
.

Quantum complexity in AdS/CFT and quantum field theory

Johanna Erdmenger

Julius-Maximilians-Universität Würzburg

1



Motivation: The big picture
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Motivation: Generalizations of AdS/CFT

How general is the relation between geometry and quantum field theory

realized in AdS/CFT?
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Motivation: AdS/CFT and quantum information

Starting point: Holographic realization of entanglement entropy

(Ryu, Takayanagi 2006)

Further information theoretic quantities discussed in AdS/CFT:

Fisher information metric, complexity, quantum error correcting codes

Simpler realizations of Hilbert spaces using Tensor Networks
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Quantum information

Entangled | ↑〉| ↓〉 − | ↓〉| ↑〉 vs. product states | ↑〉| ↓〉

Density matrix ρ =
∑
n
pn|Ψn〉〈Ψn|

Von Neumann entropy SvN = −Tr(ρ ln ρ)

Maximised when ρ diagonal with equal entries,
vanishes for pure states where ρ2 = ρ



Quantum information

Entangled | ↑〉| ↓〉 − | ↓〉| ↑〉 vs. product states | ↑〉| ↓〉

Density matrix ρ =
∑
n
pn|Ψn〉〈Ψn|

Von Neumann entropy SvN = −Tr(ρ ln ρ)

Maximised when ρ diagonal with equal entries,
vanishes for pure states where ρ2 = ρ

Consider product Hilbert spaceH = HA ⊗HB

Reduced density matrix
ρA = TrBρtot

Entanglement entropy
SA = −TrAρA ln ρA

Analogy to black hole entropy
(‘Lost information’ hidden in B)
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Complexity

Complexity:

Consider set of predefined unitary transformations in a Hilbert space

How many of these need to be applied to reach any given state
from a reference state?
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Complexity

Consider a reference state |r〉 and a set of unitary operators U1, U2, ... (gates)

The complexity C(|ψ〉) of a state |ψ〉 is given by the minimal number of gates
required to map |r〉 to |ψ〉 up to a given tolerance

C(|ψ〉) = min {n ∈ N| Ui1 . . . Uin|r〉 = |ψ〉, up to tolerance}

Well-defined for pure states in finite-dimensional Hilbert spaces

No standard definition for quantum field theories

(Recent progress for free field theories (Myers et al, Heller et al)

also Headrick et al, 1804.01561)
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Fisher information metric

Fisher metric in information theory: Metric on space of probability distributions



Fisher information metric

Fisher metric in information theory: Metric on space of probability distributions

Probability distribution p(x, ~θ), x a stochastic variable, ~θ a set of n external parameters

Spectrum γ(x, ~θ) ≡ − ln p(x, θ)

Fisher metric

gµν(~θ) =

∫
dx p(x, ~θ)

∂γ(x, θ)

∂θµ
∂γ(x, θ)

∂θν
= 〈∂µγ∂νγ〉

For Gaussian distribution (saddle point approximation)

p(x1, . . . , xn) =
1

(
√

2πσ)n
exp

(
−

n∑
i=1

(xi − x̄i)2

2σ2

)

Fisher metric gives Anti-de Sitter space:

ds
2

=
1

σ2

(
dx̄idx̄

i
+ 2ndσ

2
)
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Entanglement entropy in gauge/gravity duality

Ryu-Takayanagi 2006:

SA =
AreaγA

4GN

γA: Minimal area bulk surface with ∂A = ∂γA

Cut-off regularization near AdS boundary

Satisfies strong subadditivity
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Entanglement entropy: Quantum field theory

Conformal field theory in 1+1 dimensions (Cardy, Calabrese):

S =
c

3
ln(`Λ)

Reproduced by Ryu-Takayanagi result

Λ ∝ 1/ε, ε boundary cut-off in radial direction

c = 3L/(2G3)

Finite temperature (at small `):

S(`) =
c

3
ln

(
1

πεT
sinh(2π`T )

)
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Holographic entanglement entropy: Arbitrary dimensions

J.E., Miekley 1709.07016, JHEP 1803 (2018) 034

Analytic expression in closed form for strip region:

z∗: Turning point of minimal surface

Given implicity in terms of strip width `
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Holographic entanglement entropy: Arbitrary dimensions

Entanglement density

σ =
S(T )− S(T = 0)

vol(A)

Consider strip entangling region A = a · `

For small `: S(T )− S(T = 0) = 〈Ttt〉 · a · `⇒ σ ∝ `

Blanco, Casini, Hung, Myers; Bhattacharya, Nozaki, Takayanagi, Ugajin

Modular Hamiltonian, positivity of relative entropy

For large `: S(T ) = s · V −∆α · a+ . . .

Area theorem Casini: ∆α > 0
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Holographic entanglement entropy: Arbitrary dimensions

J.E., Miekley 1709.07016

Non-monotonic behaviour
signals violation of area
theorem

(cf. Gushterov, O’Bannon, Rodgers 1708.09376)
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Holographic complexity proposals

Susskind et al: 1402.5674, 1509.07876

Consider evolution of two copies of a CFT initially entangled in the thermofield
double state

‘Complexity = Volume’:
Volume of Einstein-Rosen bridge

‘Complexity = Action’:
Action on Wheeler-de Witt patch

Both evolve linearly with time
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Holographic complexity proposals

Holographic subregion complexity

Alishahiha PRD 92 (2015):
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Kinematic space

Czech, Lamprou, McCandlish, Sully PRD 90 (2014), JHEP (2015), (2016)

Ryu-Takayanagi proposal offers one-to-one correspondence between

entangling intervals and boundary-anchored geodesics

Kinematic space exploits this correspondence

treats geodesics and entangling intervals on equal footing

From CFT point of view:

Auxiliary Lorentzian geometry whose metric is defined from conditional
mutual information

Organizes entanglement pattern of CFT

From bulk gravity:

Space of bulk geodesics studied in integral geometry
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Kinematic space Figures by Raimond Abt
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Kinematic space

Metric:
ds2 = −1

2
∂2
αS(−dα2 + dθ2)

S(α) entanglement entropy of interval with opening angle α

Crofton form:
ω = −1

2
∂2
αSdθ ∧ dα

Length of any bulk curve:
`[γ]

4GN
=

1

4

∫
K

ωnγ

nγ(θ,α): number of intersection points of the geodesic defined by (θ,α) with γ
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Kinematic space: Length of curve in AdS3

Length of any bulk curve:
`[γ]

4GN
=

1

4

∫
K

ωnγ

nγ(θ,α): number of intersection points of the geodesic defined by (θ,α) with γ
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Interpretation of Crofton form
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Bulk volumes from kinematic space

R. Abt, J.E., H. Hinrichsen, C. Melby-Thompson, R. Meyer, C. Northe, I. Reyes 1710.01327;
R. Abt, J.E., M. Gerbershagen, C. Melby-Thompson, C. Northe 1805.10298

Calculate volume of bulk region Q
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Bulk volumes from kinematic space

Use general result to calculate volume bounded by Ryu-Takayanagi surface:

vol(Σ)

4GN
=

1

2π

∫
K

ωλΣ

λΣ(θ,α) is the length of the part of the
geodesic given by (θ,α) that lies insi-
de Σ
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Bulk volumes from kinematic space

⇒ Use this volume formula to evaluate

holographic subregion complexity proposal

C(A) =
vol(Σ)

8πLGN
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Holographic subregion complexity in kinematic space
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Holographic subregion complexity proposal: Field theory insights

The proposal relates complexity to entanglement entropy

R.h.s. is defined purely in terms of field-theory quantities
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Holographic entanglement entropy: Finite temperature

Hubeny, Rangamani; Takayanagi

figure by Raimond Abt
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Holographic Subregion Complexity:

Abt, J.E., Hinrichsen, Melby-Thompson, Meyer, Northe, Reyes 1710.01327:

Consider volume proposal in the form

C(A) = −1

2

∫
Σ

Rdσ
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Holographic Subregion Complexity

For d = 2, evaluate complexity using Gauss-Bonnet theorem

For black hole:

C = x
ε − π

∆C = 2π



Holographic Subregion Complexity

For d = 2, evaluate complexity using Gauss-Bonnet theorem

For black hole:

C = x
ε − π

∆C = 2π

This is reproduced using random tensor networks
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Tensor networks

Many-body states of many qubits have a vast Hilbert space, dimH ∼ 2N

Tensor networks: Approximation method for determining states, in particular for
ground states of local Hamiltonians

Reduction to small corner of Hilbert space
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Tensor networks

µk labels a complete basis in the Hilbert space Hk; dimension Dk

Tensor Tµ1,...,µn corresponds to wave function of a quantum state in the product
Hilbert space ⊗nk=1Hk

|T 〉 =
∑
{µk}

Tµ1µ2...µn|µ1〉 ⊗ |µ2〉 ⊗ · · · ⊗ |µn〉

A tensor network is obtained by contracting indices

Contracting two tensors by an internal line corresponds to the projection onto a
maximally entangled state
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Entanglement entropy: Tensor networks

MERA networks:

Implement RG idea

Networks defined on discretizations of hyperbolic space

cf. AdS/CFT: Extra dimension corresponds to RG scale

MERA Network:
Entanglement entropy bounded from above by Ryu-Takayanagi formula
(Swingle 0905.1317)
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Entanglement entropy: Random tensor networks

Random tensor network:

Observables obtained by averaging over tensor network states
built from random tensors living on a fixed graph

Random tensor networks may be mapped to an associated Ising model
Hayden et al 1601.01694

Average value of second Renyi entropy related to partition function

Tr(ρ2
A) ∼ ZA
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Entanglement entropy: Random tensor networks

Numerical simulation of entanglement entropy in black hole background
Map to associated Ising model 1710.01327
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Complexity: Random tensor networks
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Overview of recent results

Relating Fisher information for mixed states to volume changes induced by
metric and operator perturbations

Banerjee, J.E., Sarkar 1701.02319

Time evolution J.E., Fernandez, Flory, Megias, Straub, WItkowski 1705.04696

Holographic subregion complexity for 1+1-dimensional field theories at finite
temperature from gravity and tensor network analysis
R. Abt, J.E., H. Hinrichsen, C. Melby-Thompson, R. Meyer, C. Northe, I. Reyes 1710.01327

Holographic subregion complexity from kinematic space
R. Abt, J.E., M. Gerbershagen, C. Melby-Thompson, C. Northe 1805.10298

General properties of modular Hamiltonian Abt, J.E. to appear
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Conclusion and outlook

Relation between holographic subregion complexity and entanglement
entropy

based on kinematic space

Further example for relation between information and geometry

Holographic subregion complexity evaluated in tensor network approach

Outlook:

Complexity for interacting QFT

Consider CFT in 1+1 dimensions, use of OPE and integrability?
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