
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(3542) (3533) (3553) (3544)
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For odd spin, one removes the second and last rows and columns. We then find the
eigenvalues, for even and odd spins:
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(4.26)

Note that in the even spin case, the second and third eigenvalues are degenerate.
It is amazing that the eigenvalues of nontrivial matrices give rational functions of h̄.
Reciprocity symmetry, h̄ ! 1 � h̄, is preserved in an interesting way. The matrix

elements in eq. (4.23) are all invariants under h̄ ! 1� h̄ (this is always true and trivially
follows from the form of the integral (??)). The individual eigenvalues are not invariant, but
the set of eigenvalues is, as it should: reciprocity interchanges the first and last eigenvalue.

One can continue this process to obtain anomalous dimension eigenvalues in different
R-symmetry representations and higher twist which would involve diagonalizing larger
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For even spins this evaluates to:
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Reciprocity symmetry, h̄ ! 1 � h̄, is preserved in an interesting way. The matrix

elements in eq. (4.23) are all invariants under h̄ ! 1� h̄ (this is always true and trivially
follows from the form of the integral (??)). The individual eigenvalues are not invariant, but
the set of eigenvalues is, as it should: reciprocity interchanges the first and last eigenvalue.

One can continue this process to obtain anomalous dimension eigenvalues in different
R-symmetry representations and higher twist which would involve diagonalizing larger
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Straightforward to look at other cases, ie twist=8 [0,2,0]:

termwise. This is equivalent to taking the derivative @h cot
�
⇡(�� p34

2 � h)
�

multiplying the
remaining gamma functions in eq. (A.3). This produces a double-pole as csc2(⇡h), therefore
one can deal with the z integral by using eq. (A.3) and substituting the cotangent function
by csc2(⇡h).

The full z integral will also have a subleading pole which will contribute to ha(1)i. To

obtain this contribution, one would need to integrate explicitly
⇣

z
1�z

⌘�
log(z) for arbitrary

positive integer �. However, this won’t be necessary as we will not compute the a(1) OPE
contribution, and restrict our future discussions to the level of the double-discontinuity and
not the full correlator, thus relieving the requirement to solve this problem.
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which has the two eigenvalues:
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(4.24)
where (...)6 is the Pochhammer symbol and �(8) is the polynomial introduced in eq. (3.9).
This way of writing the result was suggested by a recent conjecture by [? ], discussed shortly.
For ⌧ = 8, again for the [0, 2, 0] representation, the matrix is somewhat bigger:
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. (4.25)
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In all cases we reproduce a recent conjecture:
[Aprile, Drummond, Heslop&Paul ’18]

All eigenvalues take the form:

�(1) = �1

c

�(8)

(j + 1 + integer)6
!

✓
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An unexpected SO(10,2) symmetry



First, let us emphasize conjectured formula:

Crazy that complicated matrix has rational eigenvalues! 

Crazier:  Take flat space 10D dilation scattering:

Expand over10D Legendre polynomials

 26

[Aprile, Drummond, Heslop&Paul ’18]

� = ��(8)

c
⇥ 1

(j + 1 +m)6
+O(1/c2)



First, let us emphasize conjectured formula:

Crazy that complicated matrix has rational eigenvalues! 

Crazier:  Take flat space 10D dilation scattering:

Expand over10D Legendre polynomials
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A(10)(s, t) = 8⇡GNs4 ⇥ 1

stu

A
(10)
` (s) = � (L

p
s/2)8

c
⇥ 1

(j + 1)6
+O(1/c2)
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[Aprile, Drummond, Heslop&Paul ’18]
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CFT correlator is just flat 10D amplitude!?!?!?!
(L

p
s/2)8 $ �(8)

� = ��(8)

c

1

(j + 1 +m)6
, A(10)

` (s) = � (L
p
s/2)8

c

1

(j + 1)6

dimensional matrices. A conjecture for the outcome was formulated recently in [? ] (who
obtained it by OPE-decomposing a Mellin space formula for the general pqrs correlators
previously conjectured in []). These authors conjectured that the eigenvalues always take
the form:

�(1)pqrs(⌧, h̄, `,m, n) = �1

c

�(8)
m,n(1 + ⌧

2 , h̄)⇣
`+m+ 1 + (1+(�1)`)

2 + 2u
⌘

6

(4.27)

where ` = h̄� ⌧
2 � 2 is the angular momentum and u is a positive integer bounded by the

number of different eigenvalues. To be more precise, as noted above, one can often have
degenerate states and therefore u is bounded by the multiplicity of these states.

[Should we keep the following?] To match their nomenclature, one can convert their
definition of spin ` to our definition of h̄ � 2 � ⌧

2 . Furthermore, the numerator written
in terms of M (4) functions can be combined to yield our �(8)m,n. Lastly, the Pochhammer’s
argument has 2p�a where a and b are the Dynkin labels [a, b, a] and therefore a corresponds
to our m, and p is the scaling dimension of the incoming operator. For a given twist, the
scaling dimension is bounded from below by 2(p+ 2 +m) thus this changes the sign of m
which confirms the matching to eq. (4.27).

5 An accidental 10-dimensional conformal symmetry

In this section we wish to propose an explanation for the remarkable conjecture (4.27):
that it originates from the conformal flatness of the AdS5⇥S5 geometry and embodies an
accidental SO(10,2) conformal symmetry of the correlator. This will lead to new conjectures
which we’ll be able to test.

AdS5

S5

R10

Figure 4: ihewfi
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Our proposed explanation:

1. 10D supergravity [@4-pt] ≃ CFT (coupling = GNs4)

2. AdS5xS5 is conformal to flat space

scale-invariant 
& 10D conformal

SO(4, 2)⇥ SO(6)R ⇢ SO(10, 2)

Conjecture:
All 4-pt SYM correlators stem from a common 10D-conformal object

A(10)(s, t) = 8⇡GNs4
1

stu



 30

Conjecture:
All 4-pt SYM correlators stem from a common 10D-conformal object

transforms like a 10D CFT correlator of four scalars with scaling dimension 4, that is:

h�(w1)�(w2)�̄(w3)�̄(w4)i10 ⌘
G10(u10, v10)

((x212 � y212)(x
2
34 � y234))

4 (5.11)

where
u10 ⌘

(x212 � y212)(x
2
34 � y234)

(x213 � y213)(x
2
24 � y224)

, v10 ⌘
(x223 � y223)(x

2
14 � y214)

(x213 � y213)(x
2
24 � y224)

(5.12)

are the then-dimensional cross-ratios.
Let us now write the prediction in eq. (5.10) in terms of cross-ratios, by dividing the

left-hand-side by the factor in eq. (2.5) (with the pi shifted by 2). We can extract the
component of correct homogeneity degree in y by performing contour integrals in auxiliary
variables ai introduced via the rescaling y2ij ⌘ yi · yj 7! aiajy2ij . With a suitable rescaling of
the a’s this gives a formula with cross-ratios only:

H̃p1p2p3p4(u, v,�, ⌧) =

I 4Y

i=1

"
dai a

1�pi
i

2⇡i

#
(u/�)

p1+p2
2 �2

(1� �
ua1a2)

4(1� a3a4)4

⇥G10

✓
u
(1� �

ua1a2)(1� a3a4)

(1� a1a3)(1� a2a4)
, v

(1� ⌧
va2a3)(1� a1a4)

(1� a1a3)(1� a2a4)

◆
(5.13)

⌘ Dp1p2p3p4G10(u, v). (5.14)

The second definition emphasizes the fact that the contour integral really just defines a
differential operator, in the first few cases for example we find:

D2222 = 1,

D2332 = �
p
up
�
⌧@v,

D2233 = 4� u@u,

D3333 = 16� 8u@u +
u+ �

�
(u@u)

2 + 2
u

�
u@uv@v +

u(v + ⌧)

�v
(v@v)

2 .

(5.15)

Relation (5.14) is the main result of this section: it expresses all tree-level correlators as
derivatives of a single one, G10 = H̃2222.

It remains to make a precise guess for the left-hand-side H̃2222. The correct guess can
of course only be justified by explicit computations as in the next subsection, but it may
be helpful to handwave-motivate the result here. Since the spherical harmonics of the ten-
dimensional dilaton most naturally map to correlators of Lpi , the most natural guess would
be H̃ = �(8)H as defined in section ??. However, to reveal its hidden conformal symmetry,
we had to divide the 10D tree amplitude by the dimensionless “coupling” GN�16(Q), which
we will tentatively identify with �(8)/c. This analogy suggests that at first order in 1/c we
should divide the correlator by �(8) and thus consider H itself, which turns out to be a
correct prediction. We have to bear in mind that this division is ill-defined however unless
one cancels the protected contributions killed by �(8); this may be done very naturally
by subtracting the free correlator. The correct guess for the functions H̃ which satisfies
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The object is ‘dilaton correlator’
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Relation (5.14) is the main result of this section: it expresses all tree-level correlators as
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depends only on 10D distances              :x2
ij � y2ij



To extract SYM correlator Hpqrs ,

H̃pqrs = DpqrsH̃2222

series-expand G10 in y’s and take term with correct weight
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SO(10,2) symmetry thus predicts differential relations:
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1. Check against classic results:

correct object is H̃
(1) ⌘ “

�(8)
H

�(8)
” ⌘ H

(1) �H
(1),free

eq. (5.14), including a normalization factor, thus turns out to be:

H̃(0)
pqrs ⌘

4
p
p1p2p3p4

�(8)H(0)
pqrs, H̃(1)

pqrs ⌘
4

p
p1p2p3p4

⇣
H(1)

pqrs �H(1)free
pqrs

⌘
. (5.16)

If this sequence were to continue at loop level supergravity, the natural next term would be
H̃(2)

pqrs / 1
�(8) (H

(2)
pqrs �H(2)free

pqrs ), but we leave this for further study.
The conjecture in eqs. (5.14) and (5.16), independent of its origin, yields precise and

testable relations among tree-level correlators.

5.3 Checking the conjecture from the calculated correlators

Let us first check the relation for the disconnected correlator H̃(0); this is how we determined
the p

pi factor in eq. (5.14). According to eq. (5.15) we get

G(0)
10 (u, v) = �(8)H(0)

2222 = C(2)2
✓
u4 +

u4

v4

◆
, (5.17)

with C(p) = p2(p2 � 1). The formula in eq. (5.14) then predict the other correlators as

H̃(0)
p1p2p3p4 =
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2 +2

u
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I 4Y
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�p1,p3�p2,p4 + �p1,p4�p2,p3

⌧p2�2

vp2+2

◆
,

(5.18)
where we have used the integral

H
6da a1�p

2⇡i(1�a)4 = C(p)/p. This is in precise agreement with
eq. (5.15).

The real test now is the tree-level correlator H̃(1). The formula in eq. (5.14) predicts
the higher correlators as specific derivatives of the first instance [],

G(1)
10 (u, v) = H̃(1)

2222 = �u4D̄2,4,2,2(u, v). (5.19)

The D̄�1,�2,�3,�4 obey a derivative relation with respect to the cross-ratios u, v as
shown in ref. [? ]. One can therefore show that

H̃(1)
2332 = �u9/2p

�
⌧D̄2,5,3,2,

H̃(1)
2233 = �u4(D̄2,4,2,2 � D̄2,4,3,3),

H̃(1)
3333 =


16� 8u@u +

u+ �

�
(u@u)

2 + 2
u

�
u@uv@v +

u(v + ⌧)

�v
(v@v)

2

�
G10(u, v) .

(5.20)

To do:

• Check agreement explicitly for the dDisc and outline general argument.
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u4 +

u4

v4

◆
, (5.17)

with C(p) = p2(p2 � 1). The formula in eq. (5.14) then predict the other correlators as

H̃(0)
p1p2p3p4 =

u
p1+p2

2 +2

u
p1+p2

2 �2

I 4Y

i=1

"
dai a

1�pi
i

2⇡i

#✓
1

(1� a1a3)4(1� a2a4)4
+

1

(v � ⌧a2a3)4(1� a1a4)4

◆

=
4

p1p2
C(p1)C(p2)

u
p1+p2

2 +2

�
p1+p2

2 �2

✓
�p1,p3�p2,p4 + �p1,p4�p2,p3

⌧p2�2

vp2+2

◆
,

(5.18)
where we have used the integral

H
6da a1�p

2⇡i(1�a)4 = C(p)/p. This is in precise agreement with
eq. (5.15).

The real test now is the tree-level correlator H̃(1). The formula in eq. (5.14) predicts
the higher correlators as specific derivatives of the first instance [],

G(1)
10 (u, v) = H̃(1)

2222 = �u4D̄2,4,2,2(u, v). (5.19)

The D̄�1,�2,�3,�4 obey a derivative relation with respect to the cross-ratios u, v as
shown in ref. [? ]. One can therefore show that

H̃(1)
2332 = �u9/2p

�
⌧D̄2,5,3,2,

H̃(1)
2233 = �u4(D̄2,4,2,2 � D̄2,4,3,3),

H̃(1)
3333 =


16� 8u@u +

u+ �

�
(u@u)

2 + 2
u

�
u@uv@v +

u(v + ⌧)

�v
(v@v)

2

�
G10(u, v) .

(5.20)

To do:

• Check agreement explicitly for the dDisc and outline general argument.
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H̃
(1)
3333 = . . .

[D’Hoker, Freedman, Mathur,  
Matusis& Rastelli ’99;  

Arutyunov, Dolan,  
Osborn&Sokatchev ’02-; 

Berdichevsky& Naaijkens ’03;

Dolan,Nirschl&Osborn ’06;  

 

Uruchurtu ’08-] 

2. More generally: suffices to check the dDisc=pole terms

H̃
(1)
pqrs

���
v�poles

?
= Dpqrs


� 2u4 log u

(1� u)3v
� u

3(1 + u)

(1� u)2v

�

easy to check to high order p,q,r,s~10!!
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Derive Rastelli-Zhou’s formula:  write Mellin rep for H2222

�
⇣
�s

2

⌘
(x2

12 � y212)
s
2 =

1X

p=0

(y212)
p

p!
�
⇣
�s

2
� p

⌘
(x2

12 � y212)
s
2�p

Expand in y: each « Gamma times power » just gets shifted!

G10(wi) =

Z
dsdt

�(2� s
2 )

2�(2� s
2 )

2�( s+t
2 )2

(s� 4)(t� 4)(s+ t� 2)
⇥ (x2

12 � y212)
s
2�2 · · ·

Mpqrs(s, t) =
X #

(s�#)(t�#)(u�#)

General Mellin space correlator = sum of shifted 1/(stu)’s: 

[Rastelli&Zhou ’16]

each coefficient is product of six (1/p!)



Rastelli&Zhou:  
all correlators 
in Mellin space

Aprile et al:  
-double-trace mixing 

-one loop
this work

inversion 
formula

SO(10,2)  
symmetry

perfect agreement between different methods!

eigenvalues
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Figure 2. At one-loop order in the 1/N expansion, the singularities caused by double-trace exchanges
are equal to products of single-trace tree amplitudes.

where n = (n + 1)(n + 2)(n + 3)(n + 4). This coincides with the well known supergravity

result. In principle one could also add a solution consistent with crossing with finite support

in the spin. As we will show, such solutions can be forbidden using bounds on the Regge

limit behavior.

Although in this paper we will only focus on the correlator at hand, in principle the same

can be done for more general correlators, of the form hOpOpOqOqi. In this way one should

recover the supergravity result from the singular contribution of the protected sector.

At order 1/c2 something interesting happens. On one hand the 1/c expansion of the

protected contribution stops at order 1/c. On the other hand, the anomalous dimensions at

order 1/c of double trace operators in the t-channel produce the following singular term to

order 1/c2:

H(2)(v, u) =
1

8
log2 v

X

n,`

⌦
a(0)

�
�(1)

�2↵
n,`

gn,`(v, u) + regular (2.14)

In order to compute the sum at each n, ` one has to solve a mixing problem which can be

done from the explicit answers of the general correlators mentioned above. The result will

be recorded in section ?? below. As we show in sections 3 and 4 the CFT data at order 1/c2

again follows from this singular part.

How much shall we say about the flat space limit, analytic results, etc? think!

3 CFT data from the Froissart-Gribov inversion integral

Recently, an integral formula has been derived which reconstructs the OPE data of any CFT

from the double-discontinuity of correlators [10]. For identical external operators in four

dimensions, this inversion integral was written in that paper as

c̃(`,�) =
1 + (�1)`

4
̃(�+`

2 )

Z 1

0

dz

z2
dz

z2

✓
z � z

zz

◆2

g̃`+3,��3(z, z) dDisc [G(z, z)], (3.1)

with ̃(h) = �(h)4

2⇡2�(2h�1)�(2h) , and where we notice that the block has spin and dimension

interchanged compared to the one entering the OPE. The formula is analytic in spin expect
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p’,p’’

Trees predict the dDisc (~log2v terms)  
=all one needs for the Kramers-Kronig relation

p’

p’’

[SCH& Alday, ’17]



correlator

G(z, z)
amplitude

A5(s, t)

dispersion

relation

discontinuity

Disc [A5]

inversion

integral

double-disc.

dDisc [G]

flat space

flat space

Figure 5. A commutative diagram which explains the agreement between the one-loop CFT and
supergravity calculations: the discontinuities, which determine the outcome of both calculations, match
each other.

Finally, it turns out the average
⌦
a(2)

↵
n,`

is subleading for large n, and will not be important

for our purposes.

5.1.2 Large-n limit from inversion integral

The simplicity of the preceding result suggests a more direct route and in fact we now show

how to take this limit directly from the Froissart-Gribov inversion integral (3.4). The key is

to use that the poles in c(h, h) originate only from the z ! 0 limit of integration. Therefore

just by rotating the z contour clockwise by 2⇡, and dropping an arc at |z| = 1 which produces

no pole, we can eliminate the phase:

e�2⇡ihc(h, h) =

Z 1

0

dz

z2
k1�h(z)

rh

Z 1

0

dz

z2
rh

h� 1
2

kh(z)
dDisc [zz(z � z)G(z�, z)]

4⇡2
+ pole-free

⌘ c�(h, h) . (5.19)

The notation indicates that the correlator is evaluated with z rotated clockwise around the

origin. Recall that the double-discontinuity (3.2) is itself computed as an analytic continua-

tion, but with respect to the other variable (and around z = 1), so these two continuations

commute with each other.

Our interest is in the asymptotic spectral density of c(h, h)
�
. This can be defined math-

ematically by taking the di↵erence slightly above and below the real axis

⌦
ae�i⇡�

↵
n,`

⇡ 1

i⇡

�
c�(h⇥ ei↵, h)� c�(h⇥ e�i↵, h)

�
(5.20)

where ↵ > 0 is a small phase. This analytic function is what would enter, for example, in

the Watson-Sommerfeld representation in eq. (??) of [appendix B of Polchinski et al]. For

the first term, one sees that the integral (5.19) would decay exponentially if the z contour

could be rotated clockwise, however this is obstructed by the singularity at z = z. The

second term however decays exponentially because there are no singularities obstructing a
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Figure 2. At one-loop order in the 1/N expansion, the singularities caused by double-trace exchanges
are equal to products of single-trace tree amplitudes.

where n = (n + 1)(n + 2)(n + 3)(n + 4). This coincides with the well known supergravity

result. In principle one could also add a solution consistent with crossing with finite support

in the spin. As we will show, such solutions can be forbidden using bounds on the Regge

limit behavior.

Although in this paper we will only focus on the correlator at hand, in principle the same

can be done for more general correlators, of the form hOpOpOqOqi. In this way one should

recover the supergravity result from the singular contribution of the protected sector.

At order 1/c2 something interesting happens. On one hand the 1/c expansion of the

protected contribution stops at order 1/c. On the other hand, the anomalous dimensions at

order 1/c of double trace operators in the t-channel produce the following singular term to

order 1/c2:
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8
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In order to compute the sum at each n, ` one has to solve a mixing problem which can be

done from the explicit answers of the general correlators mentioned above. The result will

be recorded in section ?? below. As we show in sections 3 and 4 the CFT data at order 1/c2

again follows from this singular part.

How much shall we say about the flat space limit, analytic results, etc? think!

3 CFT data from the Froissart-Gribov inversion integral

Recently, an integral formula has been derived which reconstructs the OPE data of any CFT

from the double-discontinuity of correlators [10]. For identical external operators in four

dimensions, this inversion integral was written in that paper as
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g̃`+3,��3(z, z) dDisc [G(z, z)], (3.1)

with ̃(h) = �(h)4

2⇡2�(2h�1)�(2h) , and where we notice that the block has spin and dimension

interchanged compared to the one entering the OPE. The formula is analytic in spin expect
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+ +

Figure 4. The one-loop amplitude in ten-dimensional type IIB supergravity is the sum of three scalar
boxes integrals.

which leads to the large-n behavior (for any x)

lim
n!1

a(0)n,` gn,` =
�64i⇡n2

zz(z � z)

(`+ 1) sin((`+ 1)✓)p
sin2 ✓ � sin2 x

eix(2n+`+6). (5.5)

One sees that each block has a 1/(z�z) ⇠ 1/x singularity. However, any stronger singularity

would have to be caused by the large-n tail of the sum. In a non-perturbative regime the extra

phases in Hcont.(u, v) have been conjectured to display a chaotic behaviour, ensuring that the

singularity of the correlator is not enhanced compared with that of individual blocks. In a

large N perturbative regime this is not true anymore, since phases are small and in fact quite

regular. In the following we will focus on the dominant singularity at x ! 0 at each order in

the 1/c expansion. In this limit the dependence of the blocks on anomalous dimensions can

be neglected at it produces subleading d/dn terms, and the above gives simply

zz(z � z)Gcont.(u, v) ⇡ �64i⇡
X

n

n2 e2ixn
X

` even

(`+ 1)2P`(cos ✓)

⌦
ae�i⇡�

↵
n,`⌦

a(0)
↵
n,`

(5.6)

where P`(✓) =
sin(`+1)✓
(`+1) sin ✓ are a four-dimensional version of Legendre polynomials. [comment

on literature] This formula can be readily tested at the leading order: with the anomalous

dimension �(1) ⇡ �n3

2(`+1) one finds zz(z�z)G(1)
cont. ⇡ �30⇡2

x6 sin2✓
, which is in precise agreement with

the analytic continuation of the D̄ function in eq. (3.14).

5.1 Large-n limit

The discussion above is the main motivation to study the averages
⌦
ae�i⇡�

↵
n,`

in the large n

limit. We will do so in two di↵erent ways. First from our explicit results, and then directly

from the inversion integral.

5.1.1 Large-n limit from explicit results

Up to order 1/c2 the average in question is equivalent to

⌦
ae�i⇡�

↵
n,`

=
⌦
a(0)

↵
n,`

+
1

c

⇣⌦
a(1)

↵
n,`

� i⇡
⌦
a(0)�(1)

↵
n,`

⌘
(5.7)

+
1

c2

✓⌦
a(2)

↵
n,`

� i⇡
⌦
a(1)�(1) + a(0)�(2)

↵
n,`

� ⇡2

2

⌦
a(0)

�
�(1)

�2↵
n,`

◆
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At one-loop,  studied 2222 correlator [Alday& SCH, ’17]

Flat space limit perfectly matches 1-loop supergravity
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Figure 2. At one-loop order in the 1/N expansion, the singularities caused by double-trace exchanges
are equal to products of single-trace tree amplitudes.

where n = (n + 1)(n + 2)(n + 3)(n + 4). This coincides with the well known supergravity

result. In principle one could also add a solution consistent with crossing with finite support

in the spin. As we will show, such solutions can be forbidden using bounds on the Regge

limit behavior.

Although in this paper we will only focus on the correlator at hand, in principle the same

can be done for more general correlators, of the form hOpOpOqOqi. In this way one should

recover the supergravity result from the singular contribution of the protected sector.

At order 1/c2 something interesting happens. On one hand the 1/c expansion of the

protected contribution stops at order 1/c. On the other hand, the anomalous dimensions at

order 1/c of double trace operators in the t-channel produce the following singular term to

order 1/c2:
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�(1)
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n,`

gn,`(v, u) + regular (2.14)

In order to compute the sum at each n, ` one has to solve a mixing problem which can be

done from the explicit answers of the general correlators mentioned above. The result will

be recorded in section ?? below. As we show in sections 3 and 4 the CFT data at order 1/c2

again follows from this singular part.

How much shall we say about the flat space limit, analytic results, etc? think!

3 CFT data from the Froissart-Gribov inversion integral

Recently, an integral formula has been derived which reconstructs the OPE data of any CFT

from the double-discontinuity of correlators [10]. For identical external operators in four

dimensions, this inversion integral was written in that paper as

c̃(`,�) =
1 + (�1)`
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g̃`+3,��3(z, z) dDisc [G(z, z)], (3.1)

with ̃(h) = �(h)4

2⇡2�(2h�1)�(2h) , and where we notice that the block has spin and dimension

interchanged compared to the one entering the OPE. The formula is analytic in spin expect
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For general correlators, really a matrix product:

The 10D symmetry trivially diagonalizes this sum



A single block for each per spin: 10D dilatons have ∆=4

Start with OPE decomposition of 10D free field:

G(0)
10 (u, v) = 144

✓
u4 +

u4

v4

◆
=

1X

j=0,even

8�(j + 4)2

�(2j + 7)
(j + 1)6 G(10D)

`,8+` (u, v)

When reduced to 4D, 10D blocks are orthogonal!
[SCH,&Trinh, to appear]

[Dolan&Osborn ’11]

D(3)f(z) ⌘
"✓

zz̄

z̄ � z

◆7

f(z) +

✓
zz̄

z̄ � z

◆6 z2

2
@zf(z) +

✓
zz̄

z̄ � z

◆5 z3

10
@2
z

�
zf(z)

�
+

✓
zz̄

z̄ � z

◆4 z4

120
@3
z

�
z2f(z)

�
#

Note: 10D extremal blocks extremely simple:

G(d=10)
`,8+` (z, z̄) = D(3) ·

120

(j + 1)(j + 2)(j + 3)
zj+1

2F1(j + 1, j + 4, 2j + 8, z)

⇒Just need to add powers of 1/(j+1)6 in the above!



the eigenvalues are rational numbers, and also why these numbers are specifically equal to
S-matrix phase shifts.

We have verified in many more examples that the ten-dimensional blocks always turn
into projectors onto eigenspaces, including in cases with nontrivial multiplicity. Presumably,
a more thorough study of these matrices themselves would be more easily carried out at the
level of 3-point vertices rather than four-point correlators.

As proposed in ref. [], the solution to the double-trace mixing problem at order 1/c

enables to compute the leading logarithmic terms at each loop order. Thanks to the ten-
dimensional relation (??) this can be done for any correlator without computing any matrix.
We simply add more powers of � to the ten-dimensional OPE in eq. (5.28) to find H̃2222,
and then obtain the others by taking derivatives:

H(k)
pqrs(z, z̄,↵, ↵̄)

���
logk u

=
h
�(8)

ik�1
· Dpqrs · D(3) · h(k)(z). (5.32)

This result is a product of very many differential operators. The third-order operator D(10),
defined in eq. (C.2), builds two-variable ten-dimensional blocks from single-variable functions
h(k). The operator Dpqrs, from eq. (??), then extracts various 4D correlators; for the stress
tensor multiplet this operation is trivial, D2222 = 1. Finally, the power of �(8), defined
in eq. (??), accounts for the fact that it is only the ratio �/�(8) that is compatible with
the ten-dimensional symmetry. The ordering of operations is important: in general �(8)

destroys the ten-dimensional structure and must act to the left of Dpqrs.
Using the explicit form of the block in eq. (C.3), together with the coefficients in

eqs. (5.26) and eqs. (5.28), the single-variable is given explicitly as:

h(k)(z) ⌘ 1

k!

✓
�1

2

◆k 1X

`=0, even

960�(j + 1)�(j + 4)

�(2j + 7)

1

[(`+ 1)6]
k�1

zj+1
2F1(j+1, j+4, 2j+8, z).

(5.33)
In the first few cases the sum is readily computed,

h(0)(z) = 2880
z(2� z)

1� z
, (5.34)

h(1)(z) = 120
(1� z)2 log(1� z)

z4
+ 10

(z � 2)(z2 + 6z � 6)

z3
(5.35)

h(2)(z) =
Li2(z)� (1� z)5Li2(z/(1� z))

4z5
� (1� z)(2z2 � 7z + 7) log(1� z)

8z4
(5.36)

+
(z � 2)(1� z)

z3
+

235

576

z � 2

z
. (5.37)

Plugging h(0)(z) into eq. (5.32) (and multiplying both sides by �(8)) reproduces eq. (5.15).
Plugging h(1)(z) we reproduce the logarithmic term given in eq. (5.27) and its extension to
all Hpqrs. Finally, plugging h(2)(z) we reproduce the one-loop double-discontinuity of H2222

computed in refs. ?? and now predict the log2 u terms for all Hpqrs correlators. Needless to
say, the expression which results after taking the 11 derivatives no longer fit on two lines!

Let us summarize our results and conjectures. . . . At tree-level, more is true: the
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Plugging h(1)(z) we reproduce the logarithmic term given in eq. (5.27) and its extension to
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gives one-loop log2 terms for all correlators
matches 2222 from: [Alday & Bissi ’17,

Aprile,Drummond,Heslop&Paul ‘17] 

Explicit formula for leading-log at each loop order:

the eigenvalues are rational numbers, and also why these numbers are specifically equal to
S-matrix phase shifts.

We have verified in many more examples that the ten-dimensional blocks always turn
into projectors onto eigenspaces, including in cases with nontrivial multiplicity. Presumably,
a more thorough study of these matrices themselves would be more easily carried out at the
level of 3-point vertices rather than four-point correlators.
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the ten-dimensional symmetry. The ordering of operations is important: in general �(8)

destroys the ten-dimensional structure and must act to the left of Dpqrs.
Using the explicit form of the block in eq. (C.3), together with the coefficients in

eqs. (5.26) and eqs. (5.28), the single-variable is given explicitly as:

h(k)(z) ⌘ 1

k!

✓
�1

2

◆k 1X

`=0, even

960�(j + 1)�(j + 4)

�(2j + 7)

1

[(`+ 1)6]
k�1

zj+1
2F1(j+1, j+4, 2j+8, z).

(5.33)
In the first few cases the sum is readily computed,

h(0)(z) = 2880
z(2� z)

1� z
, (5.34)

h(1)(z) = 120
(1� z)2 log(1� z)

z4
+ 10

(z � 2)(z2 + 6z � 6)

z3
(5.35)

h(2)(z) =
Li2(z)� (1� z)5Li2(z/(1� z))

4z5
� (1� z)(2z2 � 7z + 7) log(1� z)

8z4
(5.36)

+
(z � 2)(1� z)

z3
+

235

576

z � 2

z
. (5.37)

Plugging h(0)(z) into eq. (5.32) (and multiplying both sides by �(8)) reproduces eq. (5.15).
Plugging h(1)(z) we reproduce the logarithmic term given in eq. (5.27) and its extension to
all Hpqrs. Finally, plugging h(2)(z) we reproduce the one-loop double-discontinuity of H2222

computed in refs. ?? and now predict the log2 u terms for all Hpqrs correlators. Needless to
say, the expression which results after taking the 11 derivatives no longer fit on two lines!

Let us summarize our results and conjectures. . . . At tree-level, more is true: the
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general formula:



Summary
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Further questions
-What more is true at higher loops/higher points?

cf: [Loebbert, Mojaza& Plefka ‘18: hidden conformal symmetry]
[cf Maldacena’ 11: Einstein vs conformal gravity]

-Other theories: 6D (2,0),  ABJM?

-Studied double-trace mixing in strongly coupled 
 N=4 SYM using Lorenzian inversion formula

-SO(10,2) symmetry:  formula for all spherical harmonics!

-Leading logs to all orders in 1/Nc



‘Heavy’ part depends on nonperturbative UV completion.  

It’s weighed by              .  Use positivity + boundedness:

“
�1

s��2
gap

” 1

�2
gap

+
s

�4
gap

+ . . .

��c(j, d
2 + i⌫)heavy

��  1

cT

#

(�2
gap)

j�2

⇠ (⇢⇢̄)J/2

This establishes, from CFT,  an EFT power-counting in AdS.


