AdS$_3$/CFT$_2$: Moduli and wrapping

Bogdan Stefański
City, University of London

Based on work with D. Bombardelli, O. Ohlsson Sax and A. Torrielli,

IGST 2018, Copenhagen
Plan

1. Integrable AdS$_3$/CFT$_2$
Plan

1. Integrable $\text{AdS}_3/\text{CFT}_2$
2. Moduli and Integrability
1. Integrable $\text{AdS}_3/\text{CFT}_2$
2. Moduli and Integrability
3. Towards Wrapping in $\text{AdS}_3/\text{CFT}_2$
Plan

1. Integrable $\text{AdS}_3/\text{CFT}_2$
2. Moduli and Integrability
3. Towards Wrapping in $\text{AdS}_3/\text{CFT}_2$
4. Outlook
Integrable $\text{AdS}_3/\text{CFT}_2$
Integrable $\text{AdS}_3/\text{CFT}_2$

- Half max susy bkds $\text{AdS}_3 \times S^3 \times T^4$ and $\text{AdS}_3 \times S^3 \times S^3 \times S^1$
Integrable $\text{AdS}_3/\text{CFT}_2$

- Half max susy bkds $\text{AdS}_3 \times S^3 \times T^4$ and $\text{AdS}_3 \times S^3 \times S^3 \times S^1$

- Pert. (short) strings, $w_{T^4} = p_{T^4} = 0$ integrable
Integrable AdS$_3$/CFT$_2$

- Half max susy bkds $\text{AdS}_3 \times S^3 \times T^4$ and $\text{AdS}_3 \times S^3 \times S^3 \times S^1$

- Pert. (short) strings, $w_{T^4} = p_{T^4} = 0$ integrable

- Integrable AdS$_3$/CFT$_2$ has **massless modes**
Integrable \(AdS_3/CFT_2 \)

- Half max susy bkds \(AdS_3 \times S^3 \times T^4 \) and \(AdS_3 \times S^3 \times S^3 \times S^1 \)

- Pert. (short) strings, \(w_{T^4} = p_{T^4} = 0 \) integrable

- Integrable \(AdS_3/CFT_2 \) has **massless modes**

- Integrability works for backgrounds with:
 - RR charges (n.h. D1/D5) \[\text{Borsato+Ohlsson Sax+Sfondrini+BS+Torrielli} \]
 - NSNS+RR charges (n.h. D1+F1/D5+NS5)
 \[\text{Hoare+Tseytlin, Lloyd+Ohlsson Sax+Sfondrini+BS} \]
 - We expect it will also work with more general charges
Integrable AdS$_3$/CFT$_2$

- Half max susy bkds AdS$_3 \times S^3 \times T^4$ and AdS$_3 \times S^3 \times S^3 \times S^1$

- Pert. (short) strings, $w_{T^4} = p_{T^4} = 0$ integrable

- Integrable AdS$_3$/CFT$_2$ has **massless modes**

- Integrability works for backgrounds with:
 - RR charges (n.h. D1/D5) [Borsato+Ohlsson Sax+Sfondrini+BS+Torrielli]
 - NSNS+RR charges (n.h. D1+F1/D5+NS5) [Hoare+Tseytlin, Lloyd+Ohlsson Sax+Sfondrini+BS]

 We expect it will also work with more general charges

- Integrability ”works” means:
 - Wsheet S matrix known exactly in α' or R_{AdS}, satisfies YBE
 - S matrix fixed by famous central extension and crossing eqs
 - Bethe Equations for asymptotic states: protected spectrum
Moduli and Integrability
AdS$_3 \times S^3 \times T^4$ Moduli

IIB string theory on T^4 has 25 moduli:

\[g_{ab} \times 10, \quad B_{ab} \times 6, \quad C_{ab} \times 6, \quad C_0, \quad C_{abcd}, \quad \phi \]
IIB string theory on T^4 has 25 moduli:

$$g_{ab} \times 10, \quad B_{ab} \times 6, \quad C_{ab} \times 6, \quad C_0, \quad C_{abcd}, \quad \phi$$

In n.-h. limit 5 become massive, e.g. for D1/D5

$$g_{aa}, \quad B^{-}_{ab}, \quad N_1 C_0 - N_5 C_{abcd}$$

We are left with a 20-dimensional moduli space.
AdS\(_3 \times S^3 \times T^4\) Moduli

IIB string theory on \(T^4\) has 25 moduli:

\[g_{ab} (\times 10), \quad B_{ab} (\times 6), \quad C_{ab} (\times 6), \quad C_0, \quad C_{abcd}, \quad \phi \]

In n.-h. limit 5 become massive, e.g. for D1/D5

\[g_{aa}, \quad B_{ab}^-, \quad N_1 C_0 - N_5 C_{abcd} \]

We are left with a 20-dimensional moduli space.

5 massive scalars fixed by attractor mechanism. e.g. for D1/D5 \(\text{vol}(T^4) = N_1/N_5\).
AdS$_3 \times S^3 \times T^4$ Moduli

IIB string theory on T^4 has 25 moduli:

$$g_{ab} \,(\times 10),\quad B_{ab} \,(\times 6),\quad C_{ab} \,(\times 6),\quad C_0,\quad C_{abcd},\quad \phi$$

In n.-h. limit 5 become massive, e.g. for D1/D5

$$g_{aa},\quad B_{ab}^-,\quad N_1 C_0 - N_5 C_{abcd}$$

We are left with a 20-dimensional moduli space.

5 massive scalars fixed by attractor mechanism. e.g. for D1/D5 $\text{vol}(T^4) = \frac{N_1}{N_5}$.

Integrable results found when moduli zero

What happens away from the origin of moduli space?
Turning on moduli in $\text{AdS}_3 \times S^3 \times T^4$

For each set of background charges 16 moduli inconsequential
Turning on moduli in $\text{AdS}_3 \times S^3 \times T^4$

For each set of background charges 16 moduli inconsequential

E.g. Pure RR charge bkd:
- 9 geometric moduli g_{ab} of T^4
- 6 moduli C_{ab}
- 1 modulus C_0
- do not enter GS action or periodicity conditions.
Turning on moduli in $\text{AdS}_3 \times S^3 \times T^4$

For each set of background charges 16 moduli inconsequential

E.g. Pure RR charge bkd:
- 9 geometric moduli g_{ab} of T^4
- 6 moduli C_{ab}
- 1 modulus C_0
 do not enter GS action or periodicity conditions.

Each set of background charges has 1+3 consequential moduli
Turning on moduli in $\text{AdS}_3 \times S^3 \times T^4$

For each set of background charges 16 moduli inconsequential

E.g. Pure RR charge bkd:
- 9 geometric moduli g_{ab} of T^4
- 6 moduli C_{ab}
- 1 modulus C_0

do not enter GS action or periodicity conditions.

Each set of background charges has $1+3$ consequential moduli

E.g. Pure NSNS charge bkd has C_0 and C_2^+.
Turning on C_0 in NSNS AdS$_3 \times S^3 \times T^4$

Set C_0 to a non-zero constant.
Turning on C_0 in NSNS AdS$_3 \times S^3 \times T^4$

Attractor mechanism: $C_4 = -C_0 \text{vol}(T^4)$
Turning on C_0 in NSNS AdS$_3 \times S^3 \times T^4$

Attractor mechanism: \[C_4 = -C_0 \text{vol}(T^4) \]

Gauge-invariant RR field-strength:

\[
F_3 = dC_2 - C_0 H = -C_0 k \text{vol}(S^3) \neq 0
\]
Turning on C_0 in NSNS AdS$_3 \times S^3 \times T^4$

Attractor mechanism: $C_4 = -C_0 \text{vol}(T^4)$

Gauge-invariant RR field-strength:

$$F_3 = dC_2 - C_0 H = -C_0 k \text{vol}(S^3) \neq 0$$

Eoms remain valid
Turning on C_0 in NSNS $\text{AdS}_3 \times S^3 \times T^4$

Attractor mechanism: $C_4 = -C_0 \text{vol}(T^4)$

Gauge-invariant RR field-strength:

$$F_3 = dC_2 - C_0 H = -C_0 k \text{vol}(S^3) \neq 0$$

Eoms remain valid

Background charges remain unchanged. E.g.

$$Q_{D5} = \int F_3 + C_0 H = \int -C_0 H + C_0 H = 0$$
Turning on C_0 in NSNS $\text{AdS}_3 \times S^3 \times T^4$

Attractor mechanism: $C_4 = -C_0 \text{vol}(T^4)$

Gauge-invariant RR field-strength:

$$F_3 = dC_2 - C_0 H = -C_0 k \text{vol}(S^3) \neq 0$$

Eoms remain valid

Background charges remain unchanged. *E.g.*

$$Q_{D5} = \int F_3 + C_0 H = \int -C_0 H + C_0 H = 0$$

Since $H \neq 0$, $F_3 \neq 0$, and all other $F = 0$

GS action same as mixed-charge background!
Integrability of NSNS AdS$_3 \times S^3 \times T^4$ with $C_0 \neq 0$

GS action same as mixed-charge background.

Perhaps we can identify a new 't Hooft-like parameter $\lambda \sim C_0 k g s$.
Integrability of NSNS AdS$_3 \times$ S$^3 \times$ T4 with $C_0 \neq 0$

GS action same as mixed-charge background.

Parameters q and \tilde{q} related to k and C_0

$$\tilde{q} \rightarrow -g_s C_0 k \frac{\alpha'}{R^2}, \quad q \rightarrow k \frac{\alpha'}{R^2}$$
Integrability of NSNS AdS$_3 \times S^3 \times T^4$ with $C_0 \neq 0$

GS action same as mixed-charge background.

Parameters q and \tilde{q} related to k and C_0

$$
\tilde{q} \rightarrow -g_s C_0 k \frac{\alpha'}{R^2}, \quad q \rightarrow k \frac{\alpha'}{R^2}
$$

Hence exact S matrix known, written in terms of Zhukovsky vars
Integrability of NSNS AdS$_3 \times S^3 \times T^4$ with $C_0 \neq 0$

GS action same as mixed-charge background.

Parameters q and \tilde{q} related to k and C_0

$$\tilde{q} \to -g_s C_0 k \frac{\alpha'}{R^2}, \quad q \to k \frac{\alpha'}{R^2}$$

Hence exact S matrix known, written in terms of Zhukovsky vars

We have

$$R^2 = \alpha' k \sqrt{1 + g_s^2 C_0}, \quad h(R) = -\frac{C_0 k g_s}{2\pi} + \ldots$$
Integrability of NSNS AdS$_3 \times S^3 \times T^4$ with $C_0 \neq 0$

GS action same as mixed-charge background.

Parameters q and \tilde{q} related to k and C_0

$$\tilde{q} \rightarrow -g_s C_0 k \frac{\alpha'}{R^2}, \quad q \rightarrow k \frac{\alpha'}{R^2}$$

Hence exact S matrix known, written in terms of Zhukovsky vars

We have

$$R^2 = \alpha' k \sqrt{1 + g_s^2 C_0}, \quad h(R) = -\frac{C_0 k g_s}{2\pi} + \ldots$$

Perhaps we can identify a new 't Hooft-like parameter

$$\lambda \sim C_0 k g_s$$
Integrability of NSNS AdS$_3 \times S^3 \times T^4$ with $C_0 \neq 0$

GS action same as mixed-charge background.

Parameters q and \tilde{q} related to k and C_0

$$\tilde{q} \rightarrow -g_s C_0 k \frac{\alpha'}{R^2} , \quad q \rightarrow k \frac{\alpha'}{R^2}$$

Hence exact S matrix known, written in terms of Zhukovksy vars

We have

$$R^2 = \alpha' k \sqrt{1 + g_s^2 C_0} , \quad h(R) = -\frac{C_0 kg_s}{2\pi} + \ldots$$

Perhaps we can identify a new 't Hooft-like parameter

$$\lambda \sim C_0 kg_s$$

NSNS bkd integrable across moduli space away from $C_0 = 0$ point
Integrability of NSNS AdS$_3 \times S^3 \times T^4$ with $C_0 = 0$

At the $C_0 = 0$ WZW point:
Integrability of NSNS AdS$_3 \times S^3 \times T^4$ with $C_0 = 0$

At the $C_0 = 0$ WZW point:

S matrix remains finite and non-diagonal
At the $C_0 = 0$ WZW point:

- S matrix remains finite and non-diagonal

- Central extensions zero - is derivation of S matrix valid?
Integrability of NSNS AdS$_3 \times S^3 \times T^4$ with $C_0 = 0$

At the $C_0 = 0$ WZW point:

S matrix remains finite and non-diagonal

Central extensions zero - is derivation of S matrix valid?

Pert. long strings appear - new sector in Hilbert space.
In summary:
An integrable S matrix for $\text{AdS}_3 \times S^3 \times T^4$ backgrounds with any charges and non-zero moduli is known.
In summary:
An integrable S matrix for AdS$_3$ backgrounds with any charges and non-zero moduli is known.

The S matrix remains the same when written in terms of Zhukovsky variables.
In summary:
An integrable S matrix for AdS$_3$ backgrounds with any charges and non-zero moduli is known.

The S matrix remains the same when written in terms of Zhukovsky variables.

R^2 and the coupling cst $h(R)$ depend on consequential moduli.
Towards Wrapping in $\text{AdS}_3/\text{CFT}_2$
Wrapping Corrections in AdS$_3$

BEs are asymptotic equations for the spectrum: $L \to \infty$
Wrapping Corrections in AdS$_3$

BEs are asymptotic equations for the spectrum: $L \rightarrow \infty$

In AdS$_{5,4}$ finite L corrections are incorporated as a series in e^{-mL}
Wrapping Corrections in AdS$_3$

BEs are asymptotic equations for the spectrum: $L \to \infty$

In AdS$_{5,4}$ finite L corrections are incorporated as a series in e^{-mL}

In AdS$_3$ have massless states $m = 0$

Hard to understand finite L corrections

[Abbott+Aniceto]
Low energy states in RR AdS$_3$

Consider BMN limit

\[p_i \rightarrow \frac{p_i}{h}, \quad h \rightarrow \infty \]
Low energy states in RR AdS$_3$

Consider BMN limit

\[p_i \to \frac{p_i}{h}, \quad h \to \infty \]

S matrix *usually* has perturbative expansion

\[S = 1 + h^{-2}S^{(1)} + h^{-4}S^{(2)} + \ldots \]

match to pert. wsheet scattering. Leading order trivial.
Low energy states in RR AdS$_3$

Consider BMN limit

$$p_i \to \frac{p_i}{h}, \quad h \to \infty$$

S matrix *usually* has perturbative expansion

$$S = 1 + h^{-2}S^{(1)} + h^{-4}S^{(2)} + \ldots$$

match to pert. wsheet scattering. Leading order trivial.

RR AdS$_3$ has gapless excitations, which at low-energies are relativistic (massless) left- or right- movers

$$l : \quad p \gtrapprox 0, \quad r : \quad p \lesssim 2\pi$$
Low energy states in RR AdS$_3$

Consider BMN limit

\[p_i \to \frac{p_i}{h}, \quad h \to \infty \]

S matrix usually has perturbative expansion

\[S = 1 + h^{-2} S^{(1)} + h^{-4} S^{(2)} + \ldots \]

match to pert. wsheet scattering. Leading order trivial.

RR AdS$_3$ has gapless excitations, which at low-energies are relativistic (massless) left- or right- movers

\[l: \ p \gtrless 0, \quad r: \ p \lesssim 2\pi \]

At small p, massive/massive and massive/massless scattering has pert. expansion. Ditto massless left/massless right scattering.
Massless/massless S matrix for wsheet l/l or r/r on the other hand

\[S_{l/l} = S_{l/l}^{(0)} + h^{-2} S_{l/l}^{(1)} + h^{-4} S_{l/l}^{(2)} + \ldots \]

is non-trivial and non-diagonal even at leading order.
Low energy S matrix in RR AdS$_3$

Massless/massless S matrix for wsheet l/l or r/r on the other hand

\[S_{l/l} = S_{l/l}^{(0)} + h^{-2} S_{l/l}^{(1)} + h^{-4} S_{l/l}^{(2)} + \ldots \]

is non-trivial and non-diagonal even at leading order.

In strict low-energy limit we have massless relativistic theory with $S_{l/r}$ trivial, and $S_{l/l}$, $S_{r/r}$ non-trivial.
Low energy S matrix in RR AdS$_3$

Massless/massless S matrix for wsheet l/l or r/r on the other hand

$$S_{l/l} = S_{l/l}^{(0)} + h^{-2} S_{l/l}^{(1)} + h^{-4} S_{l/l}^{(2)} + \ldots$$

is non-trivial and non-diagonal even at leading order.

In strict low-energy limit we have massless relativistic theory with $S_{l/r}$ trivial, and $S_{l/l}$, $S_{r/r}$ non-trivial.

q-Poincaré properties and a geometric interpretation of the associated boost

[Torrielli+Fontanella+Stromwall+Borsato]
Low energy S matrix in RR AdS$_3$

Massless/massless S matrix for wsheet l/l or r/r on the other hand

\[S_{l/l} = S_{l/l}^{(0)} + h^{-2} S_{l/l}^{(1)} + h^{-4} S_{l/l}^{(2)} + \ldots \]

is non-trivial and non-diagonal even at leading order.

In strict low-energy limit we have massless relativistic theory with $S_{l/r}$ trivial, and $S_{l/l}$, $S_{r/r}$ non-trivial.

q-Poincaré properties and a geometric interpretation of the associated boost [Torrielli+Fontanella+Stromwall+Borsato]

Such integrable systems have been argued by Zamolodchikov to describe 2d CFTs. We call ours CFT$^{(0)}$.

Massless/massless S matrix for wsheet l/l or r/r on the other hand

\[S_{l/l} = S_{l/l}^{(0)} + h^{-2} S_{l/l}^{(1)} + h^{-4} S_{l/l}^{(2)} + \ldots \]

is non-trivial and non-diagonal even at leading order.

In strict low-energy limit we have massless relativistic theory with $S_{l/r}$ trivial, and $S_{l/l}$, $S_{r/r}$ non-trivial.

q-Poincaré properties and a geometric interpretation of the associated boost

[Torrielli+Fontanella+Stromwall+Borsato]

Such integrable systems have been argued by Zamolodchikov to describe 2d CFTs. We call ours CFT\(^{(0)}\).

Similar S matrices invastigated in the 90s by Zamolodchikov, Fendley and Intriligator, Dunning...
Dressing factor in low-energy limit

Dressing factors have an expansion

\[\sigma = h^2 \sigma_{AFS} + h^0 \sigma_{HL} + \ldots \]
Dressing factor in low-energy limit

Dressing factors have an expansion

\[\sigma = h^2 \sigma_{\text{AFS}} + h^0 \sigma_{\text{HL}} + \ldots \]

At low-energy \(\sigma_{\text{AFS}} \) trivializes, and higher-order terms decouple.
Dressing factor in low-energy limit

Dressing factors have an expansion

\[\sigma = h^2 \sigma_{\text{AFS}} + h^0 \sigma_{\text{HL}} + \ldots \]

At low-energy \(\sigma_{\text{AFS}} \) trivializes, and higher-order terms decouple.

\[\sigma_{\text{HL}}^2 \equiv e^{i \theta_{\text{HL}}} \] reduces to

\[\theta_{\text{rel}}(\vartheta) = \frac{2i}{\pi} \int_{-\infty}^{\infty} d\phi \frac{e^{\vartheta + \phi}}{e^{2\vartheta} + e^{2\phi}} \log \left(\frac{1 - ie^\phi}{1 + ie^\phi} \right) - \frac{\pi}{2} \]

\(\vartheta = \theta_1 - \theta_2 \) with \(p_i = e^{\theta_i} \)

as expected for a relativistic theory.
HL dressing factor in low-energy limit

\(\sigma_{HL}^{\text{rel}} \) satisfies the famous sine-Gordon crossing equation

\[
\sigma_{HL}(\vartheta)\sigma_{HL}(\vartheta + i\pi) = i \tanh \frac{\vartheta}{2}
\]
HL dressing factor in low-energy limit

\(\sigma_{HL}^{rel} \) satisfies the famous sine-Gordon crossing equation

\[
\sigma_{HL}^{rel}(\vartheta)\sigma_{HL}^{rel}(\vartheta + i\pi) = i \tanh \frac{\vartheta}{2}
\]

In physical strip \(\sigma_{HL}^{rel} \) is equal to Zamolodchikov scalar factor in SG soliton/anti-soliton scattering (with \(\gamma = 16\pi, \beta^2 = 16\pi/3 \))

\[
\sigma_{HL}^{rel}(\vartheta) = \prod_{l=1}^{\infty} \frac{\Gamma^2(l-\tau)\Gamma(l+\tau+1/2)\Gamma(l+\tau-1/2)}{\Gamma^2(l+\tau)\Gamma(l-\tau+1/2)\Gamma(l-\tau-1/2)}
\]

where \(\vartheta = 2\pi \tau i \)
Relativistic Bethe Equations

The BEs reduce to (two copies of)

\[1 = \prod_{j=1}^{K_0} \tanh \frac{\beta_{1,k} - \theta_j}{2}, \]

\[e^{iLp_k} = (-1)^{K_0-1} \prod_{j=1, j \neq k}^{K_0} \sigma^2(\varphi_{kj}) \prod_{j=1}^{K_1} \coth \frac{\beta_{1,j} - \theta_k}{2} \prod_{j=1}^{K_3} \coth \frac{\beta_{3,j} - \theta_k}{2}, \]

\[1 = \prod_{j=1}^{K_0} \tanh \frac{\beta_{3,k} - \theta_j}{2}, \]
Relativistic TBA for CFT\(^{(0)}\)

Introduce rapidity density \(\rho_0 = \frac{\Delta n}{\Delta \theta} \), and analogously \(\rho_{\pm 1,3} \) for level-1 magnons, (solutions come in pairs: \[\text{[Fendley+Intriligator]}\]
Relativistic TBA for CFT^{(0)}

Introduce rapidity density $\rho_0 = \frac{\Delta n}{\Delta \theta}$, and analogously $\rho_{\pm 1,3}$ for level-1 magnons, (solutions come in pairs: [Fendley+Intriligator]

The thermodynamic limit of BEs imply a set of TBA equations

$$\varepsilon_0 = \nu_0(\theta) - \sum_{n=1,3} \phi^* (L_n + L_{-n}); \quad \varepsilon_{\pm n} = -\phi^* L_0,$$

where $\phi = \frac{\text{sech} \theta}{2\pi}$, $n = 1, 3$ and $A = 0, \pm n$

$$\nu_0(\theta) \equiv MR e^\theta, \quad \varepsilon_A \equiv \log \frac{\rho_A^h}{\rho_A^r}, \quad L_A \equiv \log(1 + e^{-\varepsilon_A}),$$
Relativistic TBA for CFT\(^{(0)}\)

Introduce rapidity density \(\rho_0 = \frac{\Delta n}{\Delta \theta}\), and analogously \(\rho_{\pm 1,3}\) for level-1 magnons, (solutions come in pairs: [Fendley+Intriligator]

The thermodynamic limit of BEs imply a set of TBA equations

\[
\varepsilon_0 = \nu_0(\theta) - \sum_{n=1,3} \phi \ast (L_+ n + L_- n); \quad \varepsilon_{\pm n} = -\phi \ast L_0,
\]

where \(\phi = \frac{\text{sech} \theta}{2\pi}\), \(n = 1, 3\) and \(A = 0, \pm n\)

\[
\nu_0(\theta) \equiv MR e^\theta, \quad \varepsilon_A \equiv \log \frac{\rho_A^h}{\rho_A^r}, \quad L_A \equiv \log(1 + e^{-\varepsilon_A}),
\]

The exact ground-state energy for right-movers is given by

\[
E_{0,\text{right}}(R) = -\frac{M}{2\pi} \int d\theta e^\theta \log(1 + e^{-\varepsilon_0(\theta)}),
\]
Properties of $\text{CFT}^{(0)}$ from TBA

Ground-state energy with anti-periodic boundary conditions for fermions (a.k.a. Witten’s index) is zero. So BMN vacuum receives no corrections.
Properties of $\text{CFT}^{(0)}$ from TBA

Ground-state energy with anti-periodic boundary conditions for fermions (a.k.a. Witten's index) is zero. So BMN vacuum receives no corrections.

Ground state energy with periodic boundary conditions for fermions is related to the central charge of $\text{CFT}^{(0)}$

$$c \equiv \lim_{L \to \infty} \frac{6R}{\pi L} \log \text{Tr} e^{-R H_L} = -\frac{6R}{\pi} E_0(R) = 6,$$
Properties of $\text{CFT}^{(0)}$ from TBA

Ground-state energy with anti-periodic boundary conditions for fermions (a.k.a. Witten’s index) is zero. So BMN vacuum receives no corrections.

Ground state energy with periodic boundary conditions for fermions is related to the central charge of $\text{CFT}^{(0)}$

$$c \equiv \lim_{L \to \infty} \frac{6R}{\pi L} \log \text{Tr} e^{-R H_L} = -\frac{6R}{\pi} E_0(R) = 6,$$

Energies of some excited states were computed using the Y-system

$$E_n(R) = \frac{2\pi}{R} (1 - n)^2, \quad n = 2, 3, \ldots$$
Properties of CFT($^{(0)}$) from TBA

Ground-state energy with anti-periodic boundary conditions for fermions (a.k.a. Witten’s index) is zero. So BMN vacuum receives no corrections.

Ground state energy with periodic boundary conditions for fermions is related to the central charge of CFT($^{(0)}$)

$$c \equiv \lim_{L \to \infty} \frac{6R}{\pi L} \log \text{Tr} e^{-R H_L} = -\frac{6R}{\pi} E_0(R) = 6,$$

Energies of some excited states were computed using the Y-system

$$E_n(R) = \frac{2\pi}{R} (1 - n)^2, \quad n = 2, 3, \ldots$$

These properties suggest CFT($^{(0)}$) is just a free CFT on T^4 or R^4.
Conclusions
Conclusions: Moduli

- AdS$_3 \times S^3 \times T^4$ spectrum with $p_{T^4} = w_{T^4} = 0$ integrable for any background charges across whole moduli space*

Conclusions: Moduli

- $\text{AdS}_3 \times S^3 \times T^4$ spectrum with $p_{T^4} = w_{T^4} = 0$ integrable for any background charges across whole moduli space*

- *Applies to NSNS theory away from ”origin” of moduli space
Conclusions: Moduli

- $\text{AdS}_3 \times S^3 \times T^4$ spectrum with $p_{T^4} = w_{T^4} = 0$ integrable for any background charges across whole moduli space*

- *Applies to NSNS theory away from ''origin'' of moduli space

- At origin, NSNS S matrix finite and non-diagonal. Need to understand long string sector.

[Reference: Giribet+Hull+Kleban+Porrati+Rabinovici, Gaberdiel+Gopakumar]

Fully backreacted geometries with non-zero moduli also known.
Conclusions: Moduli

- $\text{AdS}_3 \times S^3 \times T^4$ spectrum with $p_{T^4} = w_{T^4} = 0$ integrable for any background charges across whole moduli space*

- *Applies to NSNS theory away from ”origin” of moduli space

- At origin, NSNS S matrix finite and non-diagonal. Need to understand long string sector.

- Match short strings to Maldacena Ooguri spectrum? Connect to recent conjecture by Baggio and Sfondrini? Relation to low k results?

 [Giribet+Hull+Kleban+Porrati+Rabinovici,Gaberdiel+Gopakumar]

- Fully backreacted geometries with non-zero moduli also known
Conclusions: Wrapping

- In low-energy relativistic limit S matrix for RR AdS$_3 \times S^3 \times T^4$ remains non-trivial
Conclusions: Wrapping

- In low-energy relativistic limit S matrix for RR $\text{AdS}_3 \times S^3 \times T^4$ remains non-trivial.

- Low energy S matrix for massless relativistic wsheet left/right movers gives integrable description of $\text{CFT}^{(0)}$ à la Zamolodchikov.
Conclusions: Wrapping

- In low-energy relativistic limit S matrix for RR $\text{AdS}_3 \times S^3 \times T^4$ remains non-trivial.
- Low energy S matrix for massless relativistic wsheet left/right movers gives integrable description of $\text{CFT}^{(0)}$ \textit{à la} Zamolodchikov.
- $\text{CFT}^{(0)}$ has $c = 6$ and (some) excitations at (half-)integer values. Can we identify it with a free CFT on T^4 or R^4?
Conclusions: Wrapping

- In low-energy relativistic limit S matrix for RR $\text{AdS}_3 \times S^3 \times T^4$ remains non-trivial

- Low energy S matrix for massless relativistic wsheet left/right movers gives integrable description of $\text{CFT}^{(0)}$ à la Zamolodchikov

- $\text{CFT}^{(0)}$ has $c = 6$ and (some) excitations at (half-)integer values. Can we identify it with a free CFT on T^4 or R^4?

- Generalise to $\text{AdS}_3 \times S^3 \times T^4$ backgrounds with other charges.
Thank you