The Hagedorn temperature of $\text{AdS}_5/\text{CFT}_4$ at finite coupling via the Quantum Spectral Curve

Matthias Wilhelm, Niels Bohr Institute

IGST 2018, Copenhagen
August 23rd, 2018

[1706.03074], [1803.04416] and work in progress with T. Harmark
AdS/CFT correspondence

- Type IIB string theory on $AdS_5 \times S^5$
- $\mathcal{N} = 4$ SYM theory on $\mathbb{R} \times S^3$

Should in particular relate phase transitions, critical behaviour and thermal physics e.g. Hagedorn temperature

[Matthias Wilhelm]

[Hagedorn (1965)]

[Sugishita (2010)]
AdS/CFT correspondence

Type IIB string theory on $AdS_5 \times S^5$

$\mathcal{N} = 4$ SYM theory on $\mathbb{R} \times S^3$

[Maldacena (1997)]

Should in particular relate phase transitions, critical behaviour and thermal physics e.g. Hagedorn temperature [Witten (1998)],

Hagedorn temperature

Limiting temperature due to an exponential rise in the density of states $\rho(E)$, where $Z(T) = \sum_E \rho(E) e^{-E/T}$

→ Signals a phase transition [Hagedorn (1965)]
Planar gauge theories on $\mathbb{R} \times S^3$

- Confinement of colour degrees of freedom on S^3
 \[\rightarrow \text{Confinement/deconfinement phase transition similar to QCD or pure YM} \]
Planar gauge theories on $\mathbb{R} \times S^3$

Confinement of colour degrees of freedom on S^3

\rightarrow Confinement/deconfinement phase transition similar to QCD or pure YM

R_{S^3} acts as an effective IR cut-off

\Rightarrow Allows for a perturbative comparison between conformal theories, such as $\mathcal{N} = 4$ SYM theory, and non-conformal theories such as pure Yang-Mills theory

[Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk (2003)]
State/operator correspondence

- States on $\mathbb{R} \times S^3$ ↔ Gauge-invariant operators on $\mathbb{R}^{1,3}$
- Hamilton operator H on $\mathbb{R} \times S^3$ ↔ Dilatation operator D on $\mathbb{R}^{1,3}$
- Energies E on $\mathbb{R} \times S^3$ ↔ Scaling dimensions Δ on $\mathbb{R}^{1,3}$

Partition function ($S^3 = 1$):

$$Z(T) = \text{tr}_{\mathbb{R} \times S^3}[e^{-H/T}] = \text{tr}_{\mathbb{R}^{1,3}}[e^{-D/T}]$$

Planar limit: $\Delta \text{tr}() = \Delta \text{tr}() + \Delta \text{tr}() + \ldots$

⇒ Sufficient to look at single-trace operators

Partition function via Pólya theory:

- Tree-level [Sundborg (1999)]
- One-loop [Spradlin, Volovich (2004)]
State/operator correspondence

<table>
<thead>
<tr>
<th>States on $\mathbb{R} \times S^3$</th>
<th>\leftrightarrow Gauge-invariant operators on $\mathbb{R}^{1,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilton operator H on $\mathbb{R} \times S^3$</td>
<td>\leftrightarrow Dilatation operator D on $\mathbb{R}^{1,3}$</td>
</tr>
<tr>
<td>Energies E on $\mathbb{R} \times S^3$</td>
<td>\leftrightarrow Scaling dimensions Δ on $\mathbb{R}^{1,3}$</td>
</tr>
</tbody>
</table>

Partition function ($R_{S^3} = 1$)

$$Z(T) = \text{tr}_{\mathbb{R} \times S^3}[e^{-H/T}] = \text{tr}_{\mathbb{R}^{1,3}}[e^{-D/T}]$$
Hagedorn temperature of $\mathcal{N} = 4$ SYM theory

State/operator correspondence

States on $\mathbb{R} \times S^3$ ↔ Gauge-invariant operators on $\mathbb{R}^{1,3}$
Hamilton operator H on $\mathbb{R} \times S^3$ ↔ Dilatation operator D on $\mathbb{R}^{1,3}$
Energies E on $\mathbb{R} \times S^3$ ↔ Scaling dimensions Δ on $\mathbb{R}^{1,3}$

Partition function ($R_{S^3} = 1$)

$$Z(T) = \text{tr}_{\mathbb{R} \times S^3}[e^{-H/T}] = \text{tr}_{\mathbb{R}^{1,3}}[e^{-D/T}]$$

Planar limit: $\Delta_{\text{tr}(\cdots)} = \Delta_{\text{tr}(\cdot)} + \Delta_{\text{tr}(\cdot)} + \ldots$
⇒ Sufficient to look at single-trace operators
Hagedorn temperature of $\mathcal{N} = 4$ SYM theory

State/operator correspondence

<table>
<thead>
<tr>
<th>States on $\mathbb{R} \times S^3$</th>
<th>\leftrightarrow Gauge-invariant operators on $\mathbb{R}^{1,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilton operator H on $\mathbb{R} \times S^3$</td>
<td>\leftrightarrow Dilatation operator D on $\mathbb{R}^{1,3}$</td>
</tr>
<tr>
<td>Energies E on $\mathbb{R} \times S^3$</td>
<td>\leftrightarrow Scaling dimensions Δ on $\mathbb{R}^{1,3}$</td>
</tr>
</tbody>
</table>

Partition function ($R_{S^3} = 1$)

$$Z(T) = \text{tr}_{\mathbb{R} \times S^3}[e^{-H/T}] = \text{tr}_{\mathbb{R}^{1,3}}[e^{-D/T}]$$

Planar limit: $\Delta_{\text{tr()} \text{tr()}...} = \Delta_{\text{tr()}} + \Delta_{\text{tr()}} + \ldots$

\Rightarrow Sufficient to look at single-trace operators

Partition function via Pólya theory:

- Tree-level [Sundborg (1999)]
- One-loop [Spradlin, Volovich (2004)]
Hagedorn temperature in string theory

Free (tree-level) string theory

Exponential growth of string states with the energy
Hagedorn temperature in string theory

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Free (tree-level) string theory</td>
<td>Exponential growth of string states with the energy</td>
</tr>
<tr>
<td>Interacting string theory</td>
<td>Connected to Hawking-Page transition [Witten (1998)]</td>
</tr>
</tbody>
</table>
Hagedorn temperature in string theory

Free (tree-level) string theory
Exponential growth of string states with the energy

Interacting string theory
Connected to Hawking-Page transition

‘Phases’ of type IIB string theory on $AdS_5 \times S^5$

[Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk (2003)]

[Inaccessible at large N]

[Matthias Wilhelm]
Hagedorn temperature in string theory

Free (tree-level) string theory
Exponential growth of string states with the energy

Interacting string theory
Connected to Hawking-Page transition [Witten (1998)]

‘Phases’ of type IIB string theory on $AdS_5 \times S^5$
[Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk (2003)]
Hagedorn temperature in pp-wave limits of string theory

[Grignani, Orselli, Semenoff, and Trancanelli (2003)]

Special limit

- **string theory** pp-wave limit
- **gauge theory** one-loop SU(2) sector

→ Quantitative match via free energy of Heisenberg spin chain

[Harmark, Orselli (2006)]
Integrability: Scaling dimensions $\Delta(\lambda)$ known for all λ

Long history: One-loop Bethe equation
→ asymptotic all-loop Bethe equations
→ thermodynamic Bethe ansatz (TBA) equations
→ Y-system equations, T-system equations
→ Quantum spectral curve (QSC)

[Minahan, Zarembo (2002)],…
Integrability: Scaling dimensions $\Delta(\lambda)$ known for all λ

Long history: One-loop Bethe equation
→ asymptotic all-loop Bethe equations
→ thermodynamic Bethe ansatz (TBA) equations
→ Y-system equations, T-system equations
→ Quantum spectral curve (QSC)

[Minahan, Zarembo (2002)],...

Naive idea: Sum over Δ’s yields $Z = \sum e^{-\Delta/T} \rightarrow$ Prohibitive
Integrability for the Hagedorn temperature

Spectral problem: Solution on $\mathbb{R} \times S^1_L$ to account for finite-size (wrapping) effects via TBA
Integrability for the Hagedorn temperature

Spectral problem: Solution on $\mathbb{R} \times S^1_L$ to account for finite-size (wrapping) effects via TBA

Partition function: Solution on $S^1_{1/T} \times S^1_L$

→ Still too hard
Integrability for the Hagedorn temperature

Spectral problem: Solution on $\mathbb{R} \times S^1_L$ to account for finite-size (wrapping) effects via TBA

Partition function: Solution on $S^1_{1/T} \times S^1_L$

→ Still too hard

Hagedorn temperature: Singularity driven by very long spin chains, for which finite-size effects play no role → Solution on $S^1_{1/T} \times \mathbb{R}$ via TBA
Integrability for the Hagedorn temperature

Spectral problem: Solution on $\mathbb{R} \times S^1_L$ to account for finite-size (wrapping) effects via TBA

Partition function: Solution on $S^{1/T} \times S^1_L$

→ Still too hard

Hagedorn temperature: Singularity driven by very long spin chains, for which finite-size effects play no role → Solution on $S^{1/T} \times \mathbb{R}$ via TBA
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>The Hagedorn temperature from the free energy of the spin chain</td>
</tr>
<tr>
<td>3</td>
<td>Quantum Spectral Curve for the Hagedorn temperature</td>
</tr>
<tr>
<td>4</td>
<td>Solving the Hagedorn QSC</td>
</tr>
<tr>
<td>5</td>
<td>Chemical potentials and deformations</td>
</tr>
<tr>
<td>6</td>
<td>Conclusion and outlook</td>
</tr>
</tbody>
</table>
1 Introduction

2 The Hagedorn temperature from the free energy of the spin chain

3 Quantum Spectral Curve for the Hagedorn temperature

4 Solving the Hagedorn QSC

5 Chemical potentials and deformations

6 Conclusion and outlook
Single-trace partition function with $D = D_0 + \delta D$:

$$Z(T) = \text{tr}_{\mathbb{R}^{1,3},\text{single-trace}}[e^{-D/T}] = \sum_{m=2}^{\infty} e^{-\frac{m}{2} \frac{1}{T}} Z_{\text{spin-chain}}^{D_0=\frac{m}{2}}(T)$$

Spin-chain partition function at fixed $D_0 = \frac{m}{2}$:

$$Z_{D_0=\frac{m}{2}}(T) = \text{tr}_{\text{spin-chain},D_0=\frac{m}{2}}[e^{-\delta D/T}]$$
Field-theory and spin-chain partition function

Single-trace partition function with $D = D_0 + \delta D$:

$$Z(T) = \text{tr}_{\mathbb{R}^{1,3},\text{single-trace}}[e^{-D/T}] = \sum_{m=2}^{\infty} e^{-\frac{m}{2} \frac{1}{T}} Z_{D_0 = \frac{m}{2}}^{\text{spin-chain}}(T)$$

Spin-chain partition function at fixed $D_0 = \frac{m}{2}$:

$$Z_{D_0 = \frac{m}{2}}^{\text{spin-chain}}(T) = \text{tr}_{\text{spin-chain}, D_0 = \frac{m}{2}}[e^{-\delta D/T}]$$

Spin-chain free energy per unit classical scaling dimension at $D_0 = \frac{m}{2}$:

$$F_m(T) = -T \frac{2}{m} \log Z_{D_0 = \frac{m}{2}}^{\text{spin-chain}}$$
Single-trace partition function with $D = D_0 + \delta D$:

$$Z(T) = \text{tr}_{\mathbb{R}^{1,3}, \text{single-trace}}[e^{-D/T}] = \sum_{m=2}^{\infty} e^{-\frac{m}{2} \frac{1}{T}} Z^{\text{spin-chain}}_{D_0 = \frac{m}{2}}(T)$$

Spin-chain partition function at fixed $D_0 = \frac{m}{2}$:

$$Z^{\text{spin-chain}}_{D_0 = \frac{m}{2}}(T) = \text{tr}_{\text{spin-chain}, D_0 = \frac{m}{2}}[e^{-\delta D/T}]$$

Spin-chain free energy per unit classical scaling dimension at $D_0 = \frac{m}{2}$:

$$F_m(T) = -T \frac{2}{m} \log Z^{\text{spin-chain}}_{D_0 = \frac{m}{2}}$$

Multi-trace partition function:

$$Z(T) = \exp \sum_{n=1}^{\infty} \frac{1}{n} \sum_{m=2}^{\infty} (-1)^{m(n+1)} e^{-\frac{mn}{2T} (1+F_m(T/n))}$$
Free energy and Hagedorn temperature

Hagedorn singularity = first singularity encountered in \(Z \) when raising the temperature from zero \(\Rightarrow \) stems from \(n = 1 \) term

\[
\sum_{m=2}^{\infty} e^{-\frac{m}{2T} (1+F_m(T))}
\]
Hagedorn singularity = first singularity encountered in Z when raising the temperature from zero \Rightarrow stems from $n = 1$ term

$$\sum_{m=2}^{\infty} e^{-\frac{m}{2T}(1+F_m(T))}$$

Cauchy root test Consider $\sum_{n=1}^{\infty} a_n$. Let $r = \lim_{n \to \infty} \sqrt[n]{a_n}$. The series converges for $r < 1$ and diverges for $r > 1$.

Matthias Wilhelm

The Hagedorn temperature of AdS$_5$/CFT$_4$ at finite coupling via the QSC
Free energy and Hagedorn temperature

Hagedorn singularity = first singularity encountered in Z when raising the temperature from zero \Rightarrow stems from $n = 1$ term

$$\sum_{m=2}^{\infty} e^{-\frac{m}{2T}(1+F_m(T))}$$

Cauchy root test Consider $\sum_{n=1}^{\infty} a_n$. Let $r = \lim_{n \to \infty} \sqrt[n]{a_n}$. The series converges for $r < 1$ and diverges for $r > 1$.

The Hagedorn temperature is determined by $r \equiv e^{-\frac{1}{2T}(1+F(T))} = 1$ or, equivalently,

$$F(T_H) = -1$$

where

$$F = \lim_{m \to \infty} F_m = -\lim_{m \to \infty} T \frac{2}{m} \log Z_{D_0=D_0}^{\text{spin-chain}}$$

is the thermodynamic limit of the spin-chain free energy per unit scaling dimension!
1. Introduction

2. The Hagedorn temperature from the free energy of the spin chain

3. Quantum Spectral Curve for the Hagedorn temperature

4. Solving the Hagedorn QSC

5. Chemical potentials and deformations

6. Conclusion and outlook

- Starting point: all-loop asymptotic Bethe equations [Beisert, Dippel, Staudacher (2004)], [Beisert, Eden, Staudacher (2006)]
- Replace L by D_0
- String hypothesis
- Continuum limit $D_0 \to \infty$

\Rightarrow TBA equations determining in particular $F(T)$ and thus T_H

Main difference compared to the TBA equations of the spectral problem:

No double Wick rotation \rightarrow Zhukovsky variable $x(u)$ with a short cut

$$x(u) = \frac{u}{2} \left(1 + \sqrt{1 - \frac{4g^2}{u^2}} \right) \quad g^2 = \frac{\lambda}{16\pi^2}$$

Note: direct theory with different continuum limit studied in [Cavaglia, Fioravanti, Tateo (2010)]
From the TBA equations to the QSC:

TBA equations: Infinite system of integral equations

Y-system/T-system: Infinite system of finite difference equations

Quantum Spectral Courve: Finite system of finite difference equations

[Gromov, Kazakov, Leurent, Volin (2013)]

Matthias Wilhelm
Part of an analytic Q-system with fundamental functions

\[P_a(u) \quad Q_i(u) \quad \text{and} \quad Q_{a|i}(u) \quad a, i = 1, 2, 3, 4 \]

on a Riemann surface

Finite difference equations with \(f^\pm(u) = f(u \pm \frac{i}{2}) \):

\[Q^+_{a|i} - Q^-_{a|i} = P_a Q_i \quad P_a = -Q^i Q^+_a \]

with \(Q^i = \chi^{ij} Q_j \) and \(-\chi^{14} = -\chi^{32} = \chi^{23} = \chi^{41} = 1\)

Orthonormality:

\[Q_{a|i} Q^{b|i} = \delta^b_a \quad Q_{a|i} Q^a{j} = \delta^j_i \]

[Gromov, Kazakov, Leurent, Volin (2013)]
Adjusting the QSC

Applications to spectral problem:

- $\mathcal{N} = 4$ SYM theory [Gromov, Kazakov, Leurent, Volin (2013)]
- Twisted $\mathcal{N} = 4$ SYM theory [Kazakov, Leurent, Volin (2015)]
- η-deformed $\mathcal{N} = 4$ SYM theory [Klabbers, van Tongeren (2017)]

Applications to structure constants:

- Cusped Wilson lines [Cavaglià, Gromov, Levkovich-Maslyuk (2018)]
Adjusting the QSC

Applications to spectral problem:
- $\mathcal{N} = 4$ SYM theory [Gromov, Kazakov, Leurent, Volin (2013)]
- Twisted $\mathcal{N} = 4$ SYM theory [Kazakov, Leurent, Volin (2015)]
- η-deformed $\mathcal{N} = 4$ SYM theory [Klabbers, van Tongeren (2017)]

Applications to structure constants:
- Cusped Wilson lines [Cavaglià, Gromov, Levkovich-Maslyuk (2018)]

Adjust the QSC to Hagedorn temperature:
- Asymptotics (large u)
- Branch cuts
- Gluing conditions
Asymptotics (large u)

Asymptotic T-system \[\text{[Harmark, MW (2017)]} \Rightarrow \text{Asymptotics of } P_a \text{ and } Q_i \]
Asymptotics (large u)

Asymptotic T-system [Harmark, MW (2017)] \Rightarrow Asymptotics of P_a and Q_i

\[
\begin{align*}
P_1(u) &= A_1 (-e^{-\frac{1}{2T_H}})^{-iu} (1 + \mathcal{O}(u^{-1})) & Q_1(u) &= B_1 (1 + \mathcal{O}(u^{-1})) \\
P_2(u) &= A_2 (-e^{-\frac{1}{2T_H}})^{-iu} (u + \mathcal{O}(u^0)) & Q_2(u) &= B_2 (u + \mathcal{O}(u^0)) \\
P_3(u) &= A_3 (-e^{-\frac{1}{2T_H}})^{+iu} (1 + \mathcal{O}(u^{-1})) & Q_3(u) &= B_3 (u^2 + \mathcal{O}(u^1)) \\
P_4(u) &= A_4 (-e^{-\frac{1}{2T_H}})^{+iu} (u + \mathcal{O}(u^0)) & Q_4(u) &= B_4 (u^3 + \mathcal{O}(u^2))
\end{align*}
\]

with $A_1 A_4 = A_2 A_3 = \frac{i}{\tanh^2 \frac{1}{4T_H}}$ and $B_1 B_4 = \frac{1}{3} B_2 B_3 = -\frac{8i}{3} \cosh^4 \frac{1}{4T_H}$
Asymptotics (large u)

Asymptotic T-system [Harmark, MW (2017)] ⇒ Asymptotics of P_a and Q_i

\[
\begin{align*}
P_1(u) &= A_1(-e^{-\frac{1}{2T_H}})^{-iu}(1 + O(u^{-1})) & Q_1(u) &= B_1(1 + O(u^{-1})) \\
P_2(u) &= A_2(-e^{-\frac{1}{2T_H}})^{-iu}(u + O(u^0)) & Q_2(u) &= B_2(u + O(u^0)) \\
P_3(u) &= A_3(-e^{-\frac{1}{2T_H}})^{+iu}(1 + O(u^{-1})) & Q_3(u) &= B_3(u^2 + O(u^1)) \\
P_4(u) &= A_4(-e^{-\frac{1}{2T_H}})^{+iu}(u + O(u^0)) & Q_4(u) &= B_4(u^3 + O(u^2))
\end{align*}
\]

with $A_1A_4 = A_2A_3 = \frac{i}{\tanh^2 \frac{1}{4T_H}}$ and $B_1B_4 = \frac{1}{3}B_2B_3 = -\frac{8i}{3}\cosh^4 \frac{1}{4T_H}$

Remarks:

- T_H enters the asymptotics of P_a and the prefactors!
- Gauge freedom: Fix $B_1 = B_2 = 1$. Fix $A_1 = iA_2 = -A_3 = -iA_4 = (\tanh \frac{1}{4T_H})^{-1}$.
- Asymptotics formally agree with those in the twisted spectral problem for $\Delta = S_1 = S_2 = J_1 = J_2 = J_3 = 0$.
Opposite branch cut structure compared to spectral problem:
\[\exists \text{ sheet on which } Q_i \text{ has a single cut from } -2g \text{ to } +2g \]
Opposite branch cut structure compared to spectral problem:

∃ sheet on which Q_i has a single cut from $-2g$ to $+2g$

Ansatz: $Q_i(u) = B_i(gx(u))^{i-1} \left(1 + \sum_{n=1}^{\infty} \frac{c_{i,n}(g)}{x(u)^{2n}} \right)$
Branch cuts and gluing conditions

Opposite branch cut structure compared to spectral problem:
\exists\text{ sheet on which } Q_i \text{ has a single cut from } -2g \text{ to } +2g

\[
Q_i \quad 2g+2i
\]

\[
Q_i \quad 2g+i
\]

\[
2g
\]

\[
Q_i \quad 2g-i
\]

\[
2g-2i
\]

Ansatz:
\[Q_i(u) = B_i(gx(u))^{i-1}\left(1 + \sum_{n=1}^{\infty} \frac{c_{i,n}(g)}{x(u)^{2n}}\right)\]

Gluing conditions (analytic continuation through branch cut):
\[\tilde{P}_a(u) = (-1)^{a+1}P_a(u)\]

Note: Formulation of [Gromov, Levkovitch-Maslyuk, Sizov (2015)], no \(\mu_{ab}\).
General strategy

Ansatz for Q_i: $Q_i(u) = B_i(gx(u))^{i-1} \left(1 + \sum_{n=1}^{\infty} \frac{c_{i,n}(g)}{x(u)^{2n}} \right)$

Solve for $Q_a \mid_i$ via $Q_a \mid_i - Q_a \mid_j = -Q_i Q_j \mid_a$

Solve for $P_a = -Q_i Q_j \mid_a$ and $\tilde{P}_a = -\tilde{Q}_i Q_j \mid_a$

Impose gluing conditions $\tilde{P}_a(u) = (-1)^{a+1} P_a(u)$ and asymptotics $P_2(u) P_1(u) = -iu + O(u^0)$
General strategy

1. Ansatz for Q_i: $Q_i(u) = B_i(gx(u))^{i-1} \left(1 + \sum_{n=1}^{\infty} \frac{c_{i,n}(g)}{x(u)^{2n}} \right)$

2. Solve for Q_a^i via $Q_a^+ - Q_a^- = -Q_i Q^j Q_a^+$

3. Solve for P_a via $P_a = -Q_i Q^j Q_a^+$ and $\tilde{P}_a = -\tilde{Q}_i Q^j Q_a^+$

4. Impose gluing conditions $\tilde{P}_a(u) = (-1)^{a+1} P_a(u)$ and asymptotics via $P_2(u) P_1(u) = -iu + O(u^0)$
General strategy

1. Ansatz for Q_i: $Q_i(u) = B_i(gx(u))^{i-1} \left(1 + \sum_{n=1}^{\infty} \frac{c_{i,n}(g)}{x(u)^{2n}} \right)$

2. Solve for $Q^+_{a|i}$ via $Q^+_{a|i} - Q^-_{a|i} = -Q_i Q^i Q^+_a$

3. Solve for $P_a = -Q^i Q^+_{a|i}$ and $\tilde{P}_a = -\tilde{Q}^i Q^+_{a|i}$
General strategy

1. Ansatz for Q_i: $Q_i(u) = B_i(g x(u))^{i-1} \left(1 + \sum_{n=1}^{\infty} \frac{c_{i,n}(g)}{x(u)^{2n}}\right)$

2. Solve for $Q_{a|i}$ via $Q^+_{a|i} - Q^-_{a|i} = -Q_i Q^+_{a|j}$

3. Solve for $P_a = -Q^i Q^+_{a|i}$ and $\tilde{P}_a = -\tilde{Q}^i Q^+_{a|i}$.

4. Impose gluing conditions $\tilde{P}_a(u) = (-1)^{a+1} \overline{P_0(u)}$ and asymptotics via $\frac{P_2(u)}{P_1(u)} = -iu + O(u^0)$

$\Rightarrow T_H$ and $c_{i,n}!$
Strategy following \cite{Gromov, Levkovich-Maslyuk, Sizov (2015)}

Workhorse: Solve \(f(u + i) - f(u) = g(u) \)
Strategy following [Gromov, Levkovich-Maslyuk, Sizov (2015)]

Workhorse: Solve $f(u + i) - f(u) = g(u)$

Example: $g(u) = \frac{z^{-iu}}{u^2} \Rightarrow f(u) = -z^{-iu} \sum_{n=0}^{\infty} \frac{z^n}{(u + in)^2}$
Perturbative solution

Strategy following [Gromov, Levkovich-Maslyuk, Sizov (2015)]

Workhorse: Solve \(f(u + i) - f(u) = g(u) \)

Example: \(g(u) = \frac{-iu}{u^2} \Rightarrow f(u) = -z^{-iu} \sum_{n=0}^{\infty} \frac{z^n}{(u+in)^2} \)

Solution given by generalised \(\eta \) functions:

\[
\eta_{s_1, \ldots, s_k}^{z_1, \ldots, z_k}(u) \equiv \sum_{n_1 > n_2 > \cdots > n_k \geq 0} \frac{z_1^{n_1} \cdots z_k^{n_k}}{(u + in_1)^{s_1} \cdots (u + in_k)^{s_k}}
\]

[Cromov, Levkovich-Maslyuk, Sizov (2015)]
Strategy following [Gromov, Levkovich-Maslyuk, Sizov (2015)]

Workhorse: Solve \(f(u + i) - f(u) = g(u) \)

Example: \(g(u) = \frac{z^{-iu}}{u^2} \Rightarrow f(u) = -z^{-iu} \sum_{n=0}^\infty \frac{z^n}{(u+in)^2} \)

Solution given by generalised \(\eta \) functions:

\[
\eta_{s_1, \ldots, s_k}^{z_1, \ldots, z_k}(u) \equiv \sum_{n_1 > n_2 > \cdots > n_k \geq 0} \frac{z_1^{n_1} \cdots z_k^{n_k}}{(u + in_1)^{s_1} \cdots (u + in_k)^{s_k}}
\]

\[\text{[Gromov, Levkovich-Maslyuk, Sizov (2015)]}\]

\(\eta_{s_1, \ldots, s_k}^{z_1, \ldots, z_k}(i) \) is proportional to a multiple polylogarithm:

\[
\text{Li}_{s_1, \ldots, s_k}(z_1, \ldots, z_k) \equiv \sum_{n_1 > n_2 > \cdots > n_k > 0} \frac{z_1^{n_1} \cdots z_k^{n_k}}{n_1^{s_1} \cdots n_k^{s_k}}
\]
Strategy following [Gromov, Levkovich-Maslyuk, Sizov (2015)]

Workhorse: Solve $f(u + i) - f(u) = g(u)$

Example: $g(u) = \frac{z^{-iu}}{u^2} \Rightarrow f(u) = -z^{-iu} \sum_{n=0}^{\infty} \frac{z^n}{(u + in)^2}$

Solution given by generalised η functions:

$$\eta_{s_1, \ldots, s_k}^{z_1, \ldots, z_k}(u) \equiv \sum_{n_1 > n_2 > \cdots > n_k \geq 0} \frac{z_1^{n_1} \cdots z_k^{n_k}}{(u + in_1)^{s_1} \cdots (u + in_k)^{s_k}}$$

[Gromov, Levkovich-Maslyuk, Sizov (2015)]

$\eta_{s_1, \ldots, s_k}^{z_1, \ldots, z_k}(i)$ is proportional to a multiple polylogarithm:

$$\text{Li}_{s_1, \ldots, s_k}(z_1, \ldots, z_k) \equiv \sum_{n_1 > n_2 > \cdots > n_k > 0} \frac{z_1^{n_1} \cdots z_k^{n_k}}{n_1^{s_1} \cdots n_k^{s_k}}$$

Cave: $z_i \in \{1, (2 + \sqrt{3})^{\pm 2}\}$ and e.g. $\text{Li}_s(z)$ has a cut for $z \geq 1$

\[\exp(\mp T_0^{(0)} H) \]

$\Rightarrow i\epsilon$ prescription!
Perturbative results

Perturbative solution at weak coupling:

\[T_H = \frac{1}{2 \log(2 + \sqrt{3})} + g^2 \frac{1}{\log(2 + \sqrt{3})} \]

\[\approx 0.3797 \quad [\text{Sundborg (1999)}] + 0.7593 \quad [\text{Spradlin, Volovich (2004)}] \]

\[+ g^4 \left(48 - \frac{86}{\sqrt{3}} + \frac{48 \text{Li}_1 \left(\frac{1}{(2 + \sqrt{3})^2} \right)}{\log(2 + \sqrt{3})} \right) \]

\[\approx -4.3676 \quad [\text{Harmark, MW (2017)}] \]

\[+ g^6 \left(624 \text{Li}_2 \left(\frac{1}{(2 + \sqrt{3})^2} \right) + \frac{432 \text{Li}_1 \left(\frac{1}{(2 + \sqrt{3})^2} \right)^2}{\log(2 + \sqrt{3})} + \frac{312 \text{Li}_3 \left(\frac{1}{(2 + \sqrt{3})^2} \right)}{\log(2 + \sqrt{3})} \right) + \mathcal{O}(g^8) \]

\[+ \left(384 \sqrt{3} - 864 + 416 \log(2 + \sqrt{3}) \right) \text{Li}_1 \left(\frac{1}{(2 + \sqrt{3})^2} \right) \]

\[- \frac{20}{\sqrt{3}} + \left(\frac{1900}{3} - 384 \sqrt{3} \right) \log(2 + \sqrt{3}) \]

\[\approx 37.2253 \]
Perturbative results

\[T_H^{(4)} = -288 \text{Li}_2,1 \left(\frac{1}{(2+\sqrt{3})^2}, (2+\sqrt{3})^2 \right) - 288 \text{Li}_1 \left(\frac{1}{(2+\sqrt{3})^2} \right) \zeta(2) - \frac{144 \text{Li}_1 \left(\frac{1}{(2+\sqrt{3})^2} \right) \zeta(3)}{\log(2+\sqrt{3})} \\
- 8928 \text{Li}_2 \left(\frac{1}{(2+\sqrt{3})^2} \right) \text{Li}_1 \left(\frac{1}{(2+\sqrt{3})^2} \right) - 5400 \text{Li}_4 \left(\frac{1}{(2+\sqrt{3})^2} \right) + \text{Li}_1 \left(\frac{1}{(2+\sqrt{3})^2} \right) \left(704 \sqrt{3} + 5952 \log^2(2+\sqrt{3}) - 2560 \sqrt{3} \log^2(2+\sqrt{3}) - 18816 \log(2+\sqrt{3}) + 11904 \sqrt{3} \log(2+\sqrt{3}) \right) \\
+ \text{Li}_2 \left(\frac{1}{(2+\sqrt{3})^2} \right) \left(-1440 \log^2(2+\sqrt{3}) + 8928 \log(2+\sqrt{3}) - 3840 \sqrt{3} \log(2+\sqrt{3}) \right) \\
- \frac{5184 \text{Li}_1 \left(\frac{1}{(2+\sqrt{3})^2} \right)^3}{\log(2+\sqrt{3})} + \text{Li}_1 \left(\frac{1}{(2+\sqrt{3})^2} \right)^2 \left(15552 - 5952 \sqrt{3} - 6048 \log(2+\sqrt{3}) \right) \\
- \frac{4608 \text{Li}_3 \left(\frac{1}{(2+\sqrt{3})^2} \right) \text{Li}_1 \left(\frac{1}{(2+\sqrt{3})^2} \right)}{\log(2+\sqrt{3})} + \text{Li}_3 \left(\frac{1}{(2+\sqrt{3})^2} \right) \left(5040 - 1920 \sqrt{3} - 4320 \log(2+\sqrt{3}) \right) \\
- \frac{2700 \text{Li}_5 \left(\frac{1}{(2+\sqrt{3})^2} \right)}{\log(2+\sqrt{3})} + \frac{40}{\sqrt{3}} - \frac{43906 \log^2(2+\sqrt{3})}{3 \sqrt{3}} + 8448 \log^2(2+\sqrt{3}) \\
- 704 \sqrt{3} \log(2+\sqrt{3}) + 1272 \log(2+\sqrt{3}) \\
\approx -372.0410892 \]
Perturbative results

\[T_H^{(5)} = \left(-\frac{286200}{7} + 14160\sqrt{3} + 46368 \log(2 + \sqrt{3}) \right) \text{Li}_5 \left(\frac{1}{(2 + \sqrt{3})^2} \right) + 54096 \text{Li}_6 \left(\frac{1}{(2 + \sqrt{3})^2} \right) + \frac{27048 \text{Li}_7 \left(\frac{1}{(2 + \sqrt{3})^2} \right)}{\log(2 + \sqrt{3})} + 41 \text{ further terms} \approx 4132.973342 \]

\[T^{(6)} = -592704 \text{Li}_8 \left(\frac{1}{(2 + \sqrt{3})^2} \right) - \frac{337680 \text{Li}_1 \left(\frac{1}{(2 + \sqrt{3})^2} \right) \text{Li}_7 \left(\frac{1}{(2 + \sqrt{3})^2} \right)}{\log(2 + \sqrt{3})} - \frac{296352 \text{Li}_9 \left(\frac{1}{(2 + \sqrt{3})^2} \right)}{\log(2 + \sqrt{3})} + 97 \text{ terms} \approx -49510.01767 \]

\[T^{(7)} = + \left(-3423168 + 1282176\sqrt{3} + 6272640 \log(2 + \sqrt{3}) \right) \text{Li}_9 \left(\frac{1}{(2 + \sqrt{3})^2} \right) + 6899904 \text{Li}_{10} \left(\frac{1}{(2 + \sqrt{3})^2} \right) + \frac{3449952 \text{Li}_11 \left(\frac{1}{(2 + \sqrt{3})^2} \right)}{\log(2 + \sqrt{3})} + 261 \text{ terms} \approx 625284.5652 \]
Strategy following [Gromov, Levkovich-Maslyuk, Sizov (2015)]: Numeric solution of QSC

\[g^2 \approx 0.38042046 \]

\[T^\text{numeric} \approx 0.6 \text{ loop} \]

Minimalization problem (solve via Levenberg Marquart algorithm)
Strong-coupling behaviour:

\[T_H(g) \simeq \sqrt{\frac{g}{2\pi}} \approx (0.3989422804 \ldots) \sqrt{g} \]
Numeric results at large coupling

Strong-coupling behaviour:

\[T_H (g) \approx \sqrt{\frac{g}{2\pi}} \approx (0.3989422804 \ldots) \sqrt{g} \]

= Hagedorn temperature of tree-level type IIB string theory on ten-dimensional Minkowski space [Sundborg 1984]
(Naive explanation: \(\lambda \to \infty \leftrightarrow \text{Curvature} \to 0 \))
Introduce chemical potentials for the R-charges J_1, J_2, J_3 and angular momenta S_1, S_2:

$$
Z(T, \Omega_i) = \text{tr} \left(e^{-\beta D + \beta \sum_{i=1}^{3} \Omega_i J_i + \beta \sum_{a=1}^{2} \Omega_{a+3} S_a} \right), \quad \beta = 1/T
$$

- Allow to single out contributions from specific fields
- Previously studied at tree level and one-loop [Yamada, Yaffe (2006)], [Harmark, Orselli (2006)], [Suzuki (2017)]

⇒ Include chemical potentials in the QSC approach
Asymptotics (similar to twisted spectral problem [Kazakov, Leurent, Volin (2015)]):

\[
P_a \simeq A_a x_a^{+iu} u + \sum_{b < a} \delta_{x_a x_b} - \sum_{i < a} \delta_{x_a y_i}
\]

\[
P^a \simeq A^a x_a^{-iu} u + \sum_{b > a} \delta_{x_a x_b} - \sum_{i > ca} \delta_{x_a y_i}
\]

\[
Q_i \simeq B_i y_i^{-iu} u - \sum_{a < i} \delta_{x_a y_i} + \sum_{j < i} \delta_{y_i y_j}
\]

\[
Q^i \simeq B^i y_i^{+iu} u - \sum_{a > i} \delta_{x_a y_i} + \sum_{j > i} \delta_{y_i y_j}
\]

with

\[
x_1 = -e^{-\frac{1+\Omega_4+\Omega_5}{2T_H}}
\]

\[
x_2 = -e^{-\frac{1-\Omega_4-\Omega_5}{2T_H}}
\]

\[
x_3 = -e^{\frac{1+\Omega_4-\Omega_5}{2T_H}}
\]

\[
x_4 = -e^{\frac{1-\Omega_4+\Omega_5}{2T_H}}
\]

\[
y_1 = e^{\frac{\Omega_1+\Omega_2-\Omega_3}{2T_H}}
\]

\[
y_2 = e^{\frac{\Omega_1-\Omega_2+\Omega_3}{2T_H}}
\]

\[
y_3 = e^{-\frac{\Omega_1+\Omega_2+\Omega_3}{2T_H}}
\]

\[
y_4 = e^{-\frac{-\Omega_1-\Omega_2-\Omega_3}{2T_H}}
\]
\(\gamma_i \)-deformation [Frolov (2005)] \supset \beta\)-deformation:

- Tree-level partition function trivially the same as in \(\mathcal{N} = 4 \) SYM theory.
- One-loop partition function depends on \(\gamma_i \) but \(T_H^{(1)} \) same as in \(\mathcal{N} = 4 \) SYM theory [Fokken, MW (2014)].
- Integrability approach shows that \(T_H \) is the same as in \(\mathcal{N} = 4 \) SYM theory at any \(\lambda \).
Table of contents

1 Introduction

2 The Hagedorn temperature from the free energy of the spin chain

3 Quantum Spectral Curve for the Hagedorn temperature

4 Solving the Hagedorn QSC

5 Chemical potentials and deformations

6 Conclusion and outlook
Conclusions and outlook

Conclusions

- Derived integrability-based QSC equations that determine the Hagedorn temperature of planar $\mathcal{N} = 4$ SYM theory / type IIB string theory on $\text{AdS}_5 \times S^5$ at any value of the ’t Hooft coupling
 \rightarrow Non-perturbative understanding of thermal physics

- Perturbative solution at weak coupling
 \rightarrow Previously unknown $\ell = 2, 3, 4, 5, 6, 7$-loop Hagedorn temperature

- Numeric solution at finite coupling
 $\rightarrow T_H(\lambda)$ asymptotes to the Hagedorn temperature of type IIB string theory on 10D flat space

- Chemical potentials and β, γ_i-deformation
Conclusions and outlook

Conclusions

- Derived integrability-based QSC equations that determine the Hagedorn temperature of planar $\mathcal{N} = 4$ SYM theory / type IIB string theory on $\text{AdS}_5 \times S^5$ at any value of the 't Hooft coupling
 \rightarrow Non-perturbative understanding of thermal physics
- Perturbative solution at weak coupling
 \rightarrow Previously unknown $\ell = 2, 3, 4, 5, 6, 7$-loop Hagedorn temperature
- Numeric solution at finite coupling
 \rightarrow $T_H(\lambda)$ asymptotes to the Hagedorn temperature of type IIB string theory on 10D flat space
- Chemical potentials and β, γ_i-deformation

Outlook

- η-deformation, fishnets?
- Strong-coupling expansion?
- Further observables: critical exponents?
- Flat space holography?
- Finite N?
Conclusions

- Derived integrability-based QSC equations that determine the Hagedorn temperature of planar $\mathcal{N} = 4$ SYM theory / type IIB string theory on $\text{AdS}_5 \times S^5$ at any value of the 't Hooft coupling
 - Non-perturbative understanding of thermal physics
- Perturbative solution at weak coupling
 - Previously unknown $\ell = 2, 3, 4, 5, 6, 7$-loop Hagedorn temperature
- Numeric solution at finite coupling
 - $T_H(\lambda)$ asymptotes to the Hagedorn temperature of type IIB string theory on 10D flat space
- Chemical potentials and β, γ_i-deformation

Outlook

- η-deformation, fishnets?
- Strong-coupling expansion?
- Further observables: critical exponents?
- Flat space holography?
- Finite N?