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Motivation: N=2 exact results 

Gaiotto: 4D N=2 class S:   6D (2,0) on Riemann surface Cg,n

AGT: 4D partition functions = 2D CFT correlators

4D SC Index = 2D correlation function of a TFT

Seiberg-Witten theory: effective theory in the IR

Nekrasov: instanton partition function 

Pestun: observables in the UV (path integral on the sphere localizes)

String/M-/F-theory realizations

2D/4D 
relations

Classical Integrability

Quantum Integrability



What can we do for N=1 theories? 

Superconformal Index

Intriligator and Seiberg: generalized SW technology 

Witten: IIA/M-theory approach to curves

No Localization: No Nekrasov!  No Pestun!

[Romelsberge 2005]
[Kinney,Maldacena,Minwalla,Raju 2005]



What can we do for N=1 theories? 

  Conformal

  Obtained by orbifolding N=2 (inheritance)

  Labeled by punctured Riemann Surface

  Index = 2D correlation function of a TFT

[Gaiotto,Razamat 2015]

Class Sk (SΓ):

Can construct conformal N=1 theories.

AdS/CFT natural route to several examples.

6D (1,0) on a Riemann Surface. [Gaiotto,Razamat 2015]

[Leigh,Strassler 1995]

[Kachru,Silverstein 1998]
[Lawrence,Nekrasov,Vafa1998]

[Heckman,Vafa….]

2D/4D 
relation



Plan

Introduce N=1 theories in class Sk

Spectral curves for N=1 theories in class Sk

From the curves: 2D symmetry algebra and representations

Conformal Blocks         Instanton partition function 

Instanton partition function from Dp/D(p-4) branes on orbifold

Is there  AGTk ? 
 4D partition functions = 2D CFT correlators



Class Sk 



Class S and Sk 

6D (2,0) SCFT on Riemann surface: 4D N=2 theories of class S

6D (1,0) SCFT on Riemann surface: 4D N=1 theories of class Sk

Transverse C2/Zk Orbifold the 6D (2,0) SCFT to 6D (1,0) SCFT

[Gaiotto 2009]
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Table 1. Type IIA brane configuration for the 4D N = 1 theories of class Sk.
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Table 2. Type IIA brane configuration for the 4D N = 1 theories of class Sk.

plane corresponds to the U(1)r symmetry of the N = 2 theories, which is preserved in the
presence the orbifold singularity.

Following [20], we wish to derive the SW curves using the uplift to M-theory of table
1, and we define the holomorphic coordinates

v ⌘ x4 + ix5 , s ⌘ x6 + ix10 and w ⌘ x7 + ix8 (2.1)

in terms of which we will write the spectral curves. It is also useful to define the exponen-
tiated

t ⌘ e
� s

R10 , (2.2)

where R10 is the M-theory circle. See [37] for the conventions we follow. In order to account
for the orbifold action, we impose the identification

(v , w) ⇠

⇣
e

2⇡i
k v , e�

2⇡i
k w

⌘
. (2.3)

The coordinate x9 is not part of a complex coordinate, which is consistent with [35, 36].

Figure 1. The IIA brane set-up from which we calculate the IR curve ⌃ for the SU(2) case. The
thick dashed line depicts the Zk orbifold point, for k = 2. For each D4 brane the mirror images are
also depicted using grey dotted lines.

For k = 1 using the set-up above we can obtain the spectral curve ⌃, which is the
spectral curve in the IR, by thinking of a single M5 brane with non-trivial topology and

– 4 –

N M5 branes on X4 x Cg,n

SU(N) theory on X4 2D theory on Cg,n4D/2D 

relation

[Gaiotto,Razamat 2015]
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For k = 1 using the set-up above we can obtain the spectral curve ⌃, which is the
spectral curve in the IR, by thinking of a single M5 brane with non-trivial topology and
the appropriate boundary conditions (given by the asymptotic positions of the D4 and the
NS5 branes) wrapping ⌃. Following Gaiotto [7] for SCFTs, after a change of variables, we
can rewrite the IR curve ⌃ as a curve that describes N M5 branes wrapping a different
Riemann surface Cg,n with genus g and n punctures, referred to as the Gaiotto curve or the
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1 Introduction

✏ = �0�1�2�3�4�5
✏ = �0�1�2�3�6

✏ = �4�5�7�8
✏ (1.1)

The study of supersymmetric gauge theories was revolutionized by Seiberg and collaborators in the nineties

through the use of holomorphicity, symmetries as well as asymptotics (weak coupling behavior) [1]. Building

up on these developments, Seiberg and Witten realized [2,3] that by adding electromagnetic duality (S-duality)

to the game, one can obtain the low energy BPS spectrum of N = 2 gauge theories by deriving a holomorphic

algebraic curve, the so-called Seiberg-Witten (SW) curve, that incorporates all the symmetries (including S-

duality) and weak coupling behavior. Soon after, Intriligator and Seiberg [4] obtained the first examples of

algebraic curves that compute the low energy coupling constants in the abelian Coulomb phase for N = 1

theories.

1

______  
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Table 1. M-theory configuration for the 6D N = (1, 0) theories that lead to class Sk.
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M NS5 branes � � � � � � . . . . .
N D4-branes � � � � . . � . . . �
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Table 2. Type IIA brane configuration for the 4D N = 1 theories of class Sk.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

AM�1 orbifold . . . . . . � � � �

N D3-branes � � � � . . . . . .
Ak�1 orbifold . . . . � � . � � .

Table 3. Type IIB brane configuration for the 4D N = 1 theories of class Sk.

2.1 M-theory realization

C3 = C⇥ C⇥ C �! C⇥ C⇥ C (2.1)

� = Zk ⇥ ZM AdS5 ⇥ S5/ (Zk ⇥ ZM ) (2.2)

The easiest way to introduce the theories in class Sk is to begin with the type IIA
string theory brane setup in table 2, which was originally considered in [35, 36]. Without
imposing the Ak�1 orbifold we describe the N = 2 theories in class S [7]. The SU(2)R
R-symmetry of the N = 2 theories corresponds to the rotation symmetry of x7, x8 and x9

and gets broken by the orbifold to the U(1)R symmetry of x7, x8 rotations. Rotation on the
x4, x5 plane corresponds to the U(1)r symmetry of the N = 2 theories, which is preserved
in the presence the orbifold singularity.

Following [20], we wish to derive the SW curves using the uplift to M-theory of table
2, and we define the holomorphic coordinates

v ⌘ x4 + ix5 , s ⌘ x6 + ix10 and w ⌘ x7 + ix8 (2.3)

in terms of which we will write the spectral curves. It is also useful to define the exponen-
tiated

t ⌘ e
� s

R10 , (2.4)

1It is not the first time that an extra Zk symmetry creates cuts on the SW curve. Already for N = 2

theories cuts appear as a consequence of outer-automorphism Zs symmetry of the Dynkin diagram [28] to
which the theory corresponds. See also [29–34].
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Class Sk 

Type IIB

N=1 orbifold daughter of N=4 SYM

Useful for AdS/CFT (orbifold inheritance)

String theory technics to calculate instantons
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plane corresponds to the U(1)r symmetry of the N = 2 theories, which is preserved in the
presence the orbifold singularity.

Following [20], we wish to derive the SW curves using the uplift to M-theory of table
3, and we define the holomorphic coordinates

v ⌘ x4 + ix5 , s ⌘ x6 + ix10 and w ⌘ x7 + ix8 (2.1)

in terms of which we will write the spectral curves. It is also useful to define the exponen-
tiated

t ⌘ e
� s

R10 , (2.2)

where R10 is the M-theory circle. See [37] for the conventions we follow. In order to account
for the orbifold action, we impose the identification

(v , w) ⇠

⇣
e

2⇡i
k v , e�

2⇡i
k w

⌘
. (2.3)

The coordinate x9 is not part of a complex coordinate, which is consistent with [35, 36].

For k = 1 using the set-up above we can obtain the spectral curve ⌃, which is the
spectral curve in the IR, by thinking of a single M5 brane with non-trivial topology and
the appropriate boundary conditions (given by the asymptotic positions of the D4 and the
NS5 branes) wrapping ⌃. Following Gaiotto [7] for SCFTs, after a change of variables, we
can rewrite the IR curve ⌃ as a curve that describes N M5 branes wrapping a different
Riemann surface Cg,n with genus g and n punctures, referred to as the Gaiotto curve or the
UV curve. We can equivalently think that N = 2 SCFTs are obtained using M-theory on
R3,1

⇥ CY2 ⇥ R3 by wrapping M5 branes on the CY2. The CY2 = T ⇤
Cg,n is the cotangent

– 4 –

described by the usual gauge kinetic term ⌧ijW i↵W j
↵, with ⌧ij the effective gauge couplings

which are holomorphic functions of the matter fields. In the N = 1 case the determination
of the ⌧ij does not imply a complete solution of the theory, but still provides very important
information about the low energy theory. Witten’s M-theory approach to the SW curve [20]
has already been generalized and used to study N = 1 theories [21, 22]. See also [23, 24]
for a more recent construction of a large set of N = 1 SCFTs. Finally, much progress has
been recently made for N = 1 spectral curves and their relations to generalized Hitchin
systems [25–27].

In this paper, inspired by the work of [17] we wish to understand the 4D/2D interplay
from the point of view of the SW curves. This is how it was originally discovered for the
N = 2 class S in [7]. We compute the spectral curves for theories in class Sk and generalize
Gaiotto’s construction for the N = 2 theories of class S [7] by orbifolding. We then study
how the spectral curves decompose in different S-duality frames. An important object of
interest is the type of punctures. For N = 2 theories in class S we have punctures labelled
by Young diagrams, including minimal and maximal punctures that correspond to simple
poles with symmetry U(1) and SU(N) respectively. As we will discover in the sections to
come, for class Sk the minimal punctures do not correspond to simple poles, but to branch
points. We find that the spectral curves have a novel k-cut structure1.

The paper is organized as follows. We begin with a short review of class Sk in section
2. In section 3 we show how to orbifold the SW curves of theories from class S with a
Lagrangian description. We study the four-punctured sphere, the maximal and minimal
punctures. Most importantly we discuss the novel cut structure imposed by the orbifold.
In section 4 we take the weak coupling limit and discover the free trinion theory, the curve
for the free orbifloded hypermultiplets. Next in section 5, we begin with the curve of the
four-punctured sphere and close one of the simple punctures. In section 6 we study the
(M + 2)-punctured sphere with M minimal punctures. Finally, in section 7 we discuss the
strong coupling limit and obtain the strongly coupled non-Lagrangian trinions T k

N .

2 Review

In this section we review the necessary background, including what is known for the theories
in class Sk. We begin with the M-theory construction where implementing the orbifold is
very simple (geometric), then continue with orbifolding on the gauge theory side.

2.1 M-theory realization

C3 = C⇥ C⇥ C �! C⇥ C⇥ C (2.1)

� = Zk ⇥ ZM (2.2)

1It is not the first time that an extra Zk symmetry creates cuts on the SW curve. Already for N = 2

theories cuts appear as a consequence of outer-automorphism Zs symmetry of the Dynkin diagram [28] to
which the theory corresponds. See also [29–34].
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Class Sk [Gaiotto,Razamat 2015]

4D field theory point of view

Large global 
symmetry group

N=2 class S mother theory

N=1 class Sk daughter theory

The quiver construction

• N = 2 vector) N = 1 vector and N = 1 chiral (blue)

• N = 2 hyper) N = 1 chiral (red) and N = 1 chiral (green)

The quiver construction

U(1)t U(1)↵c U(1)�i+1�c U(1)�i

V(i,c) 0 0 0 0
�(i,c) �1 0 �1 +1

Q(i,c�1) +1/2 �1 +1 0
eQ(i,c�1) +1/2 +1 0 �1

Table 5. The symmetries of the fields of the orbifolded linear quivers in class Sk. Apart from the
color structure that can be read from the quiver diagram in figure 2, there is a number of U(1) global
symmetries which can also be read from the extra arrows that intersect the bi-fundamentals.

�

2.3 Coulomb moduli parameters and mass parameters

From the study of N = 2 theories we are used to the fact that the SW curves are param-
eterized by the vacuum expectation values of gauge invariant operators htr�`

i ⇠ u` that
parametrize the Coulomb branch of the theory. There, solving the theory amounts to cal-
culating the vev h�i = a of the Coulomb moduli as a function of the u, a(u), as well as their
magnetic duals aD(u). This is done by computing the A- and B-cycle integrals, see section
3.5 for a review, and at weak coupling we find a ⇠

p
u2. The a(u) in the IIA/M-theory

picture correspond to the positions of the D4/M5 branes.
After orbifolding, the gauge invariant operators whose vevs parameterize the Coulomb

branch of the theory are 3

u`k = htr
�
�(1) · · ·�(k)

�`
i , (2.13)

htr
�
�(1) · · ·�(k)

�
i ⇠ uk , (2.14)

htr
�
�(1) · · ·�(k)

�2
i ⇠ u2k , (2.15)

m2
BPS = |na+maD|

2 (2.16)

where the index c = 0, . . . ,M labels the different color groups in the IIA setup with M NS5
branes. Notice that the bi-fundamental field �(i,c) of the N = 1 orbifold daughter theory
is embedded into the adjoint N = 2 field �(c) of the original (mother) theory [40] as

�(c) =

0

BBBBBB@

�(1,c)

�(2,c)
. . .

�(k�1,c)

�(k,c)

1

CCCCCCA
. (2.17)

3More rigorously, the Coulomb moduli parameters u which appear in the spectral curve in the later
sections are accompanied by a certain linear combination of the product of these operators with the same
total mass dimension together with the correction from the mass parameters. In (2.13) we omit these
corrections and write the relation symbolically.
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in (2.6) will not play any role in our discussion [35, 36]. Moreover, exactly because Lw is
trivial, i.e. a direct product with T ⇤

Cg,n, the holomorphic three-form can be written as

⌦3 = f(w)dw ^ d�SW , (2.8)

with f(w) ⇠
P

i �(w � wi). The wi are the positions of the D4 branes on the w plane,
which we take to be all at the origin wi = 0. This allows us integrate separately

R
⌦3 =R

f(w)dw
R
d�SW ⇠

R
d�SW and, up to an overall normalization that we drop, to just

consider integrating �SW as for the theories with N = 2 supersymmetry. According to
[35, 36], this remains true even when we resolve the orbifold.

2.2 Field theory

Figure 2. The quiver diagram for the orbifolded linear quiver of N = 2 with M = 4. The color
groups are labelled by (i, c) where i = 1, . . . , k is the Zk orbifold index that labels the mirror images
and c = 0, . . . ,M is the label from the original N = 2 theory.

The field theory side is understood following [40]. We begin the study of the N =

1 SCFTs in class Sk by considering some theories with a Lagrangian description. An
important such family of theories is described by quiver diagrams depicted in figure 2. The
ovals correspond to gauge groups and the square boxes stand for flavor symmetries. For
k = 1, these are the N = 2 linear quivers with superpotential

WS =
M�1X

c=1

⇣
Q(c�1)�(c)Q̃(c�1) � Q̃(c)�(c)Q(c)

⌘
, (2.9)

where the index c = 1, . . . ,M � 1 labels the different color groups of the linear quiver,
obtained in IIA by using M NS5 branes. The nodes c = 0,M correspond to semi-infinite
stacks of D4-branes. The chiral field Q(c) corresponds to an arrow pointing left from node
(c+ 1) in the quiver diagram to node (c) and Q̃(c) corresponds to an arrow pointing right
from node (c) to node (c + 1). The relative minus sign is crucial for preserving N = 2

supersymmetry.
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Imposing the Zk orbifold breaks supersymmetry to N = 1 and the superpotential
becomes

WSk =
kX

i=1

M�1X

c=1

⇣
Q(i,c�1)�(i,c)Q̃(i,c�1) � Q̃(i,c)�(i,c)Q(i+1,c)

⌘
. (2.10)

A chiral field Q(i,c) corresponds to an arrow pointing left into the node (i, c) and Q̃(i,c)

corresponds to an arrow pointing right from the node (i, c). The chiral field �(i,c) points
from (i + 1, c) to (i, c). The transformation properties of all the fields in the Lagrangian
for the various gauge and global symmetries are summarized in table 2. In particular, in
class Sk we have a large number of global U(1) symmetries [17], the action of which on the
various bi-fundamental fields (arrows) is depicted by grey, blue and red arrows in figure 2.

SU(N)(i,c�1) SU(N)(i,c) SU(N)(i+1,c) U(1)t U(1)↵c U(1)�i+1�c U(1)�i

V(i,c) 1 adj. 1 0 0 0 0
�(i,c) 1 ⇤ ⇤ �1 0 �1 +1

Q(i,c�1) ⇤ ⇤ 1 +1/2 �1 +1 0
eQ(i,c�1) ⇤ 1 ⇤ +1/2 +1 0 �1

Table 2. The symmetries of the fields of the orbifolded linear quivers in class Sk. Apart from the
color structure that can be read from the quiver diagram in figure 2, there is a number of U(1) global
symmetries which can also be read from the extra arrows that intersect the bi-fundamentals.

2.3 Coulomb moduli parameters and mass parameters

From the study of N = 2 theories we are used to the fact that the SW curves are param-
eterized by the vacuum expectation values of gauge invariant operators htr�`

i ⇠ u` that
parametrize the Coulomb branch of the theory. There, solving the theory amounts to cal-
culating the vev h�i = a of the Coulomb moduli as a function of the u, a(u), as well as their
magnetic duals aD(u). This is done by computing the A- and B-cycle integrals, see section
3.5 for a review, and at weak coupling we find a ⇠

p
u2. The a(u) in the IIA/M-theory

picture correspond to the positions of the D4/M5 branes.
After orbifolding, the gauge invariant operators whose vevs parameterize the Coulomb

branch of the theory are 3

htr
�
�(1,c) · · ·�(k,c)

�`
i ⇠ u`k,c , (2.11)

where the index c = 0, . . . ,M labels the different color groups in the IIA setup with M NS5
branes. Notice that the bi-fundamental field �(i,c) of the N = 1 orbifold daughter theory

3More rigorously, the Coulomb moduli parameters u which appear in the spectral curve in the later
sections are accompanied by a certain linear combination of the product of these operators with the same
total mass dimension together with the correction from the mass parameters. In (2.11) we omit these
corrections and write the relation symbolically.
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is embedded into the adjoint N = 2 field �(c) of the original (mother) theory [40] as

�(c) =

0

BBBBBB@

�(1,c)

�(2,c)
. . .

�(k�1,c)

�(k,c)

1

CCCCCCA
. (2.12)

If we diagonalize the vacuum expectation value of this field by a proper unitary matrix U4,
we obtain

hU�1�(c)Ui = diag
�
a(c)1, a(c)2, · · · , a(c)N

�
⌦ diag

⇣
1, e

2⇡i
k , e

4⇡i
k · · · e

2⇡i(k�1)
k

⌘
. (2.13)

For c = 1, 2, · · · ,M � 1, the components e
2⇡in
k a(c)I of this matrix are essentially what

appear as Coulomb moduli parameters in the spectral curves in the rest of the sections. For
c = 0,M , they are mass parameters, which will be denoted as a(0)I = mI and a(M)I = mN+I

when we consider the case M = 2 in later sections. These are the positions of the D4/M5
branes (all the mirror images) in the IIA/M-theory setup.

3 The four-punctured sphere

In this section we construct the SW curve for the orbifolded N = 2 SCQCD with SU(N)

gauge group and Nf = 2N flavors. We will refer to it as SCQCDk. This is the class Sk

generalization of the four-punctured sphere of Gaiotto.

3.1 The curves

Let us begin by recalling the SW curve of the N = 2 SCQCD with SU(N) gauge group
and Nf = 2N flavors. Following Witten [20] this curve can be easily written by considering
the M-theory uplift of the type IIA setup in table 1. This curve is derived based on the
asymptotic behavior at large v and is given by

NY

i=1

(v�mi) t
2 + (�(1+ q)vN + qMvN�1+

NX

`=2

u`v
N�`) t + q

2NY

i=N+1

(v�mi) = 0 , (3.1)

where mi with i = 1, . . . , Nf = 2N denote the masses of the fundamental flavor hypermul-
tiplets, u` with ` = 2, . . . , N the Coulomb branch vacuum expectation values of h�`

i and
q = e2⇡i⌧ the UV coupling constant. The parameter M =

P2N
i=1mi is the sum of all the

masses. We moreover find it convenient to define the parameters c(`)m for some parameter
m to be the singlet combinations or Casimirs of some symmetry, here the flavor symmetry,

c(`)L =
X

1=i1<i2<...<i`N

mi1mi2 . . .mi` , c(`)R =
X

N+1=i1<i2<...<i`2N

mi1mi2 . . .mi` , (3.2)

4The unitary matrix U was included in the original U(Nk) gauge transformation but not in the U(N)k

gauge transformation of the orbifolded theory.
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Class Sk 

2.3 Coulomb moduli parameters and mass parameters

From the study of N = 2 theories we are used to the fact that the SW curves are param-
eterized by the vacuum expectation values of gauge invariant operators htr�`

i ⇠ u` that
parametrize the Coulomb branch of the theory. There, solving the theory amounts to cal-
culating the vev h�i = a of the Coulomb moduli as a function of the u, a(u), as well as their
magnetic duals aD(u). This is done by computing the A- and B-cycle integrals, see section
3.5 for a review, and at weak coupling we find a ⇠

p
u2. The a(u) in the IIA/M-theory

picture correspond to the positions of the D4/M5 branes.
After orbifolding, the gauge invariant operators whose vevs parameterize the Coulomb

branch of the theory are 3

htr
�
�(1,c) · · ·�(k,c)

�`
i ⇠ u`k,c , (2.13)

htr
�
�(1) · · ·�(k)

�
i ⇠ uk , (2.14)

htr
�
�(1) · · ·�(k)

�2
i ⇠ u2k , (2.15)

m2
BPS = |na+maD|

2 (2.16)

where the index c = 0, . . . ,M labels the different color groups in the IIA setup with M NS5
branes. Notice that the bi-fundamental field �(i,c) of the N = 1 orbifold daughter theory
is embedded into the adjoint N = 2 field �(c) of the original (mother) theory [40] as

�(c) =

0

BBBBBB@

�(1,c)

�(2,c)
. . .

�(k�1,c)

�(k,c)

1

CCCCCCA
. (2.17)

Q(c) =

0

BBBB@

Q(1,c)

Q(2,c)
. . .

Q(k,c)

1

CCCCA
, (2.18)

eQ(c) =

0

BBBB@

eQ(k,c)
eQ(1,c)

. . .
eQ(k�1,c)

1

CCCCA
. (2.19)

3More rigorously, the Coulomb moduli parameters u which appear in the spectral curve in the later
sections are accompanied by a certain linear combination of the product of these operators with the same
total mass dimension together with the correction from the mass parameters. In (2.13) we omit these
corrections and write the relation symbolically.

– 8 –

2.3 Coulomb moduli parameters and mass parameters

From the study of N = 2 theories we are used to the fact that the SW curves are param-
eterized by the vacuum expectation values of gauge invariant operators htr�`

i ⇠ u` that
parametrize the Coulomb branch of the theory. There, solving the theory amounts to cal-
culating the vev h�i = a of the Coulomb moduli as a function of the u, a(u), as well as their
magnetic duals aD(u). This is done by computing the A- and B-cycle integrals, see section
3.5 for a review, and at weak coupling we find a ⇠

p
u2. The a(u) in the IIA/M-theory

picture correspond to the positions of the D4/M5 branes.
After orbifolding, the gauge invariant operators whose vevs parameterize the Coulomb

branch of the theory are 3

htr
�
�(1,c) · · ·�(k,c)

�`
i ⇠ u`k,c , (2.13)

htr
�
�(1) · · ·�(k)

�
i ⇠ uk , (2.14)

htr
�
�(1) · · ·�(k)

�2
i ⇠ u2k , (2.15)

m2
BPS = |na+maD|

2 (2.16)

where the index c = 0, . . . ,M labels the different color groups in the IIA setup with M NS5
branes. Notice that the bi-fundamental field �(i,c) of the N = 1 orbifold daughter theory
is embedded into the adjoint N = 2 field �(c) of the original (mother) theory [40] as
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3More rigorously, the Coulomb moduli parameters u which appear in the spectral curve in the later
sections are accompanied by a certain linear combination of the product of these operators with the same
total mass dimension together with the correction from the mass parameters. In (2.13) we omit these
corrections and write the relation symbolically.
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N=2 class S mother theory

N=1 class Sk  
daughter theory

kNxkN

NxN

Begin with N=2 class S with SU(kN) factors:

Orbifold projection: [Douglas,Moore 1996]
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Curves from M-theory

The NS5/D4 is the classical configuration. 

Take in account tension of the branes: include quantum effects. 

M-theory: a single M5 brane with non trivial topology

[Witten 1997]

2D surface F(t,v)=0 in the 4D 
space {x4, x5, x6, x10}={v,t}.

m
1

m
2

m
4

m
3

a
1

a
2

D4

D4

NS5 NS5

the maximal punctures. The minimal punctures require more work and will be addressed
in section 3.3.2.

We review shortly the N = 2 case as a warmup. The SW curve is obtained from (3.1)

(v �m1)(v �m2)t
2 +

�
�(1 + q)v2 + qMv + U

�
t+ q(v �m3)(v �m4) = 0 . (3.16)

With this curve at hand, we look for its simple poles (positions of the punctures) and study
its behavior close to them. To do so we view the curve as a polynomial in v

(t� 1)(t� q)v2 � P1(t)v + P2(t) = 0 (3.17)

with

P1(t) = (m1 +m2)t
2
� qM t+ q(m3 +m4) , (3.18a)

P2(t) = m1m2t
2 + u t+ qm3m4 . (3.18b)

and M = m1 +m2 +m3 +m4. Solving for v gives two solutions

v± =
P1(t)±

�
P1(t)2 � 4(t� 1)(t� q)P2(t)

�1/2

2(t� 1)(t� q)
, (3.19)

which define a two-sheeted cover of a sphere parametrized by t. At t = 1, q these become

v± t=1 ⇠

⇢
m1 +m2

t� 1
,
P2(1)

P1(1)

�
and v± t=q ⇠

⇢
�
q(m3 +m4)

t� q
,
P2(q)

P1(q)

�
. (3.20)

Consequently, v has a simple pole on only one sheet close to t = 1, q and it is regular on
the other sheet. The residues are

Res v± t=1 = {m1 +m2 , 0} and Res v± t=q = {�q(m3 +m4) , 0} . (3.21)

In the limits t ! 0,1 the solutions v± are

v± t!1 = {m1 , m2} , v± t!0 = {m3 , m4} . (3.22)

Gaiotto’s shift: It is possible to shift v by a t-dependent function,

ṽ = v �
1

2

P1

(t� 1)(t� q)
, (3.23)

such that ṽ is the solution to

ṽ2 =
P 2
1 � 4(t� 1)(t� q)P2

4(t� 1)2(t� q)2
. (3.24)

The SW differential �SW , as reviewed in section 2.1, is given by the uniquely defined
holomorphic two-from

! = ds ^ dv = d log t ^ dv = d (vd log t) = d�SW () �SW = v
dt

t
+ const(v) (3.25)
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

N M5-branes � � � � . . � . . . �

Ak�1 orbifold . . . . � � . � � . .

Table 1. M-theory configuration for the 6D N = (1, 0) theories that lead to class Sk.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (x10)
M NS5 branes � � � � � � . . . . .
N D4-branes � � � � . . � . . . �

Ak�1 orbifold . . . . � � . � � . .

Table 2. Type IIA brane configuration for the 4D N = 1 theories of class Sk.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

AM�1 orbifold . . . . . . � � � �

N D3-branes � � � � . . . . . .
Ak�1 orbifold . . . . � � . � � .

Table 3. Type IIB brane configuration for the 4D N = 1 theories of class Sk.

2.1 M-theory realization

C3 = C⇥ C⇥ C �! C⇥ C⇥ C (2.1)

� = Zk ⇥ ZM AdS5 ⇥ S5/ (Zk ⇥ ZM ) (2.2)

The easiest way to introduce the theories in class Sk is to begin with the type IIA
string theory brane setup in table 2, which was originally considered in [35, 36]. Without
imposing the Ak�1 orbifold we describe the N = 2 theories in class S [7]. The SU(2)R
R-symmetry of the N = 2 theories corresponds to the rotation symmetry of x7, x8 and x9

and gets broken by the orbifold to the U(1)R symmetry of x7, x8 rotations. Rotation on the
x4, x5 plane corresponds to the U(1)r symmetry of the N = 2 theories, which is preserved
in the presence the orbifold singularity.

Following [20], we wish to derive the SW curves using the uplift to M-theory of table
2, and we define the holomorphic coordinates

v = x4 + ix5 , s ⌘ x6 + ix10 and w = x7 + ix8 (2.3)

in terms of which we will write the spectral curves. It is also useful to define the exponen-
tiated

t = e
�x6+ix10

R10 , (2.4)

1It is not the first time that an extra Zk symmetry creates cuts on the SW curve. Already for N = 2

theories cuts appear as a consequence of outer-automorphism Zs symmetry of the Dynkin diagram [28] to
which the theory corresponds. See also [29–34].
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the maximal punctures. The minimal punctures require more work and will be addressed
in section 3.3.2.

We review shortly the N = 2 case as a warmup. The SW curve is obtained from (3.1)

(v �m1)(v �m2)t
2 +
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�(1 + q)v2 + qMv + U

�
t+ q(v �m3)(v �m4) = 0 . (3.16)

With this curve at hand, we look for its simple poles (positions of the punctures) and study
its behavior close to them. To do so we view the curve as a polynomial in v

(t� 1)(t� q)v2 � P1(t)v + P2(t) = 0 (3.17)

with

P1(t) = (m1 +m2)t
2
� qM t+ q(m3 +m4) , (3.18a)

P2(t) = m1m2t
2 + u t+ qm3m4 . (3.18b)

and M = m1 +m2 +m3 +m4. Solving for v gives two solutions

v± =
P1(t)±

�
P1(t)2 � 4(t� 1)(t� q)P2(t)

�1/2

2(t� 1)(t� q)
, (3.19)

which define a two-sheeted cover of a sphere parametrized by t. At t = 1, q these become

v± t=1 ⇠

⇢
m1 +m2

t� 1
,
P2(1)

P1(1)

�
and v± t=q ⇠

⇢
�
q(m3 +m4)

t� q
,
P2(q)

P1(q)

�
. (3.20)

Consequently, v has a simple pole on only one sheet close to t = 1, q and it is regular on
the other sheet. The residues are

Res v± t=1 = {m1 +m2 , 0} and Res v± t=q = {�q(m3 +m4) , 0} . (3.21)

In the limits t ! 0,1 the solutions v± are

v± t!1 = {m1 , m2} , v± t!0 = {m3 , m4} . (3.22)

Gaiotto’s shift: It is possible to shift v by a t-dependent function,

ṽ = v �
1

2

P1

(t� 1)(t� q)
, (3.23)

such that ṽ is the solution to

ṽ2 =
P 2
1 � 4(t� 1)(t� q)P2

4(t� 1)2(t� q)2
. (3.24)

The SW differential �SW , as reviewed in section 2.1, is given by the uniquely defined
holomorphic two-from

! = ds ^ dv = d log t ^ dv = d (vd log t) = d�SW () �SW = v
dt

t
+ const(v) (3.25)
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the maximal punctures. The minimal punctures require more work and will be addressed
in section 3.3.2.

We review shortly the N = 2 case as a warmup. The SW curve is obtained from (3.1)

(v �m1)(v �m2)t
2 +

�
�(1 + q)v2 + qMv + u

�
t+ q(v �m3)(v �m4) = 0 . (3.16)
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(t� 1)(t� q)v2 � P1(t)v + P2(t) = 0 (3.17)
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P1(t) = (m1 +m2)t
2
� qM t+ q(m3 +m4) , (3.18a)

P2(t) = m1m2t
2 + u t+ qm3m4 . (3.18b)

and M = m1 +m2 +m3 +m4. Solving for v gives two solutions

v± =
P1(t)±

�
P1(t)2 � 4(t� 1)(t� q)P2(t)

�1/2

2(t� 1)(t� q)
, (3.19)
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m
1

m
2

m
4

m
3

a
1

a
2

D4

D4

NS5 NS5

v

t

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (x10)
M NS5 branes � � � � � � . . . . .
N D4-branes � � � � . . � . . . �

Ak�1 orbifold . . . . � � . � � . .

Table 1. Type IIA brane configuration for the 4D N = 1 theories of class Sk.

plane corresponds to the U(1)r symmetry of the N = 2 theories, which is preserved in the
presence the orbifold singularity.

Following [20], we wish to derive the SW curves using the uplift to M-theory of table
1, and we define the holomorphic coordinates

v ⌘ x4 + ix5 , s ⌘ x6 + ix10 and w ⌘ x7 + ix8 (2.1)

in terms of which we will write the spectral curves. It is also useful to define the exponen-
tiated

t ⌘ e
� s

R10 , (2.2)

where R10 is the M-theory circle. See [37] for the conventions we follow. In order to account
for the orbifold action, we impose the identification

(v , w) ⇠

⇣
e

2⇡i
k v , e�

2⇡i
k w

⌘
. (2.3)

The coordinate x9 is not part of a complex coordinate, which is consistent with [35, 36].

m
1

m
2

m
4

m
3

a
1

a
2

D 4

D 4

NS 5 NS5

R
4
/Z2

−m
4

−m
3

−m
1

−m
2

−a
2

−a
1

Figure 1. The IIA brane set-up from which we calculate the IR curve ⌃ for the SU(2) case. The
thick dashed line depicts the Zk orbifold point, for k = 2. For each D4 brane the mirror images are
also depicted using grey dotted lines.

For k = 1 using the set-up above we can obtain the spectral curve ⌃, which is the
spectral curve in the IR, by thinking of a single M5 brane with non-trivial topology and
the appropriate boundary conditions (given by the asymptotic positions of the D4 and the
NS5 branes) wrapping ⌃. Following Gaiotto [7] for SCFTs, after a change of variables, we
can rewrite the IR curve ⌃ as a curve that describes N M5 branes wrapping a different
Riemann surface Cg,n with genus g and n punctures, referred to as the Gaiotto curve or the

– 4 –

where const(v) means a constant with respect to v, which can depend on t. The shifted
�SW in terms of ṽ has poles on both sheets. Parametrizing v = xt, we finally find that the
poles of the SU(2) four-punctured sphere are

xt=0 ⇠
m3 �m4

2t
{+1,�1} , xt=1 ⇠

t(m1 �m2)

2
{+1,�1} (3.26)

xt=1 ⇠
m1 +m2

2(t� 1)
{+1,�1} , xt=q ⇠ �

(m3 +m4)

2(t� q)
{+1,�1} . (3.27)

The shift in v leaves the physics unchanged9 but reveals the full SU(2) flavor symmetry
of the punctures at t = 1, q. The poles have residues which sum to zero. They have the
properties of an element of the Cartan subgroup of SU(2) and thus get associated to its
fugacities, making the connection between the punctures and the SU(2) flavor symmetries.

Back to class Sk: After performing the orbifold, the spectral curve becomes

(vk �mk
1)(v

k
�mk

2)t
2 + P (v)t+ q(vk �mk

3)(v
k
�mk

4) = 0 . (3.28)

When k > 1, the curve (3.28) has 2k solutions for v(t), which are given by

v(n)± = e
2⇡in
k v± with vk± =

P1(t)±
p
�

2(t� 1)(t� q)
(3.29)

where n = 1 . . . k, � is the discriminant of the quadratic equation (3.28) for X = vk

� = (P1(t))
2
� 4(t� 1)(t� q)P2(t) (3.30)

and P1,2 generalize the polynomials (3.18a)-(3.18b)

P1(t) = t2c(1,k)L � ukt+ qc(1,k)R , P2(t) = t2c(2,k)L + u2kt+ qc(2,k)R . (3.31)

Let us begin by looking at (3.29) close to t = 0, where

vk± t=0
=

n
mk

3 , mk
4

o
) v(n)± t=0

=
n
m(n)

3 ,m(n)
4

o
(3.32)

for m(n)
i introduced in (3.5). Similarly, at t ! 1, v takes values

v(n)± t!1 =
n
m(n)

1 ,m(n)
2

o
. (3.33)

These are the maximal punctures of the curve parameterized by t in class Sk. At these
punctures, the differential �SW has a simple pole on all 2k sheets of the spectral curve. The
maximal punctures are parameterized by k mirror images of U(2). The generalization to
the SU(N) case is immediate

lim
t!1

v(n)1,...,N =
n
m(n)

1 ,m(n)
2 , . . . ,m(n)

N

o
, (3.34)

lim
t!0

v(n)1,...,N =
n
m(n)

N+1,m
(n)
N+2, . . . ,m

(n)
2N

o
. (3.35)

9The two-form dv ^ dt is invariant under the shift (3.23).
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in terms of which we write M = c(1)L + c(1)R .
To implement the orbifold we follow [35, 36]. Orbifolding imposes the identification

v ⇠ e
2⇡i
k v . (3.3)

For each mass mi there are k mirror images on the v-plane and thus we must replace

(v �mi) �!
kY

n=1

(v �m(n)
i ) = (vk �mk

i ) . (3.4)

The equality follows because also the (mirror images of the) mass parameters obey the
orbifold condition and get identified as

m(n)
i = e

2⇡in
k mi , n = 1, . . . , k (3.5)

Combining the replacement (3.4) with equation (3.1) gives

NY

i=1

(vk �mk
i )t

2 + P (v)t+ q
2NY

i=N+1

(vk �mk
i ) = 0 . (3.6)

The polynomial P (v) has degree Nk because of the orbifold

P (v) = �(1 + q)vNk + u1v
Nk�1 + · · ·+ uNk�1v + uNk , (3.7)

P (v) = �(1 + q)v2k + ukv
k + u2k (3.8)

but its monomials must respect the orbifold Zk symmetry, as they must eventually be
matched to the vevs of the gauge invariant operators (2.11) that parameterize the Coulomb
branch.5 Any polynomial in X = vk will do that, so P (v) = PN (X) with

PN (X) = �(1 + q)XN +
NX

`=1

u`k X
N�` . (3.9)

Thus the spectral curve that describes the Coulomb branch of SU(N) SCQCDk reads

NY

i=1

(vk �mi
k)t2 +

 
�(1 + q)vNk +

NX

`=1

u`kv
(N�`)k

!
t+ q

2NY

i=N+1

(vk �mi
k) = 0 . (3.10)

We now want, following Gaiotto [7], to rewrite this curve as the four-punctured sphere
C
(k)
0,4 in class Sk. The first step in order to achieve this is to rewrite the spectral curve (3.10),

which is a polynomial in t, as a polynomial in v

vNk +
NX

`=1

(�1)`P`(t)

(t� 1)(t� q)
v(N�`)k = 0 , (3.11)

5Note that in this paper we only study the Coulomb branch of the Sk theories. We do not turn on vevs
for the mesons or the baryons.
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_ _

Imposing the Zk orbifold breaks supersymmetry to N = 1 and the superpotential
becomes

WSk =
kX

i=1

M�1X

c=1

⇣
Q(i,c�1)�(i,c)Q̃(i,c�1) � Q̃(i,c)�(i,c)Q(i+1,c)

⌘
. (2.10)

A chiral field Q(i,c) corresponds to an arrow pointing left into the node (i, c) and Q̃(i,c)

corresponds to an arrow pointing right from the node (i, c). The chiral field �(i,c) points
from (i + 1, c) to (i, c). The transformation properties of all the fields in the Lagrangian
for the various gauge and global symmetries are summarized in table 2. In particular, in
class Sk we have a large number of global U(1) symmetries [17], the action of which on the
various bi-fundamental fields (arrows) is depicted by grey, blue and red arrows in figure 2.

SU(N)(i,c�1) SU(N)(i,c) SU(N)(i+1,c) U(1)t U(1)↵c U(1)�i+1�c U(1)�i

V(i,c) 1 adj. 1 0 0 0 0
�(i,c) 1 ⇤ ⇤ �1 0 �1 +1

Q(i,c�1) ⇤ ⇤ 1 +1/2 �1 +1 0
eQ(i,c�1) ⇤ 1 ⇤ +1/2 +1 0 �1

Table 2. The symmetries of the fields of the orbifolded linear quivers in class Sk. Apart from the
color structure that can be read from the quiver diagram in figure 2, there is a number of U(1) global
symmetries which can also be read from the extra arrows that intersect the bi-fundamentals.

2.3 Coulomb moduli parameters and mass parameters

From the study of N = 2 theories we are used to the fact that the SW curves are param-
eterized by the vacuum expectation values of gauge invariant operators htr�`

i ⇠ u` that
parametrize the Coulomb branch of the theory. There, solving the theory amounts to cal-
culating the vev h�i = a of the Coulomb moduli as a function of the u, a(u), as well as their
magnetic duals aD(u). This is done by computing the A- and B-cycle integrals, see section
3.5 for a review, and at weak coupling we find a ⇠

p
u2. The a(u) in the IIA/M-theory

picture correspond to the positions of the D4/M5 branes.
After orbifolding, the gauge invariant operators whose vevs parameterize the Coulomb

branch of the theory are 3

htr
�
�(1,c) · · ·�(k,c)

�`
i ⇠ u`k,c , (2.11)

htr
�
�(1) · · ·�(k)

�
i ⇠ uk , (2.12)

htr
�
�(1) · · ·�(k)

�2
i ⇠ u2k , (2.13)

where the index c = 0, . . . ,M labels the different color groups in the IIA setup with M NS5
branes. Notice that the bi-fundamental field �(i,c) of the N = 1 orbifold daughter theory

3More rigorously, the Coulomb moduli parameters u which appear in the spectral curve in the later
sections are accompanied by a certain linear combination of the product of these operators with the same
total mass dimension together with the correction from the mass parameters. In (2.11) we omit these
corrections and write the relation symbolically.
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Abstract

This is the first in a series of papers on the search for the 2D CFT description of a large class of 4D N = 1
gauge theories. Here, we identify the 2D CFT symmetry algebra and its representations, namely the conformal
blocks of the Virasoro/W-algebra, that underlie the 2D theory and reproduce the Seiberg-Witten curves of the
N = 1 gauge theories. We find that the blocks corresponding to the SU(N) Sk gauge theories involve fields
in certain non-unitary representations of the WkN algebra. These conformal blocks give a prediction for the
instanton partition functions of the 4D N = 1 SCFTs of class Sk.

v = x
4 + ix

5

t = e
� x6+ix10

R10

v ⇠ e
2⇡i
k v

q
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Figure 9.10: W bosons also come from monopoles.
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Figure 9.11: Triality

now given by

µ00
1 = µA + µD =

µ1 � µ2

2
+

µ3 � µ4

2
, (9.4.9)

µ00
2 = �µA + µD = �

µ1 � µ2

2
+

µ3 � µ4

2
, (9.4.10)

µ00
3 = µC + µB =

µ3 + µ4

2
+

µ1 + µ2

2
, (9.4.11)

µ00
4 = µC � µB =

µ3 + µ4

2
�

µ1 � µ2

2
. (9.4.12)

These are the weights of the conjugate spinor representation of SO(8).
Therefore, we learned that the strong-weak duality of the SU(2) gauge theory with four flavors,

q $ q0 = 1/q $ q00 = 1� q (9.4.13)

99

Figure 1: This figure illustrates the position of the branes (horizontal D4s and vertical NS5s) for the case of
the N = 2 SU(3) gauge theory. In the N = 1 case, one needs to introduce an orbifold and image branes as
reviewed in [28]. From the equation for the curve (3), we see that for t ! 0/1 the solutions of the curve are
v = mL, i/mR, i, while for v ! 1 the solutions are t = 1, q.

equation for the curve as
NX

`=0

�
(4)
k` (t)x

k(N�`) = 0 , (4)

where the coe�cients are given by �
(4)
0 (t) = 1 and

�
(4)
k` (t) =

(�1)` c(`,k)L t
2 + uk`t+ (�1)` c(`,k)R q

tk`(t� 1)(t� q)
for ` = 1, . . . , N . (5)

In the above, we have used the formula
QN

i=1(v
k
�m

k
i ) =

PN
s=0(�1)s c(s,k) vk(N�s) with the Casimirs (let use

set for simplicity c(s) ⌘ c(s,1)) defined as :

c(s,k) =
NX

i1<···<is=1

m
k
i1 · · ·m

k
is , c(0,k) = 1 . (6)

For generic values of the masses, the Casimirs {c(s,k)}N`=1 are algebraically independent of each other.

We remark that one can perform an SL(2,Z) transformation t !
az+b
cz+d , x ! (cz+ d)2x on the curve (3) and

set z1 = �
d
c , z2 = �

b�d
a�c , z3 = �

b�dq
a�cq and z4 = �

b
a . This sends the singularities at 1, 1, q and 0 to the generic

points z1, z2, z3 and z4 respectively.

The free trinion curves. As explained in [28], the free C(k)
0,3 trinion curve can be obtained from the SCQCDk

one by going to the weak coupling regime q ! 0 and identifying the Coulomb parameters u` appropriately with

the masses. The resulting equation for the curve reads

t

NY

i=1

�
v
k
�m

k
L, i

�
�

NY

i=1

�
v
k
�m

k
R, i

�
= 0 . (7)

5

As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (90) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (9)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (6) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (10)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0 x
i
�i to

PN
i=0 x

i
�
0
i by making the tranformation x ! x� �1, then we find

�
0
` =

NX

j=N�`

✓
j

N � `

◆
�N�j(��1)

j+i�N =
X̀

j=0

✓
N � j

N � `

◆
�j(��1)

`�j
. (11)

We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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In the above, we have used the formula
QN

i=1(v
k
�m

k
i ) =

PN
s=0(�1)s c(s,k) vk(N�s) with the Casimirs (let use
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i1 · · ·m

k
is , c(0,k) = 1 . (7)

For generic values of the masses, the Casimirs {c(s,k)}N`=1 are algebraically independent of each other.

We remark that one can perform an SL(2,Z) transformation t !
az+b
cz+d , x ! (cz+ d)2x on the curve (3) and

set z1 = �
d
c , z2 = �

b�d
a�c , z3 = �

b�dq
a�cq and z4 = �

b
a . This sends the singularities at 1, 1, q and 0 to the generic

points z1, z2, z3 and z4 respectively.

The free trinion curves. As explained in [28], the free C(k)
0,3 trinion curve can be obtained from the SCQCDk

one by going to the weak coupling regime q ! 0 and identifying the Coulomb parameters u` appropriately with

the masses. The resulting equation for the curve reads
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Gaiotto or UV curve C0,n 
a sphere with n punctures 

SW or IR curve Σ 
of g=kN-1 

Sk curves 

As before, we can rescale v = xt and write the curve as
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k(N�`) = 0, with the curve coe�cients

(see (A.1) for the definition of the Casimirs) �(3)

0
= 1 and

�
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k` (t) = (�1)`
c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (2.8)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (2.5) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (2.9)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2.2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0
x
i
�i to

PN
i=0

x
i
�
0
i by making the tranformation x ! x� �1, then we find

�
0
` =
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j+i�N =
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◆
�j(��1)

`�j
. (2.10)

We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1

N , then the coe�cient �0
1
vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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q -> 00 q -> 1

q -> 0

Figure 1: This figure illustrates the position of the branes (horizontal D4s and vertical NS5s) for the case of
the N = 2 SU(3) gauge theory. In the N = 1 case, one needs to introduce an orbifold and image branes as
reviewed in [28]. From the equation for the curve (3), we see that for t ! 0/1 the solutions of the curve are
v = mL, i/mR, i, while for v ! 1 the solutions are t = 1, q.
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The AGT relation from the curve 
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punctures: 
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1. Introduction
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i

hT (z)
Y

i

Vi(zi)i =
X

j


hj

(z � zj)2
+

@j
z � zj

�
h

Y

i

Vi(zi)i (1.1)

�2(z)dz
2 = �

hT (z)
Q

i Vi(zi)i

h
Q

i Vi(zi)i
(1.2)

⌧ =
4⇡i

g2
+

✓

2⇡
q = e2⇡i⌧ (1.3)

a (1.4)

⌧ij =
@2

F(a)

@ai@aj
, (1.5)

while the expectation values of the scalar fields in the dual (magnetic) theory are given by

aD
i =

@F(a)

@ai
. (1.6)

The electromagnetic duality acts on the Coulomb moduli as the modular transformation
 
aDi

ai

!
!

 
a b

c d

! 
aDi

ai

!
with

 
a b

c d

!
2 SL(2,Z) . (1.7)

The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.8)

together with a meromorphic di↵erential �SW . The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

ai =

I

Ai

�SW and aD
i =

I

Bi
�SW , (1.9)

where Ai and Bi are the basic cycles of the algebraic curve with intersection number

Ai ·Bj = �ji . The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �SW around its poles give linear combinations of

the bare quark masses (mi).

hQI
i = 0 mi = 0 h�i = a = 0 (1.10)

Er with � = r

u` = htr�`
i (1.11)

1
The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .

– 2 –

Recall 2D Ward Identities: 

Example: 
N=2 SU(2) Free trinion

N=2 SU(N) 
Free trinion

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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The purpose of this article is to begin the search for the 2D conformal field theories (CFT), whose correlation

functions reproduce the partition functions of the 4D N = 1 SCFTs of class Sk and in general of class S�. In

principle, there is no reason to expect that such a 4D/2D relation exists for N = 1 theories. We adopt here a

1Technically [8], on an ellipsoid with deformation parameter b2 = ✏1
✏2

, where the ✏i are the ⌦-background deformation parameters

entering the Nekrasov partition functions.
2As explained in [20, 28], the SU(2)R is broken by the orbifold, but a diagonal U(1)R remains. Moreover, instead of the U(1)r

of N = 2, a global symmetry U(1)⇥U(1)k�1 ⇥U(1)k�1 which is heavily constraining the theory.
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1Technically [8], on an ellipsoid with deformation parameter b2 = ✏1
✏2

, where the ✏i are the ⌦-background deformation parameters

entering the Nekrasov partition functions.
2As explained in [20, 28], the SU(2)R is broken by the orbifold, but a diagonal U(1)R remains. Moreover, instead of the U(1)r

of N = 2, a global symmetry U(1)⇥U(1)k�1 ⇥U(1)k�1 which is heavily constraining the theory.

2

12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square with N stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i
, Q̃i

a
) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 ⇥ SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 ⇥ SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and

• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) ⇥ SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
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As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (90) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (9)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (6) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (10)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0 x
i
�i to

PN
i=0 x

i
�
0
i by making the tranformation x ! x� �1, then we find

�
0
` =

NX

j=N�`

✓
j

N � `

◆
�N�j(��1)

j+i�N =
X̀

j=0

✓
N � j

N � `

◆
�j(��1)

`�j
. (11)

We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.

6

Different S-duality frames the UV curve

Curve decomposition and S-duality 

are accompanied by the exchange of the representations of the SO(8) flavor symmetry,

V

S C
(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qa

I
, where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qa
I
qb
J
✏ab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then

M̃[Ĩ J̃ ] = q̃ã
Ĩ
q̃b̃
J̃
✏
ãb̃
. (9.4.16)

Both M[IJ ] and M̃[Ĩ J̃ ] are in the adjoint representation of SO(8), and can be naturally identified
using the outer automorphism of SO(8). We can check that the constraints satisfied by M[IJ ] and
M̃[Ĩ J̃ ] are invariant under the outer automorphism. This shows that the Higgs branch are the same
as complex spaces.

9.5 Generalization
9.5.1 Trivalent diagrams

A

B

CA

B

C

0 ∞

q 1
A

B C

D
A

B C

D

q

Figure 9.12: Trivalent diagrams and corresponding ultraviolet curves
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3 33

2
3

3
3 ⊃ 1

Figure 12.16: S-duality of SU(3) with 6 flavors involves the theory MN(E6).

and on the right, we have the extended Dynkin diagram of E6 with one node removed.16 We
clearly see subgroups SU(3)

3 and SU(6) ⇥ SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theory MN(E6).

33

3

Figure 12.17: The theory MN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q ! 1

,

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theory MN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

16There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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Gauging

Free hyper  
(trinion) 

The trifundamental hypermultiplet consisting of N=1 chiral multiplets qa↵u for a,↵, u = 1, 2
played the central role in the analysis so far. Let us introduce a shorthand notation for it, by rep-
resenting it by a trivalent vertex with labels A, B, C as in Fig. 9.12, signifying the symmetries
SU(2)A, SU(2)B, SU(2)C , acting on the indices a, ↵, u respectively.

The ultraviolet curve for this system is given by a sphere with three punctures A, B, C, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.1)

where �(z) is given by the condition that the coe�cients of the double poles are given by µ2
A

, µ2
B

,
µ2
C

at each of the punctures A,B,C, as in (9.3.7).
Now, the SU(2) theory with four flavors can be obtained by taking two copies of trifundamen-

tals, and coupling an SU(2) gauge multiplet to them. We denote it by taking two trivalent vertices,
and connecting them by a line, as shown in Fig. 9.12. We put the exponentiated coupling q on the
connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of the theory.
The free parameters in the theory are the mass parameters µA,B,C,D and the UV coupling q. The
ultraviolet curve of this system is given by a sphere with four punctures A, B, C, D, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.2)

where �(z) is given by the condition that its residues are given by µ2
X

at each of the punctures
X = A,B,C,D as in (9.2.10). The triality of the SU(2) theory with four flavors, shown already
in Fig. 9.11, can be depicted in terms of the trivalent diagrams as in Fig. 9.13.

A

B C

D

q

A

C B

D

1/q

A

C

B

1−q

D

Figure 9.13: Triality, using trivalent diagrams.

This way, we can regard the trivalent diagram as a shorthand to represent the UV Lagrangian.
The Seiberg-Witten solution to this given UV Lagrangian theory is given just by replacing each
trivalent vertex with a three punctured sphere, and a connecting line with a connecting tube. This
is a surprisingly concise method to obtain the Seiberg-Witten solutions to N=2 gauge theories.
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S-duality looks like  
crossing equation!

As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (A.1) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (2.8)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (2.5) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (2.9)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2.2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0 x
i
�i to

PN
i=0 x

i
�
0
i by making the tranformation x ! x� �1, then we find

�
0
` =

NX

j=N�`

✓
j

N � `

◆
�N�j(��1)

j+i�N =
X̀

j=0

✓
N � j

N � `

◆
�j(��1)

`�j
. (2.10)

We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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The AGT relation from the curve 

Close to the 
punctures: 
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1. Introduction
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q = e2⇡i⌧ (1.3)

a (1.4)

⌧ij =
@2

F(a)

@ai@aj
, (1.5)

while the expectation values of the scalar fields in the dual (magnetic) theory are given by

aD
i =

@F(a)

@ai
. (1.6)

The electromagnetic duality acts on the Coulomb moduli as the modular transformation
 
aDi

ai

!
!

 
a b

c d

! 
aDi

ai

!
with

 
a b

c d

!
2 SL(2,Z) . (1.7)

The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.8)

together with a meromorphic di↵erential �SW . The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

ai =

I

Ai

�SW and aD
i =

I

Bi
�SW , (1.9)

where Ai and Bi are the basic cycles of the algebraic curve with intersection number

Ai ·Bj = �ji . The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �SW around its poles give linear combinations of

the bare quark masses (mi).

hQI
i = 0 mi = 0 h�i = a = 0 (1.10)

Er with � = r

u` = htr�`
i (1.11)

1
The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .

– 2 –

Recall 2D Ward Identities: 

Example: 
N=2 SU(2) Free trinion

N=2 SU(N) 
Free trinion

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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(1)

The purpose of this article is to begin the search for the 2D conformal field theories (CFT), whose correlation

functions reproduce the partition functions of the 4D N = 1 SCFTs of class Sk and in general of class S�. In

principle, there is no reason to expect that such a 4D/2D relation exists for N = 1 theories. We adopt here a

1Technically [8], on an ellipsoid with deformation parameter b2 = ✏1
✏2

, where the ✏i are the ⌦-background deformation parameters

entering the Nekrasov partition functions.
2As explained in [20, 28], the SU(2)R is broken by the orbifold, but a diagonal U(1)R remains. Moreover, instead of the U(1)r

of N = 2, a global symmetry U(1)⇥U(1)k�1 ⇥U(1)k�1 which is heavily constraining the theory.

2

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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The purpose of this article is to begin the search for the 2D conformal field theories (CFT), whose correlation

functions reproduce the partition functions of the 4D N = 1 SCFTs of class Sk and in general of class S�. In

1Technically [8], on an ellipsoid with deformation parameter b2 = ✏1
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entering the Nekrasov partition functions.
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N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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2As explained in [20, 28], the SU(2)R is broken by the orbifold, but a diagonal U(1)R remains. Moreover, instead of the U(1)r

of N = 2, a global symmetry U(1)⇥U(1)k�1 ⇥U(1)k�1 which is heavily constraining the theory.
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12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square with N stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i
, Q̃i

a
) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 ⇥ SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 ⇥ SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and

• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) ⇥ SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
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As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (90) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (9)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (6) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (10)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0 x
i
�i to

PN
i=0 x

i
�
0
i by making the tranformation x ! x� �1, then we find

�
0
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✓
j
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◆
�N�j(��1)

j+i�N =
X̀

j=0

✓
N � j

N � `

◆
�j(��1)

`�j
. (11)

We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.

6

Different S-duality frames the UV curve

Curve decomposition and S-duality 

are accompanied by the exchange of the representations of the SO(8) flavor symmetry,

V

S C
(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qa

I
, where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qa
I
qb
J
✏ab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then

M̃[Ĩ J̃ ] = q̃ã
Ĩ
q̃b̃
J̃
✏
ãb̃
. (9.4.16)

Both M[IJ ] and M̃[Ĩ J̃ ] are in the adjoint representation of SO(8), and can be naturally identified
using the outer automorphism of SO(8). We can check that the constraints satisfied by M[IJ ] and
M̃[Ĩ J̃ ] are invariant under the outer automorphism. This shows that the Higgs branch are the same
as complex spaces.

9.5 Generalization
9.5.1 Trivalent diagrams

A

B

CA

B

C

0 ∞

q 1
A

B C

D
A

B C

D

q

Figure 9.12: Trivalent diagrams and corresponding ultraviolet curves
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3 33

2
3

3
3 ⊃ 1

Figure 12.16: S-duality of SU(3) with 6 flavors involves the theory MN(E6).

and on the right, we have the extended Dynkin diagram of E6 with one node removed.16 We
clearly see subgroups SU(3)

3 and SU(6) ⇥ SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theory MN(E6).

33

3

Figure 12.17: The theory MN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q ! 1

,

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theory MN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

16There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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Gauging

Free hyper  
(trinion) 

The trifundamental hypermultiplet consisting of N=1 chiral multiplets qa↵u for a,↵, u = 1, 2
played the central role in the analysis so far. Let us introduce a shorthand notation for it, by rep-
resenting it by a trivalent vertex with labels A, B, C as in Fig. 9.12, signifying the symmetries
SU(2)A, SU(2)B, SU(2)C , acting on the indices a, ↵, u respectively.

The ultraviolet curve for this system is given by a sphere with three punctures A, B, C, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.1)

where �(z) is given by the condition that the coe�cients of the double poles are given by µ2
A

, µ2
B

,
µ2
C

at each of the punctures A,B,C, as in (9.3.7).
Now, the SU(2) theory with four flavors can be obtained by taking two copies of trifundamen-

tals, and coupling an SU(2) gauge multiplet to them. We denote it by taking two trivalent vertices,
and connecting them by a line, as shown in Fig. 9.12. We put the exponentiated coupling q on the
connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of the theory.
The free parameters in the theory are the mass parameters µA,B,C,D and the UV coupling q. The
ultraviolet curve of this system is given by a sphere with four punctures A, B, C, D, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.2)

where �(z) is given by the condition that its residues are given by µ2
X

at each of the punctures
X = A,B,C,D as in (9.2.10). The triality of the SU(2) theory with four flavors, shown already
in Fig. 9.11, can be depicted in terms of the trivalent diagrams as in Fig. 9.13.

A

B C

D

q

A

C B

D

1/q

A

C

B

1−q

D

Figure 9.13: Triality, using trivalent diagrams.

This way, we can regard the trivalent diagram as a shorthand to represent the UV Lagrangian.
The Seiberg-Witten solution to this given UV Lagrangian theory is given just by replacing each
trivalent vertex with a three punctured sphere, and a connecting line with a connecting tube. This
is a surprisingly concise method to obtain the Seiberg-Witten solutions to N=2 gauge theories.
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S-duality looks like  
crossing equation!

As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (A.1) for the definition of the Casimirs) �(3)
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�
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c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (2.8)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (2.5) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (2.9)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2.2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
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i
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i
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0
i by making the tranformation x ! x� �1, then we find
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We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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The AGT relation from the curve 
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1. Introduction
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while the expectation values of the scalar fields in the dual (magnetic) theory are given by

aD
i =

@F(a)

@ai
. (1.6)

The electromagnetic duality acts on the Coulomb moduli as the modular transformation
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!
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c d

!
2 SL(2,Z) . (1.7)

The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.8)

together with a meromorphic di↵erential �SW . The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

ai =

I

Ai

�SW and aD
i =

I

Bi
�SW , (1.9)

where Ai and Bi are the basic cycles of the algebraic curve with intersection number

Ai ·Bj = �ji . The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �SW around its poles give linear combinations of

the bare quark masses (mi).

hQI
i = 0 mi = 0 h�i = a = 0 (1.10)

Er with � = r

u` = htr�`
i (1.11)

1
The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .

– 2 –

Recall 2D Ward Identities: 

Example: 
N=2 SU(2) Free trinion

N=2 SU(N) 
Free trinion

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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The purpose of this article is to begin the search for the 2D conformal field theories (CFT), whose correlation

functions reproduce the partition functions of the 4D N = 1 SCFTs of class Sk and in general of class S�. In

principle, there is no reason to expect that such a 4D/2D relation exists for N = 1 theories. We adopt here a

1Technically [8], on an ellipsoid with deformation parameter b2 = ✏1
✏2

, where the ✏i are the ⌦-background deformation parameters

entering the Nekrasov partition functions.
2As explained in [20, 28], the SU(2)R is broken by the orbifold, but a diagonal U(1)R remains. Moreover, instead of the U(1)r

of N = 2, a global symmetry U(1)⇥U(1)k�1 ⇥U(1)k�1 which is heavily constraining the theory.
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N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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The purpose of this article is to begin the search for the 2D conformal field theories (CFT), whose correlation

functions reproduce the partition functions of the 4D N = 1 SCFTs of class Sk and in general of class S�. In

1Technically [8], on an ellipsoid with deformation parameter b2 = ✏1
✏2

, where the ✏i are the ⌦-background deformation parameters

entering the Nekrasov partition functions.
2As explained in [20, 28], the SU(2)R is broken by the orbifold, but a diagonal U(1)R remains. Moreover, instead of the U(1)r

of N = 2, a global symmetry U(1)⇥U(1)k�1 ⇥U(1)k�1 which is heavily constraining the theory.

2

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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of N = 2, a global symmetry U(1)⇥U(1)k�1 ⇥U(1)k�1 which is heavily constraining the theory.

2

12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square with N stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i
, Q̃i

a
) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 ⇥ SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 ⇥ SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and

• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) ⇥ SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
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As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (90) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (9)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (6) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (10)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0 x
i
�i to

PN
i=0 x

i
�
0
i by making the tranformation x ! x� �1, then we find

�
0
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j=N�`

✓
j
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◆
�N�j(��1)

j+i�N =
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j=0

✓
N � j

N � `

◆
�j(��1)

`�j
. (11)

We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.

6

Different S-duality frames the UV curve

Curve decomposition and S-duality 

are accompanied by the exchange of the representations of the SO(8) flavor symmetry,

V

S C
(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qa

I
, where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qa
I
qb
J
✏ab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then

M̃[Ĩ J̃ ] = q̃ã
Ĩ
q̃b̃
J̃
✏
ãb̃
. (9.4.16)

Both M[IJ ] and M̃[Ĩ J̃ ] are in the adjoint representation of SO(8), and can be naturally identified
using the outer automorphism of SO(8). We can check that the constraints satisfied by M[IJ ] and
M̃[Ĩ J̃ ] are invariant under the outer automorphism. This shows that the Higgs branch are the same
as complex spaces.

9.5 Generalization
9.5.1 Trivalent diagrams

A

B

CA

B

C

0 ∞

q 1
A

B C

D
A

B C

D

q

Figure 9.12: Trivalent diagrams and corresponding ultraviolet curves
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3 33

2
3

3
3 ⊃ 1

Figure 12.16: S-duality of SU(3) with 6 flavors involves the theory MN(E6).

and on the right, we have the extended Dynkin diagram of E6 with one node removed.16 We
clearly see subgroups SU(3)

3 and SU(6) ⇥ SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theory MN(E6).

33

3

Figure 12.17: The theory MN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q ! 1

,

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theory MN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

16There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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Gauging

Free hyper  
(trinion) 

The trifundamental hypermultiplet consisting of N=1 chiral multiplets qa↵u for a,↵, u = 1, 2
played the central role in the analysis so far. Let us introduce a shorthand notation for it, by rep-
resenting it by a trivalent vertex with labels A, B, C as in Fig. 9.12, signifying the symmetries
SU(2)A, SU(2)B, SU(2)C , acting on the indices a, ↵, u respectively.

The ultraviolet curve for this system is given by a sphere with three punctures A, B, C, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.1)

where �(z) is given by the condition that the coe�cients of the double poles are given by µ2
A

, µ2
B

,
µ2
C

at each of the punctures A,B,C, as in (9.3.7).
Now, the SU(2) theory with four flavors can be obtained by taking two copies of trifundamen-

tals, and coupling an SU(2) gauge multiplet to them. We denote it by taking two trivalent vertices,
and connecting them by a line, as shown in Fig. 9.12. We put the exponentiated coupling q on the
connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of the theory.
The free parameters in the theory are the mass parameters µA,B,C,D and the UV coupling q. The
ultraviolet curve of this system is given by a sphere with four punctures A, B, C, D, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.2)

where �(z) is given by the condition that its residues are given by µ2
X

at each of the punctures
X = A,B,C,D as in (9.2.10). The triality of the SU(2) theory with four flavors, shown already
in Fig. 9.11, can be depicted in terms of the trivalent diagrams as in Fig. 9.13.

A

B C

D

q

A

C B

D

1/q

A

C

B

1−q

D

Figure 9.13: Triality, using trivalent diagrams.

This way, we can regard the trivalent diagram as a shorthand to represent the UV Lagrangian.
The Seiberg-Witten solution to this given UV Lagrangian theory is given just by replacing each
trivalent vertex with a three punctured sphere, and a connecting line with a connecting tube. This
is a surprisingly concise method to obtain the Seiberg-Witten solutions to N=2 gauge theories.
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S-duality looks like  
crossing equation!

As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (A.1) for the definition of the Casimirs) �(3)
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for ` = 1, . . . , N . (2.8)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (2.5) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (2.9)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2.2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an
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�i to
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i by making the tranformation x ! x� �1, then we find
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We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.

6

The AGT relation from the curve 

Close to the 
punctures: 
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1. Introduction
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while the expectation values of the scalar fields in the dual (magnetic) theory are given by

aD
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@ai
. (1.6)

The electromagnetic duality acts on the Coulomb moduli as the modular transformation
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!
2 SL(2,Z) . (1.7)

The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.8)

together with a meromorphic di↵erential �SW . The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

ai =

I

Ai

�SW and aD
i =

I

Bi
�SW , (1.9)

where Ai and Bi are the basic cycles of the algebraic curve with intersection number

Ai ·Bj = �ji . The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �SW around its poles give linear combinations of

the bare quark masses (mi).

hQI
i = 0 mi = 0 h�i = a = 0 (1.10)

Er with � = r

u` = htr�`
i (1.11)

1
The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .

– 2 –

Recall 2D Ward Identities: 

Example: 
N=2 SU(2) Free trinion

N=2 SU(N) 
Free trinion

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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The purpose of this article is to begin the search for the 2D conformal field theories (CFT), whose correlation

functions reproduce the partition functions of the 4D N = 1 SCFTs of class Sk and in general of class S�. In

principle, there is no reason to expect that such a 4D/2D relation exists for N = 1 theories. We adopt here a
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12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square with N stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i
, Q̃i

a
) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 ⇥ SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 ⇥ SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and

• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) ⇥ SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
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As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (90) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (9)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (6) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (10)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0 x
i
�i to

PN
i=0 x

i
�
0
i by making the tranformation x ! x� �1, then we find
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We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.

6

Different S-duality frames the UV curve

Curve decomposition and S-duality 

are accompanied by the exchange of the representations of the SO(8) flavor symmetry,

V

S C
(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qa

I
, where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qa
I
qb
J
✏ab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then

M̃[Ĩ J̃ ] = q̃ã
Ĩ
q̃b̃
J̃
✏
ãb̃
. (9.4.16)

Both M[IJ ] and M̃[Ĩ J̃ ] are in the adjoint representation of SO(8), and can be naturally identified
using the outer automorphism of SO(8). We can check that the constraints satisfied by M[IJ ] and
M̃[Ĩ J̃ ] are invariant under the outer automorphism. This shows that the Higgs branch are the same
as complex spaces.

9.5 Generalization
9.5.1 Trivalent diagrams

A

B

CA

B

C

0 ∞

q 1
A

B C

D
A

B C

D

q

Figure 9.12: Trivalent diagrams and corresponding ultraviolet curves
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3 33

2
3

3
3 ⊃ 1

Figure 12.16: S-duality of SU(3) with 6 flavors involves the theory MN(E6).

and on the right, we have the extended Dynkin diagram of E6 with one node removed.16 We
clearly see subgroups SU(3)

3 and SU(6) ⇥ SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theory MN(E6).

33

3

Figure 12.17: The theory MN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q ! 1

,

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theory MN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

16There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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Gauging

Free hyper  
(trinion) 

The trifundamental hypermultiplet consisting of N=1 chiral multiplets qa↵u for a,↵, u = 1, 2
played the central role in the analysis so far. Let us introduce a shorthand notation for it, by rep-
resenting it by a trivalent vertex with labels A, B, C as in Fig. 9.12, signifying the symmetries
SU(2)A, SU(2)B, SU(2)C , acting on the indices a, ↵, u respectively.

The ultraviolet curve for this system is given by a sphere with three punctures A, B, C, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.1)

where �(z) is given by the condition that the coe�cients of the double poles are given by µ2
A

, µ2
B

,
µ2
C

at each of the punctures A,B,C, as in (9.3.7).
Now, the SU(2) theory with four flavors can be obtained by taking two copies of trifundamen-

tals, and coupling an SU(2) gauge multiplet to them. We denote it by taking two trivalent vertices,
and connecting them by a line, as shown in Fig. 9.12. We put the exponentiated coupling q on the
connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of the theory.
The free parameters in the theory are the mass parameters µA,B,C,D and the UV coupling q. The
ultraviolet curve of this system is given by a sphere with four punctures A, B, C, D, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.2)

where �(z) is given by the condition that its residues are given by µ2
X

at each of the punctures
X = A,B,C,D as in (9.2.10). The triality of the SU(2) theory with four flavors, shown already
in Fig. 9.11, can be depicted in terms of the trivalent diagrams as in Fig. 9.13.

A

B C

D

q

A

C B

D

1/q

A

C

B

1−q

D

Figure 9.13: Triality, using trivalent diagrams.

This way, we can regard the trivalent diagram as a shorthand to represent the UV Lagrangian.
The Seiberg-Witten solution to this given UV Lagrangian theory is given just by replacing each
trivalent vertex with a three punctured sphere, and a connecting line with a connecting tube. This
is a surprisingly concise method to obtain the Seiberg-Witten solutions to N=2 gauge theories.
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Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.
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We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
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we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily
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s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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The AGT relation from the curve 
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1. Introduction
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while the expectation values of the scalar fields in the dual (magnetic) theory are given by
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The electromagnetic duality acts on the Coulomb moduli as the modular transformation
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The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.8)

together with a meromorphic di↵erential �SW . The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

ai =

I

Ai

�SW and aD
i =

I

Bi
�SW , (1.9)

where Ai and Bi are the basic cycles of the algebraic curve with intersection number

Ai ·Bj = �ji . The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �SW around its poles give linear combinations of

the bare quark masses (mi).
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The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =
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Example: 
N=2 SU(2) Free trinion

N=2 SU(N) 
Free trinion

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square with N stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i
, Q̃i

a
) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 ⇥ SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 ⇥ SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and

• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) ⇥ SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
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As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (90) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (9)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (6) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (10)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0 x
i
�i to

PN
i=0 x

i
�
0
i by making the tranformation x ! x� �1, then we find

�
0
` =

NX

j=N�`

✓
j

N � `

◆
�N�j(��1)

j+i�N =
X̀

j=0

✓
N � j

N � `

◆
�j(��1)

`�j
. (11)

We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.

6

Different S-duality frames the UV curve

Curve decomposition and S-duality 

are accompanied by the exchange of the representations of the SO(8) flavor symmetry,

V

S C
(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qa

I
, where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qa
I
qb
J
✏ab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then

M̃[Ĩ J̃ ] = q̃ã
Ĩ
q̃b̃
J̃
✏
ãb̃
. (9.4.16)

Both M[IJ ] and M̃[Ĩ J̃ ] are in the adjoint representation of SO(8), and can be naturally identified
using the outer automorphism of SO(8). We can check that the constraints satisfied by M[IJ ] and
M̃[Ĩ J̃ ] are invariant under the outer automorphism. This shows that the Higgs branch are the same
as complex spaces.

9.5 Generalization
9.5.1 Trivalent diagrams

A

B

CA

B

C

0 ∞

q 1
A

B C

D
A

B C

D

q

Figure 9.12: Trivalent diagrams and corresponding ultraviolet curves
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3 33
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3 ⊃ 1

Figure 12.16: S-duality of SU(3) with 6 flavors involves the theory MN(E6).

and on the right, we have the extended Dynkin diagram of E6 with one node removed.16 We
clearly see subgroups SU(3)

3 and SU(6) ⇥ SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theory MN(E6).

33

3

Figure 12.17: The theory MN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q ! 1

,

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theory MN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

16There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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Gauging

Free hyper  
(trinion) 

The trifundamental hypermultiplet consisting of N=1 chiral multiplets qa↵u for a,↵, u = 1, 2
played the central role in the analysis so far. Let us introduce a shorthand notation for it, by rep-
resenting it by a trivalent vertex with labels A, B, C as in Fig. 9.12, signifying the symmetries
SU(2)A, SU(2)B, SU(2)C , acting on the indices a, ↵, u respectively.

The ultraviolet curve for this system is given by a sphere with three punctures A, B, C, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.1)

where �(z) is given by the condition that the coe�cients of the double poles are given by µ2
A

, µ2
B

,
µ2
C

at each of the punctures A,B,C, as in (9.3.7).
Now, the SU(2) theory with four flavors can be obtained by taking two copies of trifundamen-

tals, and coupling an SU(2) gauge multiplet to them. We denote it by taking two trivalent vertices,
and connecting them by a line, as shown in Fig. 9.12. We put the exponentiated coupling q on the
connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of the theory.
The free parameters in the theory are the mass parameters µA,B,C,D and the UV coupling q. The
ultraviolet curve of this system is given by a sphere with four punctures A, B, C, D, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.2)

where �(z) is given by the condition that its residues are given by µ2
X

at each of the punctures
X = A,B,C,D as in (9.2.10). The triality of the SU(2) theory with four flavors, shown already
in Fig. 9.11, can be depicted in terms of the trivalent diagrams as in Fig. 9.13.

A

B C

D

q

A

C B

D

1/q

A

C

B

1−q

D

Figure 9.13: Triality, using trivalent diagrams.

This way, we can regard the trivalent diagram as a shorthand to represent the UV Lagrangian.
The Seiberg-Witten solution to this given UV Lagrangian theory is given just by replacing each
trivalent vertex with a three punctured sphere, and a connecting line with a connecting tube. This
is a surprisingly concise method to obtain the Seiberg-Witten solutions to N=2 gauge theories.
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S-duality looks like  
crossing equation!
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The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2.2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
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i=0 x

i
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0
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We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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while the expectation values of the scalar fields in the dual (magnetic) theory are given by
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The electromagnetic duality acts on the Coulomb moduli as the modular transformation
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The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.8)

together with a meromorphic di↵erential �SW . The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

ai =

I

Ai

�SW and aD
i =

I

Bi
�SW , (1.9)

where Ai and Bi are the basic cycles of the algebraic curve with intersection number

Ai ·Bj = �ji . The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �SW around its poles give linear combinations of

the bare quark masses (mi).

hQI
i = 0 mi = 0 h�i = a = 0 (1.10)

Er with � = r

u` = htr�`
i (1.11)

1
The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .

– 2 –

Recall 2D Ward Identities: 

Example: 
N=2 SU(2) Free trinion

N=2 SU(N) 
Free trinion

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2
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, where the ✏i are the ⌦-background deformation parameters

entering the Nekrasov partition functions.
2As explained in [20, 28], the SU(2)R is broken by the orbifold, but a diagonal U(1)R remains. Moreover, instead of the U(1)r
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12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square with N stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i
, Q̃i

a
) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 ⇥ SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 ⇥ SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and

• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) ⇥ SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
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As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (90) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (9)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (6) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (10)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an
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We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.

6

Different S-duality frames the UV curve

Curve decomposition and S-duality 

are accompanied by the exchange of the representations of the SO(8) flavor symmetry,

V

S C
(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qa

I
, where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qa
I
qb
J
✏ab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then

M̃[Ĩ J̃ ] = q̃ã
Ĩ
q̃b̃
J̃
✏
ãb̃
. (9.4.16)

Both M[IJ ] and M̃[Ĩ J̃ ] are in the adjoint representation of SO(8), and can be naturally identified
using the outer automorphism of SO(8). We can check that the constraints satisfied by M[IJ ] and
M̃[Ĩ J̃ ] are invariant under the outer automorphism. This shows that the Higgs branch are the same
as complex spaces.

9.5 Generalization
9.5.1 Trivalent diagrams

A

B
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B

C

0 ∞

q 1
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B C

D
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B C

D

q

Figure 9.12: Trivalent diagrams and corresponding ultraviolet curves
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Figure 12.16: S-duality of SU(3) with 6 flavors involves the theory MN(E6).

and on the right, we have the extended Dynkin diagram of E6 with one node removed.16 We
clearly see subgroups SU(3)

3 and SU(6) ⇥ SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theory MN(E6).

33

3

Figure 12.17: The theory MN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q ! 1

,

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theory MN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

16There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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Gauging

Free hyper  
(trinion) 

The trifundamental hypermultiplet consisting of N=1 chiral multiplets qa↵u for a,↵, u = 1, 2
played the central role in the analysis so far. Let us introduce a shorthand notation for it, by rep-
resenting it by a trivalent vertex with labels A, B, C as in Fig. 9.12, signifying the symmetries
SU(2)A, SU(2)B, SU(2)C , acting on the indices a, ↵, u respectively.

The ultraviolet curve for this system is given by a sphere with three punctures A, B, C, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.1)

where �(z) is given by the condition that the coe�cients of the double poles are given by µ2
A

, µ2
B

,
µ2
C

at each of the punctures A,B,C, as in (9.3.7).
Now, the SU(2) theory with four flavors can be obtained by taking two copies of trifundamen-

tals, and coupling an SU(2) gauge multiplet to them. We denote it by taking two trivalent vertices,
and connecting them by a line, as shown in Fig. 9.12. We put the exponentiated coupling q on the
connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of the theory.
The free parameters in the theory are the mass parameters µA,B,C,D and the UV coupling q. The
ultraviolet curve of this system is given by a sphere with four punctures A, B, C, D, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.2)

where �(z) is given by the condition that its residues are given by µ2
X

at each of the punctures
X = A,B,C,D as in (9.2.10). The triality of the SU(2) theory with four flavors, shown already
in Fig. 9.11, can be depicted in terms of the trivalent diagrams as in Fig. 9.13.

A

B C

D

q

A

C B

D

1/q

A

C

B

1−q

D

Figure 9.13: Triality, using trivalent diagrams.

This way, we can regard the trivalent diagram as a shorthand to represent the UV Lagrangian.
The Seiberg-Witten solution to this given UV Lagrangian theory is given just by replacing each
trivalent vertex with a three punctured sphere, and a connecting line with a connecting tube. This
is a surprisingly concise method to obtain the Seiberg-Witten solutions to N=2 gauge theories.
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S-duality looks like  
crossing equation!

As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (A.1) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (2.8)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (2.5) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (2.9)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2.2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0 x
i
�i to

PN
i=0 x

i
�
0
i by making the tranformation x ! x� �1, then we find

�
0
` =

NX

j=N�`

✓
j

N � `

◆
�N�j(��1)

j+i�N =
X̀

j=0

✓
N � j

N � `

◆
�j(��1)

`�j
. (2.10)

We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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Instantons from 
the 2D Blocks

Of course, it is possible to consider the cases in which V1 or V2 are not primary, but we do not need them

here.

• A similar object to � is the vertex

�̄w;34(Y) =
hW�YVw |V3(1)V4(0)i

hVw |V3(1)V4(0)i
, (42)

i.e. the normalized scalar product of a state with the product of two primary fields inserted at 1 and at

0. While for the Virasoro case, there is no need to introduce the �̄ since �̄�;34 = �43� (see the recursion

relations (111)), this is not true anymore for the general WN algebra.

One can depict the 3 and 4-point blocks graphically as sketched in 4.

Figure 4: This figure depicts the three and four point W-blocks. Using conformal symmetry, for three points,
we set z1 = 1, z2 = 1 and z3 = 0, while for four points, we put z1 = 1, z2 = 1, z3 = q and z4 = 0. The dashed
lines indicate descendant fields.

The instanton partition functions and the blocks. The AGT correspondence identifies the Nekrasov

instanton partition function Zinst to the W-blocks, after an appropriate factor has been removed. In the case

that we are dealing with, namely for the N = 2 SU(N) SCQCD with NF = 2N , the instanton partition function

reads

Zinst =
X

Y

q
|Y|

Zvec(a,Y)
NY

i=1

Zantifund(a,Y;�mL, i)
NY

j=1

Zfund(a,Y;mR, j) , (43)

where a = (a1, . . . , aN ) and Y = {Y1, . . . , YN} is a set of N Young diagrams and the building blocks of Zinst

are defined in appendix E. The partition function is related to the W-blocks as

Zinst = BU(1)Bw(w1,w2,w3,w4|q) . (44)

Zinst = Bw(w1,w2,w3,w4|q) . (45)

We remark that to relate the CFT data to the 4D Nekrasov partition functions, one should rescale all parameters

with dimension of mass as m !
mp
✏1✏2

and also replace Q !
✏p
✏1✏2

.
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The AGT relation from the curve 

Close to the 
punctures: 

Free trinions curves are equivalent to Ward identities! 

1. Introduction

hi = �m2

i

hT (z)
Y

i

Vi(zi)i =
X

j


hj

(z � zj)2
+

@j
z � zj

�
h

Y

i

Vi(zi)i (1.1)

�2(z)dz
2 = �

hT (z)
Q

i Vi(zi)i

h
Q

i Vi(zi)i
(1.2)

⌧ =
4⇡i

g2
+

✓

2⇡
q = e2⇡i⌧ (1.3)

a (1.4)

⌧ij =
@2

F(a)

@ai@aj
, (1.5)

while the expectation values of the scalar fields in the dual (magnetic) theory are given by

aD
i =

@F(a)

@ai
. (1.6)

The electromagnetic duality acts on the Coulomb moduli as the modular transformation
 
aDi

ai

!
!

 
a b

c d

! 
aDi

ai

!
with

 
a b

c d

!
2 SL(2,Z) . (1.7)

The prepotential is determined using an auxiliary curve called the SW curve

F (t, v) = 0 (1.8)

together with a meromorphic di↵erential �SW . The derivatives of the meromorphic one-

form with respect to the moduli of the SW curve1 are the holomorphic di↵erentials of the

curve. The Coulomb moduli are then computed according to

ai =

I

Ai

�SW and aD
i =

I

Bi
�SW , (1.9)

where Ai and Bi are the basic cycles of the algebraic curve with intersection number

Ai ·Bj = �ji . The prepotential itself can be found by integrating (2.3). Moreover, contour

integrals of the meromorphic di↵erential �SW around its poles give linear combinations of

the bare quark masses (mi).

hQI
i = 0 mi = 0 h�i = a = 0 (1.10)

Er with � = r

u` = htr�`
i (1.11)

1
The moduli of the SW curve u for the SU(2) example is the gauge invariant Coulomb moduli u =

htr�2i+ . . . .

– 2 –

Recall 2D Ward Identities: 

Example: 
N=2 SU(2) Free trinion

N=2 SU(N) 
Free trinion

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [5]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [6,7], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [9]

are equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [10,11], which is the

core of the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2

class S theories in [6] by studying the SW curves and realizing that they arise from the compactification of

M5-branes on Riemann surfaces decorated with punctures. See [12, 13] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [14, 15], with the AdS/CFT correspondence o↵ering

a natural route to several examples of N = 1 orbifold daughters of N = 4 SYM [16, 17]. A very large class of

4D N = 1 SCFTs, naturally called S� [18, 19], arise from M5-branes probing the C2
/� ADE singularity. Their

study was originated in [20], with the Sk class arising after compactification of Zk orbifolds of the (2,0) theory,

see also [21,22] and [18,23–27]. The SW curves for the class Sk theories were derived and studied in [28], using

Witten’s M-theory approach [29].

For N = 2 theories, the SW curves completely solve the IR theory. The N = 2 supersymmetry and more

specifically the SU(2)R relates the holomorphic superpotential to the non-holomorphic (in N = 1 superspace)

Kähler part and thus we can obtain the full prepotential. For theories with only N = 1 supersymmetry, we can

only hope to fix the holomorphic superpotential part. However, there are N = 1 examples for which also the

Kähler part can be fixed, see for example [30,31]. From a field theory point of view this should be a consequence

of an extra global symmetry. For the theories in class S�, we expect more, than for generic N = 1theories, due

to their rich global symmetries inherited from the orbifold construction.2

hT (z)V1(z1)V2(z2)V3(z3)i =
3X

j=1


hj

(z � zj)2
+

@j

z � zj

�
hV1(z1)V2(z2)V3(z3)i hh J`(t) ii3 =

h J`(t)V1(x1)V2(x2)V3(x3) i

hV1(x1)V2(x2)V3(x3) i
,

(1)

The purpose of this article is to begin the search for the 2D conformal field theories (CFT), whose correlation

functions reproduce the partition functions of the 4D N = 1 SCFTs of class Sk and in general of class S�. In

principle, there is no reason to expect that such a 4D/2D relation exists for N = 1 theories. We adopt here a

1Technically [8], on an ellipsoid with deformation parameter b2 = ✏1
✏2

, where the ✏i are the ⌦-background deformation parameters

entering the Nekrasov partition functions.
2As explained in [20, 28], the SU(2)R is broken by the orbifold, but a diagonal U(1)R remains. Moreover, instead of the U(1)r

of N = 2, a global symmetry U(1)⇥U(1)k�1 ⇥U(1)k�1 which is heavily constraining the theory.
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2

12.2 SU(N) quiver theories and tame punctures
12.2.1 Quiver gauge theories

To this aim, we introduce a new diagrammatic notation for N=2 gauge theories. This notation is
related to but distinct from the trivalent one introduced in Sec. 9.5.

A diagram is composed of squares and circles with integers written in them, and edges con-
necting squares and circles. A square with N stands for a U(N) flavor symmetry, and a circle with
N an SU(N) gauge symmetry. An edge connecting two objects with N and M written within
them represents a hypermultiplet (Qa

i
, Q̃i

a
) where i = 1, . . . , N and j = 1, . . . ,M . They are in the

tensor product of the fundamental representation of SU(N) and SU(M), and is called the bifun-
damental hypermultiplet. Such a diagram specifies an N=2 gauge theory. This class of theories
is often called quiver gauge theories.

N N

N NN
0 ∞

q 1

q

0 ∞

1qq' q'
N NN

q
N

q'

Figure 12.5: SU(N) quiver theory

The simplest cases are when all the squares and circles have the same number N written in
them, see Fig. 12.5. The first one in the figure is just a bifundamental hypermultiplet. The second
one is the SU(N) theory with 2N flavors. The last one is an SU(N)1 ⇥ SU(N)2 theory, so that

• there is a bifundamental hypermultiplet for SU(N)1 ⇥ SU(N)2, and

• there are N fundamental hypermultiplets for SU(N)1, and

• there are N fundamental hypermultiplets for SU(N)2.

Note that both SU(N)1 and SU(N)2 have zero beta function.
Their Seiberg-Witten solutions can be obtained by combining the knowledge we acquired so

far. Namely, each edge corresponds to the bifundamental hypermultiplet of SU(N) ⇥ SU(N),
which we know to come from a three punctured sphere of 6d theory of type SU(N), with two full
punctures and one simple puncture. All we have to do then is to prepare one such sphere for each
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As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (90) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (9)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (6) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (10)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0 x
i
�i to

PN
i=0 x

i
�
0
i by making the tranformation x ! x� �1, then we find

�
0
` =

NX

j=N�`

✓
j

N � `

◆
�N�j(��1)

j+i�N =
X̀

j=0

✓
N � j

N � `

◆
�j(��1)

`�j
. (11)

We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.

6

Different S-duality frames the UV curve

Curve decomposition and S-duality 

are accompanied by the exchange of the representations of the SO(8) flavor symmetry,

V

S C
(9.4.14)

where V , S, C are eight dimensional irreducible representations (vector, spinor, conjugate spinor)
of SO(8). These exchanges of three irreducible eight dimensional representations are induced by
the outer automorphism, and are known as the triality of the group SO(8), whose Dynkin diagram
is also shown in Fig. 9.11. This triality was originally found in [3]. The exposition in this subsection
followed the one given in [8].

The Higgs branch of this system can be studied in any of these descriptions. Originally we
have hypermultiplets qa

I
, where a = 1, 2 and I = 1, . . . , 8. The gauge invariant combination is

M[IJ ] = qa
I
qb
J
✏ab. (9.4.15)

In the dual, we have hypermultiplets q̃ã
Ĩ
, where ã = 1, 2 are for dual SU(2) and Ĩ = 1, . . . , 8 are

for the spinor representation of the SO(8) flavor symmetry. The basic gauge invariant is then

M̃[Ĩ J̃ ] = q̃ã
Ĩ
q̃b̃
J̃
✏
ãb̃
. (9.4.16)

Both M[IJ ] and M̃[Ĩ J̃ ] are in the adjoint representation of SO(8), and can be naturally identified
using the outer automorphism of SO(8). We can check that the constraints satisfied by M[IJ ] and
M̃[Ĩ J̃ ] are invariant under the outer automorphism. This shows that the Higgs branch are the same
as complex spaces.

9.5 Generalization
9.5.1 Trivalent diagrams

A

B

CA

B

C

0 ∞

q 1
A

B C

D
A

B C

D

q

Figure 9.12: Trivalent diagrams and corresponding ultraviolet curves
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3 33

2
3

3
3 ⊃ 1

Figure 12.16: S-duality of SU(3) with 6 flavors involves the theory MN(E6).

and on the right, we have the extended Dynkin diagram of E6 with one node removed.16 We
clearly see subgroups SU(3)

3 and SU(6) ⇥ SU(2). We already saw above that this theory has
only one Coulomb branch operator, and its dimension is three. This nicely fits the feature of a
rank-1 superconformal theory announced to exist in Sec. 10.4. This is equivalent to Minahan-
Nemeschansky’s theory MN(E6).

33

3

Figure 12.17: The theory MN(E6) = R3 = T3

We conclude that we have the following duality:

SU(3) theory with 6 flavors at the strong coupling q ! 1

,

weakly-coupled SU(2) gauge multiplet coupled to one doublet
and to the theory MN(E6) of Minahan-Nemeschansky.

(12.3.6)

We can give a few more checks to this duality. The first one concerns the current two-point
functions. Firstly, we computed the current two-point function for the SU(2) flavor symmetry in
(12.3.4). Then the whole E6 flavor currents, which include the SU(2) ones, should have the same

16There is a general theorem for any G stating that there is always a maximal subgroup whose Dynkin diagram is
given by the extended Dynkin diagram of G minus one node.
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Gauging

Free hyper  
(trinion) 

The trifundamental hypermultiplet consisting of N=1 chiral multiplets qa↵u for a,↵, u = 1, 2
played the central role in the analysis so far. Let us introduce a shorthand notation for it, by rep-
resenting it by a trivalent vertex with labels A, B, C as in Fig. 9.12, signifying the symmetries
SU(2)A, SU(2)B, SU(2)C , acting on the indices a, ↵, u respectively.

The ultraviolet curve for this system is given by a sphere with three punctures A, B, C, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.1)

where �(z) is given by the condition that the coe�cients of the double poles are given by µ2
A

, µ2
B

,
µ2
C

at each of the punctures A,B,C, as in (9.3.7).
Now, the SU(2) theory with four flavors can be obtained by taking two copies of trifundamen-

tals, and coupling an SU(2) gauge multiplet to them. We denote it by taking two trivalent vertices,
and connecting them by a line, as shown in Fig. 9.12. We put the exponentiated coupling q on the
connecting line.

Starting with this trivalent diagram, we can easily write down the Lagrangian of the theory.
The free parameters in the theory are the mass parameters µA,B,C,D and the UV coupling q. The
ultraviolet curve of this system is given by a sphere with four punctures A, B, C, D, and the
Seiberg-Witten curve is given by

⌃ : �2
� �(z) = 0 (9.5.2)

where �(z) is given by the condition that its residues are given by µ2
X

at each of the punctures
X = A,B,C,D as in (9.2.10). The triality of the SU(2) theory with four flavors, shown already
in Fig. 9.11, can be depicted in terms of the trivalent diagrams as in Fig. 9.13.

A

B C

D

q

A

C B

D

1/q

A

C

B

1−q

D

Figure 9.13: Triality, using trivalent diagrams.

This way, we can regard the trivalent diagram as a shorthand to represent the UV Lagrangian.
The Seiberg-Witten solution to this given UV Lagrangian theory is given just by replacing each
trivalent vertex with a three punctured sphere, and a connecting line with a connecting tube. This
is a surprisingly concise method to obtain the Seiberg-Witten solutions to N=2 gauge theories.
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S-duality looks like  
crossing equation!

As before, we can rescale v = xt and write the curve as
PN

`=1 �
(3)
k` (t)x

k(N�`) = 0, with the curve coe�cients

(see (A.1) for the definition of the Casimirs) �(3)
0 = 1 and

�
(3)
k` (t) = (�1)`

c(`,k)L t� c(`,k)R

tk`(t� 1)
for ` = 1, . . . , N . (2.8)

The above coe�cients can be directly obtained by taking the limit q ! 0 in (2.5) and setting

uk`(q = 0) �! (�1)`+1 c(`,k)R . (2.9)

The UV curves corresponding to the free trinion and to the SCQCD theories are depicted in figure 2. They are

three and respectively four punctured5 spheres with the punctures at t = 0 and t = 1 being full punctures �,

while those at t = 1 and t = q are simple punctures •, see [28].

Figure 2: The UV curves of the trinion and of the SCQCDk theories. They are 3, respectively 4-punctured
spheres. The full punctures are depicted by � and placed at t = 0 and t = 1, while the simple punctures • are
at t = 1 and at t = q.

Gaiotto Shifts in x for k = 1. Due to the orbifold relation (2.2), we are allowed to shift the variable x for

k = 1, but not for k > 1. This shift is the consequence of the additional U(1) degrees of freedom that are

present for k = 1 but, as we shall see more in detail later, disappear for k > 1. For k = 1, if we go from an

equation
PN

i=0 x
i
�i to

PN
i=0 x

i
�
0
i by making the tranformation x ! x� �1, then we find

�
0
` =

NX

j=N�`

✓
j

N � `

◆
�N�j(��1)

j+i�N =
X̀

j=0

✓
N � j

N � `

◆
�j(��1)

`�j
. (2.10)

We remind that �0 = 1 before and after the transformation. It is clear that the shift leaves the 2-form

⌦2 = d�SW = dx ^ dt unchanged, however the structure of the poles of �SW on the various sheets of the curve

does change, see [28]. If we put the shift parameter  equal to 1
N , then the coe�cient �0

1 vanishes - the resulting

curve is known as the Gaiotto curve. Let us denote the curve coe�cients for the Gaiotto curve by �̃
(n)
` . As

we shall review later, their expansion around the poles in t gives the charges of the WN algebra. One easily

5The UV curves are characterized by the meromorphic di↵erentials �
(n)
s that have only poles and no branch cuts. The additional

punctures F discussed in [28] will not be relevant for our purposes here.
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From the curves to the 2D CFT

 The symmetry algebra that underlies the 2D CFT = WkN algebra

The reps are standard reps of the WkN algebra

Obtain them from the N=2 SU(kN) after replacing:

Comparisons with the curves. We refer to appendix D for the computations of the W2 and W3 blocks

relevant for the comparison with the curve coe�cients and to [43] for an overview of the techniques needed for

these computations.

For the stress-energy tensor, we compute hhT (t) ii3 in (109) and hhT (t) ii4 to quadratic order in q in (116).

Comparing them with �̃
(n)
2 = �

(n)
2 �

N�1
2N (�(n)

1 )2, with the �
(n)
s from (6),(9), leads to a perfect agreement if one

sets the Coulomb branch parameter u2 to be equal to11

u2(q) =� a(2) +
q

ã(2)

"
�

c(2)L c(2)R

2
+

(N � 1) a(1)(ML c(2)R + c(2)L MR)

2N
� a(2)

⇣
N � 1

N
MLMR +

c(2)L

2
+

c(2)R

2

⌘

+
(N � 1) a(1) a(2)(ML +MR)

2N
+ a(2)

⇣a(2)

2
�

N � 1

2N
(a(1))2

⌘#
+O(q2) . (58)

Similarly, hhW3(t) ii3 is to be found in (120) and hhW3(t) ii4 can be computed to linear order in q with the

tools provided in appendix D.3. We compare them with �̃
(n)
3 , where

�̃
(n)
3 = �

(n)
3 �

(N � 2)

N
�
(n)
1 �

(n)
2 +

(N � 2)(N � 1)

3N2
(�(n)

1 )3 . (59)

The comparison works perfectly if we use the parameter identification of section 3.2 and if we express u3 as a

function of q, of the a(s) and of the mass parameters, just like we did for u2 in (58). One can even perform the

comparison for W4, see [44] for the commutation relations, but the computations become very tedious and we

omit them.

4 The AGT correspondence for the Sk theories.

Having reviewed in the last section some essential elements of the AGT correspondence, we can now apply them

to the Sk theories. The main principle guiding us is the observation that the class Sk curves for SU(N) can be

obtained from the N = 2 S curves for SU(Nk).

In order to see that, we introduce a map that takes the SU(Nk) curve and sets the mass/Coulomb parameters

to special values. Let us write this map as ⇡N,k and define its action on the SU(Nk) masses and Coulomb

parameters as follows

m
SU(Nk)
L, j+Ns 7�! mL, j e

2⇡i
k s

, m
SU(Nk)
R, j+Ns 7�! mR, j e

2⇡i
k s

, a
SU(Nk)
j+Ns 7�! aj e

2⇡i
k s

, (60)

m
SU(Nk)
j+Ns 7�! mj e

2⇡i
k s

a
SU(Nk)
j+Ns 7�! aj e

2⇡i
k s (61)

where the indices run as j = 1, . . . , N , s = 0, . . . , k� 1. The parameters on the right hand side of (60) are those

of the class Sk SU(N) theory. Since
Qk�1

s=0

�
v � m e

2⇡i
k s

�
= v

k
� m

k, it is clear from the curve equations (3)

and (8) that ⇡N,k maps the N = 2 SU(Nk) curve with k = 1 to the N = 1 Sk SU(N) curve. Furthermore, it is

11Observe that the transition from the SCQCD curve to the free trinion one makes us set ai = mR, i, which puts u`(q = 0) =

(�1)`+1 c
(`)
R , see (10), (56) and (58).
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Figure 4: This figure depicts the three and four point W-blocks. Using conformal symmetry, for three points,
we set z1 = Œ, z2 = 1 and z3 = 0, while for four points, we put z1 = Œ, z2 = 1, z3 = q and z4 = 0. The dashed
lines indicate descendant fields.

where a = (a1, . . . , aN ) and Y = {Y1, . . . , YN } is a set of N Young diagrams and the building blocks of Zinst

are defined in appendix E. The partition function is related to the W-blocks as

Zinst = BU(1)Bw(w1, w2, w3, w4|q) . (43)

We remark that to relate the CFT data to the 4D Nekrasov partition functions, one should rescale all parameters
with dimension of mass as m æ

mÔ
‘1‘2

and also replace Q æ
‘Ô

‘1‘2
.

The WN algebra charges wi are obtained by using the parametrization for ↵i in section 3.2 and using the
identities eqs. (23) and (24). The U(1) contribution, the 4-point block BU(1), is given by the formula (103)
derived in appendix D.1

BU(1) = (1 ≠ q)p2p3 = (1 ≠ q)
(ML≠a(1))(MR≠a(1) ≠N‘)

N‘1‘2 (44)

with the charges p2 = ≠i
ML≠a(1)
Ô

N‘1‘2
and p3 = i

MR≠a(1) ≠N‘Ô
N‘1‘2

(compare with (56)). In the above, we have used
qN

i=1 ai = a(1), see (33).

3.4 Comparisons of the curves with the blocks

We now want to compare the curve coe�cients „¸ with the WN blocks, for three and for four points. In order
to connect the blocks with the curve, we need to introduce yet another object, namely the 3-point W-block with
the insertion of an arbitrary current J(t) at point t. We write it as

�12w(J(t); Y) def= È V1(Œ)V2(1)J(t) (W≠YVw) (0) Í

È V1(Œ)V2(1)Vw(0) Í
. (45)

The numerator of the above quantity is strictly speaking a 4-point function, but since J(t) is a symmetry current
and not an arbitrary object, the dependence of t can be obtained by expanding J(t) in modes and using the
blocks “12w(Y). Thus, we refer to �12w(J(t); Y) as a 3-point block with an insertion of a current.

Armed with that definition, we define the weighted current correlation functions ÈÈ J(t) ÍÍ as the following
ratio of blocks:

ÈÈ J(t) ÍÍn
def= n-point W-block with insertion of J(t)

n-point W-block , (46)
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conservative approach - if such a relation exists, then the SW curve of the Sk theories knows about it and will

illuminate the path leading to the symmetry algebra/representations underlying the 2D CFT. Following the

N = 2 class S paradigm [10,32,33], we first compare the meromorphic di↵erentials �` of the SW curves derived

in [28] with the weighted current correlation functions3 hh J`(t) ii computed on the CFT side. Specifically, the

identification works in the semi-classical limit ✏ ! 0

lim
✏1,2!0

hh J`(t) iin = �
(n)
` (t)

where ✏ = ✏1 + ✏2, with the ✏i being the ⌦-background deformation parameters. Since the CFT primary

fields enter in the computation of hh J`(t) ii, the above identification dictates to us their quantum numbers. In

particular, we can learn the form of the CFT representations that the primary fields live in.

We discover that the spectral curves of the 4D SU(N) gauge theories of class Sk can be reproduced from

the 2D CFT weighted current correlation functions of the WNk algebra with non-unitary primary fields. This

is based on the observation that the SW curves of SU(N) class Sk theories can be obtained from the N = 2

SU(Nk) curves by tuning the mass/Coulomb branch parameters appropriately. On the CFT side, one then

simply computes the conformal/W-blocks for WNk with Nk = 2, 3, 4, . . . and sets the parameters to appropriate

values. In addition, we use the known AGT correspondence for theN = 2 SU(Nk) theories to derive a conjecture

for the N = 1 class Sk instanton partition functions.

This article is structured as follows. We begin in section 2 by reviewing the construction of the SW curves

for the class Sk theories. We introduce some of their properties and discuss the weak coupling limit and the

Gaiotto curve. The next section 3 is concerned with recapitulating some aspects of the AGT correspondence

that are essential for our work such as the identifications of the parameters on both sides of the duality and

the relationships between the 2D CFT blocks and the 4D instanton partition functions. Since this is a review

section, the readers familiar with the AGT correspondence can move directly to the next section 4 in which we

present our main results concerning the structures of the CFT representations, the comparisons with the Sk SW

curves and the investigation of the (orbifold) Nekrasov instanton partition functions. We conclude in section 5

where we also overview some potential directions of future research that our article suggests. Most technical

computations as well as bulky formulas are stored in the appendices.

2 The curves

The starting point of our work is the SW curves. By comparing them to the 2D CFT 3 and 4-point blocks, we

will discover the algebra and the representations that underly the 2D theory we are looking for. In this section

3We define the hh J`(t) ii in section 3.4. For now, it su�ces to point out that for the simplest case of three fields they can be
computed as a ratio of correlation function

hh J`(t) ii3 =
h J`(t)V1(x1)V2(x2)V3(x3) i

hV1(x1)V2(x2)V3(x3) i
,

with the Vi being primary fields.
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2D Conformal Blocks = Instanton P.F.

We have the reps of the WkN algebra for ε1,2 = 0 (from the curve)

Demand: the structure of the multiplet (null states) not change ε1,2 ≠ 0

The blocks for ε1,2 ≠ 0: proposal for the instanton partition functions:

If w and c turn on Q ≠ 0 as in Liouville/Toda,                                                   

then we obtain them from the N=2 SU(kN) after replacing:

Of course, it is possible to consider the cases in which V1 or V2 are not primary, but we do not need them

here.

• A similar object to � is the vertex

�̄w;34(Y) =
hW�YVw |V3(1)V4(0)i

hVw |V3(1)V4(0)i
, (42)

i.e. the normalized scalar product of a state with the product of two primary fields inserted at 1 and at

0. While for the Virasoro case, there is no need to introduce the �̄ since �̄�;34 = �43� (see the recursion

relations (111)), this is not true anymore for the general WN algebra.

One can depict the 3 and 4-point blocks graphically as sketched in 4.

Figure 4: This figure depicts the three and four point W-blocks. Using conformal symmetry, for three points,
we set z1 = 1, z2 = 1 and z3 = 0, while for four points, we put z1 = 1, z2 = 1, z3 = q and z4 = 0. The dashed
lines indicate descendant fields.

The instanton partition functions and the blocks. The AGT correspondence identifies the Nekrasov

instanton partition function Zinst to the W-blocks, after an appropriate factor has been removed. In the case

that we are dealing with, namely for the N = 2 SU(N) SCQCD with NF = 2N , the instanton partition function

reads

Zinst =
X

Y

q
|Y|

Zvec(a,Y)
NY

i=1

Zantifund(a,Y;�mL, i)
NY

j=1

Zfund(a,Y;mR, j) , (43)

where a = (a1, . . . , aN ) and Y = {Y1, . . . , YN} is a set of N Young diagrams and the building blocks of Zinst

are defined in appendix E. The partition function is related to the W-blocks as

Zinst = BU(1)Bw(w1,w2,w3,w4|q) . (44)

Zinst = Bw(w1,w2,w3,w4|q) . (45)

We remark that to relate the CFT data to the 4D Nekrasov partition functions, one should rescale all parameters

with dimension of mass as m !
mp
✏1✏2

and also replace Q !
✏p
✏1✏2

.
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Comparisons with the curves. We refer to appendix D for the computations of the W2 and W3 blocks

relevant for the comparison with the curve coe�cients and to [43] for an overview of the techniques needed for

these computations.

For the stress-energy tensor, we compute hhT (t) ii3 in (109) and hhT (t) ii4 to quadratic order in q in (116).

Comparing them with �̃
(n)
2 = �

(n)
2 �

N�1
2N (�(n)

1 )2, with the �
(n)
s from (6),(9), leads to a perfect agreement if one

sets the Coulomb branch parameter u2 to be equal to11

u2(q) =� a(2) +
q

ã(2)

"
�

c(2)L c(2)R

2
+

(N � 1) a(1)(ML c(2)R + c(2)L MR)

2N
� a(2)

⇣
N � 1

N
MLMR +

c(2)L

2
+

c(2)R

2

⌘

+
(N � 1) a(1) a(2)(ML +MR)

2N
+ a(2)

⇣a(2)

2
�

N � 1

2N
(a(1))2

⌘#
+O(q2) . (58)

Similarly, hhW3(t) ii3 is to be found in (120) and hhW3(t) ii4 can be computed to linear order in q with the

tools provided in appendix D.3. We compare them with �̃
(n)
3 , where

�̃
(n)
3 = �

(n)
3 �

(N � 2)

N
�
(n)
1 �

(n)
2 +

(N � 2)(N � 1)

3N2
(�(n)

1 )3 . (59)

The comparison works perfectly if we use the parameter identification of section 3.2 and if we express u3 as a

function of q, of the a(s) and of the mass parameters, just like we did for u2 in (58). One can even perform the

comparison for W4, see [44] for the commutation relations, but the computations become very tedious and we

omit them.

4 The AGT correspondence for the Sk theories.

Having reviewed in the last section some essential elements of the AGT correspondence, we can now apply them

to the Sk theories. The main principle guiding us is the observation that the class Sk curves for SU(N) can be

obtained from the N = 2 S curves for SU(Nk).

In order to see that, we introduce a map that takes the SU(Nk) curve and sets the mass/Coulomb parameters

to special values. Let us write this map as ⇡N,k and define its action on the SU(Nk) masses and Coulomb

parameters as follows

m
SU(Nk)
L, j+Ns 7�! mL, j e

2⇡i
k s

, m
SU(Nk)
R, j+Ns 7�! mR, j e

2⇡i
k s

, a
SU(Nk)
j+Ns 7�! aj e

2⇡i
k s

, (60)

m
SU(Nk)
j+Ns 7�! mj e

2⇡i
k s

a
SU(Nk)
j+Ns 7�! aj e

2⇡i
k s (61)

where the indices run as j = 1, . . . , N , s = 0, . . . , k� 1. The parameters on the right hand side of (60) are those

of the class Sk SU(N) theory. Since
Qk�1

s=0

�
v � m e

2⇡i
k s

�
= v

k
� m

k, it is clear from the curve equations (3)

and (8) that ⇡N,k maps the N = 2 SU(Nk) curve with k = 1 to the N = 1 Sk SU(N) curve. Furthermore, it is

11Observe that the transition from the SCQCD curve to the free trinion one makes us set ai = mR, i, which puts u`(q = 0) =

(�1)`+1 c
(`)
R , see (10), (56) and (58).
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Instantons from D branes

[Witten 1995, Douglas 1995, Dorey 1999, ...]

In the following sections, we shall pay scant attention to the fermionic zero modes,
simply stating the fraction of supersymmetry that is preserved in different theories. In

many cases this is sufficient to fix the fermions completely: the beauty of supersymme-
try is that we rarely have to talk about fermions!

1.4 The ADHM Construction

In this section we describe a powerful method to solve the self-dual Yang-Mills equa-
tions F = ⋆F due to Atiyah, Drinfeld, Hitchin and Manin and known as the ADHM
construction [26]. This will also give us a new way to understand the moduli space Ik,N

and its metric. The natural place to view the ADHM construction is twistor space.
But, for a physicist, the simplest place to view the ADHM construction is type II string

theory [27, 28, 29]. We’ll do things the simple way.

The brane construction is another place

N coincident Dp−branes

k D(p−4)−branes

Figure 1: Dp-branes as instantons.

where it’s useful to consider Yang-Mills instan-
tons embedded as solitons in a p + 1 dimensional

theory with p ≥ 3. With this in mind, let’s
consider a configuration of N Dp-branes, with k
D(p−4)-branes in type II string theory (Type IIB

for p odd; type IIA for p even). A typical con-
figuration is drawn in figure 1. We place all N

Dp-branes on top of each other so that, at low en-
ergies, their worldvolume dynamics is described

by

d = p + 1 U(N) Super Yang-Mills with 16 Supercharges

For example, if p = 3 we have the familiar N = 4 theory in d = 3 + 1 dimensions. The
worldvolume theory of the Dp-branes also includes couplings to the various RR-fields

in the bulk. This includes the term

Tr

∫

Dp

dp+1x Cp−3 ∧ F ∧ F (1.32)

where F is the U(N) gauge field, and Cp−3 is the RR-form that couples to D(p − 4)-

branes. The importance of this term lies in the fact that it relates instantons on the
Dp-branes to D(p− 4) branes. To see this, note that an instanton with non-zero F ∧F
gives rise to a source (8π2/e2)

∫

dp−3x Cp−3 for the RR-form. This is the same source

induced by a D(p− 4)-brane. If you’re careful in comparing the factors of 2 and π and
such like, it’s not hard to show that the instanton has precisely the mass and charge
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The study of supersymmetric gauge theories was revolutionized by Seiberg and collaborators in the nineties

through the use of holomorphicity, symmetries as well as asymptotics (weak coupling behavior) [1]. Building

up on these developments, Seiberg and Witten realized [2,3] that by adding electromagnetic duality (S-duality)

to the game, one can obtain the low energy BPS spectrum of N = 2 gauge theories by deriving a holomorphic

algebraic curve, the so-called Seiberg-Witten (SW) curve, that incorporates all the symmetries (including S-

duality) and weak coupling behavior. Soon after, Intriligator and Seiberg [4] obtained the first examples of
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The Dp-D(p-4) strings give the NxK I, J† 
and the D(p-4)-D(p-4) the KxK B1, B2 

auxiliary matrices of the ADHM 
construction

for constant n⇥ k matrices I† and J . Next, we assume that the solutions are normalised:

Z
d4
x †(x) (x) = ⇡

2
k where  = �i ��|�,�i+ ++|+,+i . (1.15)

Given this, we define the k ⇥ k complex matrices

Ba :=
1

⇡2

Z
d4
x za 

†(x) (x) , a = 1, 2 . (1.16)

Using the properties of the solutions  ±±, one can then derive the following identities

satisfied by the matrices B1, B2, I and J :

µ
C := [B1, B2] + IJ = 0 ,

µ
R := [B1, B

†

1] + [B2, B
†

2] + II
† � J

†
J = 0 . (1.17)

First, we observe that there is a U(k) symmetry acting on the solutions  !  h�1 with

h 2 U(k). Under this symmetry, the matrices transform as

Ba ! hBah
�1

, I ! hI , J ! Jh
�1

. (1.18)

Solutions that differ by U(k) arise from the same instanton solution. Hence, U(k) is

a gauge invariance and we call it the reciprocal gauge group. Hence, to establish a

one-to-one correspondence between instanton solutions and the matrices (B1, B2, I, J),

we must divide the space of solutions to (1.17) by U(k). This is precisely the ADHM

description of the moduli space of instantons!

Mn,k =
�
B1, B2, I, J

�� µR = 0, µ
C = 0

 
/ U(k) . (1.19)

A quick calculation provides the dimension of the tangent space at a sufficiently generic

point in the moduli space. The matrices contain 4k2 + 4kn real degrees of freedom while

the equations give 3k2 real constraints. The U(k) transformations fix an additional k2 real

degrees of freedom. Thus, at the points where the above reasoning holds, the dimension
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Abstract

This is the first in a series of papers on the search for the 2D CFT description of a large class of 4D N = 1
gauge theories. Here, we identify the 2D CFT symmetry algebra and its representations, namely the conformal
blocks of the Virasoro/W-algebra, that underlie the 2D theory and reproduce the Seiberg-Witten curves of the
N = 1 gauge theories. We find that the blocks corresponding to the SU(N) Sk gauge theories involve fields
in certain non-unitary representations of the WkN algebra. These conformal blocks give a prediction for the
instanton partition functions of the 4D N = 1 SCFTs of class Sk.
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Z(World-Vol. theory of D(p� 4)) (0.2)

where a, ȧ = 1, 2 are indices of Spin(4) ⇠= SU(2)a ⇥ SU(2)ȧ and the subscript ±
1
2 de-

notes the representation under the U(1)56 which acts as the Lorentz group of the D1-brane
worldvolume theory.

The SU(2)a ⇥ SU(2)ȧ rotates the two planes of the C2 parametrised by Z710, Z89

into one another. The Cartans of su(2)a, su(2)ȧ J
R
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, J

R

R
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generators J710 and J89 of U(1) rotations in their respective planes as

J
R

L =
1

2
(J710 � J89) , J

R

R =
1

2
(J710 + J89) , (3.15)

which are defined such that lower a = 1, 2 have J
R

L
= +1

2 ,�
1
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Hence, the supercharges which survive the orbifold action are Q
↵1̇
�

1
2

for � = +1 or Q
↵̇2̇
+ 1

2
for

� = �1. We will use one of them to compute the SCI in the next section.

4 4d N = 2⇤ Instantons from a 2d superconformal index computation

In this section we warm up for our main calculation that we perform in the next section by
reproducing the well known instanton partition function of N = 2⇤ via a 2d superconformal
index (SCI) calculation. We parameterise our partition function and use a supercharge
that survives the orbifold projection (3.16) (3.17) so that we are well prepared for the next
section.

As discussed in the introduction, since the class Sk gauge theories of interest may be
realised within Type II string theory as a theory living on the worldvolume of Dp branes
with coordinates X1

, . . . , X
p+1, one of the most important tools we plan to use in this paper

is the relationship between the ADHM construction of instantons [36] and D(p� 4) branes
[37–41] in other words

|K| (A)SD instantons in a Dp-brane ⌘ |K| (anti-)D(p� 4)-branes . (4.1)

(Anti-)Self-dual ((A)SD) instantons are solutions to the (A)SD Yang-Mills equations F =

± ? F . The instanton number K = 1
4⇡2

R
M4

trF ^ F 2 Z is a topological invariant. For
SD instantons F = + ? F K � 0 while for ASD instantons F = � ? F K  0. Since
parity maps K ! �K we can choose to focus only on ASD instantons, corresponding to
� = signK = �1. The moduli space of ASD instantons for the gauge theory living on
the Dp branes, MDp

K
, is then isomorphic to the Higgs branch of the theory living on the

D(p� 4) branes

M
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K
⇠= M

K D(p� 4)
Higgs
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�
X
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/U(K) (4.2)
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+ 1
2
, Q

↵̇a

�
1
2

⌘
. (3.17)

Hence, the supercharges which survive the orbifold action are Q
↵1̇
�

1
2

for � = +1 or Q
↵̇2̇
+ 1

2
for

� = �1. We will use one of them to compute the SCI in the next section.

4 4d N = 2⇤ Instantons from a 2d superconformal index computation

In this section we warm up for our main calculation that we perform in the next section by
reproducing the well known instanton partition function of N = 2⇤ via a 2d superconformal
index (SCI) calculation. We parameterise our partition function and use a supercharge
that survives the orbifold projection (3.16) (3.17) so that we are well prepared for the next
section.

As discussed in the introduction, since the class Sk gauge theories of interest may be
realised within Type II string theory as a theory living on the worldvolume of Dp branes
with coordinates X1

, . . . , X
p+1, one of the most important tools we plan to use in this paper

is the relationship between the ADHM construction of instantons [36] and D(p� 4) branes
[37–41] in other words

|K| (A)SD instantons in a Dp-brane ⌘ |K| (anti-)D(p� 4)-branes . (4.1)

(Anti-)Self-dual ((A)SD) instantons are solutions to the (A)SD Yang-Mills equations F =

± ? F . The instanton number K = 1
4⇡2

R
M4

trF ^ F 2 Z is a topological invariant. For
SD instantons F = + ? F K � 0 while for ASD instantons F = � ? F K  0. Since
parity maps K ! �K we can choose to focus only on ASD instantons, corresponding to
� = signK = �1. The moduli space of ASD instantons for the gauge theory living on
the Dp branes, MDp

K
, is then isomorphic to the Higgs branch of the theory living on the

D(p� 4) branes

M
Dp

K
⇠= M

K D(p� 4)
Higgs

=
n
X

?

Dp = 0,VD(p�4) = 0
o
/U(K) (4.2)

– 11 –



Instanton Partition Function from 2D SCI

[Gadde, Gukov, Putrov]

Instantons from D branes

[Witten 1995, Douglas 1995, Dorey 1999, ...]
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simply stating the fraction of supersymmetry that is preserved in different theories. In
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In this section we describe a powerful method to solve the self-dual Yang-Mills equa-
tions F = ⋆F due to Atiyah, Drinfeld, Hitchin and Manin and known as the ADHM
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in the bulk. This includes the term
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dp+1x Cp−3 ∧ F ∧ F (1.32)

where F is the U(N) gauge field, and Cp−3 is the RR-form that couples to D(p − 4)-

branes. The importance of this term lies in the fact that it relates instantons on the
Dp-branes to D(p− 4) branes. To see this, note that an instanton with non-zero F ∧F
gives rise to a source (8π2/e2)

∫

dp−3x Cp−3 for the RR-form. This is the same source

induced by a D(p− 4)-brane. If you’re careful in comparing the factors of 2 and π and
such like, it’s not hard to show that the instanton has precisely the mass and charge
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In the following sections, we shall pay scant attention to the fermionic zero modes,
simply stating the fraction of supersymmetry that is preserved in different theories. In

many cases this is sufficient to fix the fermions completely: the beauty of supersymme-
try is that we rarely have to talk about fermions!

1.4 The ADHM Construction

In this section we describe a powerful method to solve the self-dual Yang-Mills equa-
tions F = ⋆F due to Atiyah, Drinfeld, Hitchin and Manin and known as the ADHM
construction [26]. This will also give us a new way to understand the moduli space Ik,N

and its metric. The natural place to view the ADHM construction is twistor space.
But, for a physicist, the simplest place to view the ADHM construction is type II string

theory [27, 28, 29]. We’ll do things the simple way.

The brane construction is another place

N coincident Dp−branes

k D(p−4)−branes

Figure 1: Dp-branes as instantons.
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The study of supersymmetric gauge theories was revolutionized by Seiberg and collaborators in the nineties

through the use of holomorphicity, symmetries as well as asymptotics (weak coupling behavior) [1]. Building

up on these developments, Seiberg and Witten realized [2,3] that by adding electromagnetic duality (S-duality)

to the game, one can obtain the low energy BPS spectrum of N = 2 gauge theories by deriving a holomorphic

algebraic curve, the so-called Seiberg-Witten (SW) curve, that incorporates all the symmetries (including S-

duality) and weak coupling behavior. Soon after, Intriligator and Seiberg [4] obtained the first examples of
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N D5 – – – – – – · · · ·

ZM · · · · · · ⇥ ⇥ ⇥ ⇥

Zk · · · · ⇥ ⇥ · ⇥ ⇥ ·

K D1 · · · · – – · · · ·

Table 1: Type IIB setup engineering a 6d uplift of the 4d theories we are interested in.

[Benini,Eager,Hori,Tachikawa]

Instanton’s index =  
2D SCI = flavoured elliptic genius
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For p=5 and when  
the D1s wrapping a T2:

2D SCI is very well studied, very easy to compute!

of the 2D gauge theory living on the D1s
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where Vp�3 = FF̄ + 1
2D

2 is the scalar potential of the (p� 3)d next to maximal supersym-
metric gauge theory living on the worldvolume of the D(p � 4) branes. The vanishing of
F - and D- terms translate into the ADHM constraints [42, 43]. When supersymmetry is
present the Higgs branch is protected from quantum corrections and the fluctuation deter-
minants in the instanton measure cancel. The action of the theory on the D(p� 4) branes
is the equivalent to the instanton action, hence the partition function of the theory of K
D(p � 4) branes is then nothing else but the partition function of K instantons (up to a
possible overall factor Zextra) for the gauge theory living on the Dp branes
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The factor Zextra is often present due to the fact that the theory on the D(p � 4) branes
provides the UV completion of the ADHM sigma model [51, 81] and therefore it may
contain extra degrees of freedom which do not appear in the ADHM construction. Those
extra degrees of freedom generally decouple from the the ADHM degrees of freedom and
the partition function factorises as above. The case that interests us is the case p = 5, i.e.
D5 branes on R4

⇥ T
2, thus we have to compute the partition function of the 2d gauge

theory living on the world volume D1 branes wrapping a T
2. This partition function is the

2d superconformal index a.k.a. flavoured elliptic genus.

4.1 D1 worldvolume theory

Before discussing the supersymmetric index we must first discuss the worldvolume theory
living on the D1 branes in the low energy limit in the presence of the D5s.
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Nekrasov’s Instantons: deformed Witten index 
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Figure 2: 2d quiver in N = (4, 4) notation. Solid lines denote hypermultiplets, the circular
node denotes the U(K) vector multiplet.

V and hypermultiplet H, which can be thought of as the reduction to 2d of a 4d N = 2

vector multiplet and hypermultiplet respectively. V contains a 2d gauge field A±, four
scalars degrees of freedom Y

aȧ, right moving fermions �↵̇a+ 1
2

and left moving fermions ⇠↵̇ȧ� 1
2
.

H contains scalars X↵↵̇, right moving fermions ⇠↵ȧ
+ 1

2

and left moving fermions �↵a
�

1
2

.

D1-D5 Open D1-D5 strings preserves N = (4, 4) supersymmetry and gives rise to a
N = (4, 4) hypermultiplet U in the bifundamental representation of U(K) ⇥ SU(N). U

contains two complex scalars �↵̇ and their conjugates �†
↵̇
, and fermions �ȧ

+ 1
2

,  a

�
1
2

plus their

conjugates �†

+ 1
2 ȧ

,  †

�
1
2a

. Finally the field content may be conveniently summarised in the
quiver diagram of Figure 2.

3.2 The 2d index calculation

Why we are allowed to do it?

• We calculate the Witten/supersymmetric index which is independent of the coupling
constant

• We send the coupling constant of the 2D theory to zero and we have a free conformal
theory

• We do radial quantization

• The index is the trace of all the operators in the radially quantized theory on R
2

We now turn towards computing the supersymmetric index a.k.a flavoured elliptic genus
partition function for our N = (4, 4) theory. This index may be viewed either as a path
integral of the theory on T

2 in which case it may be computed from localisation techniques
[58, 59] or, since our theory admits a free field limit, as a counting problem on T

2 in the
radial quantisation in which case it may be computed via ‘letter counting’ [49–54, 60]. We
choose the latter representation. Furthermore we also choose to view our N = (4, 4) theory
as an N = (0, 2) theory with additional flavour symmetry. We choose the N = (0, 2)

supercharges to be
Q+ 1

2
:= Q

2̇1̇
+ 1

2
, eQ+ 1

2
:= Q

1̇2̇
+ 1

2
. (3.4)
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2D theory with (4,4) susy

First we practice without the orbifolds:



“Orbifold” the 2D SCI  of mass deformed N=4 SYM with one, say 
the ZM orbifold: we get M-strings on a transverse orbifold                               

=  instantons of an SU(N)M quiver when reduce down to 5D/4D

Instantons with an orbifold

Further “Orbifold” the 2D SCI with the Zk orbifold we get something 

new that should correspond to instantons of class Sk,                     

the rational, trigonometric and elliptic uplift.

2D theory with (0,4) susy

2D theory with (0,2) susy
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1 Introduction

The study of supersymmetric gauge theories was revolutionized by Seiberg and collaborators in the nineties

through the use of holomorphicity, symmetries as well as asymptotics (weak coupling behavior) [?]. Building

up on these developments, Seiberg and Witten realized [?,?] that by adding electromagnetic duality (S-duality)

to the game, one can obtain the low energy BPS spectrum of N = 2 gauge theories by deriving a holomorphic

algebraic curve, the so-called Seiberg-Witten (SW) curve, that incorporates all the symmetries (including S-

duality) and weak coupling behavior. Soon after, Intriligator and Seiberg [?] obtained the first examples of

algebraic curves that compute the low energy coupling constants in the abelian Coulomb phase for N = 1

theories.

In the last decade, the most modern developments in the field are based on the deep connection of S-duality

in 4D gauge theory with 2D modular invariance. In the prototypical example of the maximally supersymmetric

N = 4 super Yang-Mills (SYM), the Montonen-Olive SL(2,Z) duality can be geometrically realized as the

modular group of a torus by compactifying the 6D (2, 0) SCFT on a torus [?]. Similarly, a large class of 4D

N = 2 superconformal field theories (SCFTs)s, referred to as class S [?,?], can be obtained via compactification

of (a twisted version of) the 6D (2, 0) SCFT on Riemann surfaces of genus g and with n punctures. The

parameter space of the exactly marginal gauge couplings is identified with the complex structure moduli space

of the Riemann surface. What is more, the partition function of the 4D N = 2 theories on a four sphere1 [?] are

equal to correlation functions of the 2D Liouville/Toda CFT on that Riemann surface [?,?], which is the core of

the celebrated AGT(W) correspondence. The 4D/2D interplay was originally discovered for the N = 2 class S

theories in [?] by studying the SW curves and realizing that they arise from the compactification of M5-branes

on Riemann surfaces decorated with punctures. See [?,?] for recent reviews.

Motivated by the above developments for N = 2 theories, we wish to explore how much mileage we can get

for theories with only N = 1 supersymmetry. We begin by recalling that it is not uncommon to find exactly

marginal couplings also in N = 1 supersymmetric theories [?, ?], with the AdS/CFT correspondence o↵ering

1Technically [?], on an ellipsoid with deformation parameter b2 = ✏1
✏2

, where the ✏i are the ⌦-background deformation parameters

entering the Nekrasov partition functions.

1
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N D5 – – – – – – · · · ·

ZM · · · · · · ⇥ ⇥ ⇥ ⇥

Zk · · · · ⇥ ⇥ · ⇥ ⇥ ·

K D1 · · · · – – · · · ·

Table 1: Type IIB setup engineering a 6d uplift of the 4d theories we are interested in.

M
Dp

K
⇠= M

K D(p� 4)
Higgs

=
�
B1, B2, I, J |µ

C = 0, µR = 0
 
/U(K) (4.3)

where Vp�3 = FF̄ + 1
2D

2 is the scalar potential of the (p� 3)d next to maximal supersym-
metric gauge theory living on the worldvolume of the D(p � 4) branes. The vanishing of
F - and D- terms translate into the ADHM constraints [42, 43]. When supersymmetry is
present the Higgs branch is protected from quantum corrections and the fluctuation deter-
minants in the instanton measure cancel. The action of the theory on the D(p� 4) branes
is the equivalent to the instanton action, hence the partition function of the theory of K
D(p � 4) branes is then nothing else but the partition function of K instantons (up to a
possible overall factor Zextra) for the gauge theory living on the Dp branes

Z
Dp

K-inst
(a, . . . ) =

Z

M
Dp
K,r

e
�Sinst(a,...,µ)dµ (4.4)

= Tr
H

Dp
K,r

(�1)F ea
i
Ji = ZextraZ

K D(p� 4)
Higgs

(a,m, . . . ) . (4.5)

Z
Dp

K-inst
(a,m, ✏1, ✏2) =

Z

M
Dp
K-inst

1 = Tr
M

Dp
K-inst

(�1)F e✏1JLe✏2JRe⇠ReaJGemJF (4.6)

/ Z
K D(p� 4)
Higgs

(a,m, . . . ) . (4.7)

Z
D5

K-inst(a,m, ✏1, ✏2) = Z
K D1

Higgs
(a,m, ✏1, ✏2) = I2D = Tr

M
K D1
Higgs

(�1)F e✏1JLe✏2JRe⇠ReaJGemJF

(4.8)

Z
D5

K-inst(a,m, ✏1, ✏2) = Z
K D1

Higgs
(a,m, ✏1, ✏2) = I2D = Tr

M
K D1
Higgs

(�1)F e✏1JLe✏2JRe⇠ReaJGemJF

(4.9)

Z
D5

K-inst(a,m, ✏1, ✏2) = I2D = Tr
M

K D1
Higgs

(�1)F e✏1JLe✏2JReaJGemJF (4.10)

The factor Zextra is often present due to the fact that the theory on the D(p � 4) branes
provides the UV completion of the ADHM sigma model [51, 81] and therefore it may
contain extra degrees of freedom which do not appear in the ADHM construction. Those
extra degrees of freedom generally decouple from the the ADHM degrees of freedom and
the partition function factorises as above. The case that interests us is the case p = 5, i.e.
D5 branes on R4

⇥ T
2, thus we have to compute the partition function of the 2d gauge

theory living on the world volume D1 branes wrapping a T
2. This partition function is the

2d superconformal index a.k.a. flavoured elliptic genus.

4.1 D1 worldvolume theory

Before discussing the supersymmetric index we must first discuss the worldvolume theory
living on the D1 branes in the low energy limit in the presence of the D5s.

– 12 –

Sk Instantons 



Instantons from D0 branes
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Figure 9: Left: Brane diagram describing a {K1, K2} Instanton configuration in N = 1
SCQCD2. The coloured wavy lines denote the various open string interactions. Right:
Quiver diagram for the worldvolume theory induced on the D1 branes in N = (0, 2) notation.
Dashed lines denote Fermi multiplets and arrowed lines denote (Anti-)Chiral multiplets.

0 1 2 3 4 5 6 7 8 9
AM�1 . . . . . – – – – –
N D3 – – – – . . . . . .
Ak�1 . . . . – – . – – .

K D(�1) . . . . . . . . . .

Figure 10: Type IIB setup obtained after performing T-duality on x6

is restored. Furthermore, even after the orbifold, the D2 world-volume theory still possess
a SO(4)0123 global symmetry which, prior to the orbifold, we interpreted as the SO(4) R-
symmetry group of N = (0, 4) supersymmetry . Secondly, the D2 world-volume theory is
now defined, not on S1

1 ⇥ S1
2
⇠= T2, but on the quotient space Mk = (S1

1 ⇥ S1
2) /Zk

1.

Does this still make sense as an supersymmetric index??

Let x7 + ix8 := z ⇠ z + !1 ⇠ z + !2 be the complex coordinate parametersing T2

with complex structure ⌧ = !2
!1
. Also, recall that the torus obtained as the quotient of C

by the lattice L(!1,!2) is isomorphic to that generated by L(c!1, c!2) where c 2 C \ {0}
is a constant. The orbifold imposes the extra identification z ⇠ e2⇡i/kz, this means that
we should also identify !1 ⇠ e2⇡i/k!1, !2 ⇠ e2⇡i/k!2, in terms of the complex structure
⌧ ⇠ e2⇡i/k⌧ ⇠ e�2⇡i/k⌧ , ⌧ k is thus an invariant under the orbifold. Following [33] we will
define an ”orbifold projected elliptic genus” by a projection on to states which survive the

1As described in [32], this quotient is well defined only for k = {2, 3, 4, 6}
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Orbifolding to Class Sk
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I We expect this to be equal to the integration over the moduli
space of {K1,K2, . . . ,Kk} instantons for this N = 1 theory

NS5NS5

N D4RN D4L N D4

K D0
K

NN N

Figure 5: Left: Brane diagram describing a {K} instanton configuration in N = 2 SU(N)
SCQCD. The wavy lines denote the various open string interactions. Right: Quiver diagram
for the worldvolume theory induced on the D2 branes in N = (0, 2) notation. Dashed lines
denote Fermi multiplets and arrowed lines denote (Anti-)Chiral multiplets.

the story is again reversed and we are left with a N = (0, 4) Fermi multiplet transforming
in the bifundamental of U(Kc)⇥ SU(Nc±1)

Then, to obtain the zero dimensional ADHM matrix model forN = 2 SCQCD one simply
takes the case of M = 2 and takes the decoupling limit for, say, the SU(Nc=2) gauge node
and then dimensionally reduces the 2d theory to 0d. From the point of view of the 2d theory
the decoupling limit amounts to simply setting K2 = 0. Hence, in total, the action of our
two dimensional quiver theory can be written as [15]

S = SVector + SFermi + SChiral + SW (4)

SVector = trK

Z
d2xd2✓

✓
1

8g2
V †V + ⌦†⌦

◆
(5)

SChiral =

Z
d2xd2✓ trK

⇣
�̃D��̃

† + �†D��
⌘
+

Z
d2xd2✓

⇣
Q̃D�Q

† +Q†D�Q
⌘

(6)

SFermi =

Z
d2xd2✓

⇣
P †P + P̃ P̃ †

⌘
(7)

SW =

Z
d2xd✓+

⇣
trK �̃⌦�+ . . .

⌘
(8)

where the subscripts denote the collection into the various N = (0, 4) multiplets and W
is the superpotential which is only partly fixed by N = (0, 4) supersymmetry and D� :=
D0 �D1 = @0 � @1 � iV .

The the theory can be summarised by the quiver of Figure 2 and the field content is
summarised in Table 1.1.
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Summary

We constructed spectral curves for N=1 theories in class Sk

The curves: 2D symmetry algebra (WkN) and representations

Conformal Blocks         Instanton partition function 

Instanton partition function from Dp/D(p-4) on orbifold



Future

Compute one, two instantons with standard QFT techniques

Go away from the orbifold point 

Other N=1 theories

The perturbative part? N=1 partition function on S4!

Get the AGTk from (1,0) 6D à la Cordova and Jafferis

[to appear Bourton, EP]
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Figure 7: Left: Ã1 ⇥ Ã1 quiver. Middle: The quiver may opened up in the ` direction by
taking the decoupling limit q4d,2i = 0. The resulting theory is SCQCD2. Right: Taking a
further decoupling limit q4d,n2 = 0 yields N = 1 SQCD with Nf = 3N theory.

in the presence of a half-BPS defect. We further observed that class Sk instanton partition
functions can be obtained from the 4d N = 2 theories in class S and their 5d and 6d uplifts:
the 5d N = 1 necklace quiver NN,` and the 6d (1, 0) SCFT T

N

`
(without the defect) via

imposing the ‘orbifold condition’ on the Coulomb moduli and mass parameters as

Z
Sk,SU(N)
inst

(aA) = Z
S,SU(kN)
inst

(aA) with aA ! aAe
2⇡ij/k (6.1)

with A = jA being an SU(kN) fundamental index, A = 1, . . . , N an SU(N) index and
j = 1, . . . , k counting the number of the mirror images. It is worthwhile to remark that this
type of property also holds in the case of Z` orbifold daughters of SU(`N) N = 4 SYM
theory, which are the circular N = 2 quivers with gauge group SU(N)`. The partition
function of mass deformed N = 4 SYM, after imposing the orbifold condition on the
Coulomb moduli and mass parameters as above, gives the instanton partition function of
the circular N = 2 quiver at the orbifold point,

Z
N=2SU(N)`

inst
(aA) = Z

N=2⇤ SU(`N)
inst

(aL) with aL = anA (6.2)

where L = nA = 1, . . . , `N , A = 1, . . . , N and n = 1, . . . `. This fact was also recently
observed in [108]. This type of simplicity for theories obtained via orbifold constuctions
has been long anticipated [45, 49, 109]8.

It is important to stress that our result for the class Sk instanton partition functions
match with the prediction of [33] coming from a calculation of a completely different type.
In [33] based on the anticipation of an AGT type correspondence for theories in class Sk,
and the comparison of the spectral curves of theories in class Sk with 2d CFT blocks, the 2d
CFT symmetry algebra and its representations that should underlie AGTk were identified.
These conformal blocks led to a prediction for the instanton partition functions of the 4d
N = 1 SCFTs of class Sk which we precisely reproduce here. Further work in this direction
is definitely worthwhile.

N = 1 SQCD with Nf = 3N can be obtained from class Sk, from the Z2 ⇥ Z2 theory
depicted in Figure 7 in the limit where three of the coupling constants go to zero as shown

8See also [110] for similar simplicity for N = 1⇤.
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CFT symmetry algebra and its representations that should underlie AGTk were identified.
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Thank you!


