
Complexities

Péter Gács

Computer Science Department
Boston University

Spring 2018



Outline

• Models of computation: non-uniform and uniform
• Kolmogorov complexity, uncomputability
• Cost of computation: time, space
• NP-completeness
• Randomness
• Algorithmic probability
• Logical depth



Models of computation

• Logic circuit: A network whose nodes contain:
• Logic gates (like AND, OR, NOT, NOR).
• Inputs and outputs.
• If the network is not acyclic, also some memory elements.

A set of gates is universal if for every n and every Boolean
function f : {0, 1}n → {0, 1}, there is a circuit built from such
gates computing it. In quantum computing, this is frequently
meant by computational universality.

• The cost of a circuit can be measured by its size, width, depth,
working time, and so on.

• In the theory of computing, this computational model is not
su�ciently expressive since it allows only a �nite number of
possible inputs. The notion of computability cannot even be
formulated here.



Turing machines

• The approriate models of computation have an in�nite amount
of memory: Examples:
• Turing machines
• Cellular automata
• Random access machine (don’t ask the details).
• Many others (including uniform circuits).

All the reasonable models are equivalent in what functions they
can compute.

• We can list all Turing machines, indexing them as Tp. A Turing
machine U is universal if it interprets its input as a pair (p, x)
where p is a program of an arbitrary Turing machine Tp and x is
the input: so U(p, x) = Tp(x).



Compression

Information in some 0-1 string

x = x1x2 . . . xn .

If x = 0101 . . . 01 then can be described by just saying: “take n/2
repetitions of 01”. The sequence can be “compressed”, or
“encoded” into a much shorter string.
Fixing a standard for interpreting compressed descriptions: Some
computer T reading the description p as input.

CT(x) = min
T(p)=x

|p|.

Description complexity of x on T.



Invariance

There is an optimal machine U for descriptions: for every machine
T there is a constant c with

CU(x) < CT(x) + c.

All the machines you are familiar with are optimal. So, the
description complexity of a string x is essentially an inherent (and
interesting) property of x. From now on,

C(x) = CU(x).



Description complexity upper and lower bounds

Upper bound It is easy to see that C(x) ≤ |x| + c for some constant
c.

Lower bound For each k the number of binary strings x of length n
with C(x) < n − k is at most 2n−k (so most strings are nearly
maximally complex). Indeed, the total number of strings with
descriptions of length < n − k is at most
1 + 2 + · · · + 2n−k−1 < 2n−k.

The latter proof did not provide any concrete example of a string
with even C(x) > 100. Not by accident.



Uncomputability

• Description complexity is deeply uncomputable. Proof via an
old paradox.

• There are some numbers that can be de�ned with a few words:
say, “the �rst number that begins with 100 9’s”, etc. There is a
�rst number that cannot be de�ned by a sentence shorter than
100. But—I have just de�ned it!

• This is a paradox, exposing the need to de�ne the notion of
“de�ne”. Now, let “p de�nes x” mean U(p) = x.



• Assume C(x) is computable, so there is an algorithm that on
input x, computes C(x). Then there is also an algorithm Q that
on input k, outputs the �rst string x(k) with C(x) > k.

• Let q be the length of a program on U for the above algorithm
Q. For some number k, we can write now some program r(k)
for U that outputs x(k).

• We also need some constant p bits to tell U what to do with this
information, but then

|r(k)| ≤ p + q + log2 k.

If k is su�cently large then this is less than k: contradiction.



Cost of computation

• Given a universal Turing machine U,

timeU(p, x)

is the number of steps of U(p, x). Could be viewed as the cost of
this computation.

• This notion seems too dependent on arbitrary choices.
• Depends on the machine model used. “Random access machine”
may do it faster than a Turing machine.

• Why not measure memory (storage, space) used instead?

• Fortunately, any two “reasonable” computation models (no
massive parallelism), say Turing machines and cellular
automata, simulate each other in polynomial time; so the
dependence on the model is limited. (The exclusion of
quantum computers is debatable!)

• There are some easy bounds between space and time cost, but
the deeper relation between them is little understood.



• For an algorithm (a program) p on Turing machine U, its time
complexity is de�ned in a worst-case manner:

tp(n) = max
|x |=n

timeU(p, x).

For example we say that it runs in time O(n2) if there are
constants c, d with tp(n) ≤ cn2 + d.

• For technical reasons, though we can say whether a function f (·)
is computable, we don’t de�ne its computational cost. Instead,
we de�ne complexity classes. We say that

f (·) ∈ DTIME(t(n))

if there is an algorithm computing f (·) in time O(t(n)).



• P =
⋃
kDTIME(nk) is the class of functions computable in

polynomial time,
EXP =

⋃
kDTIME(2kn) is the class of functions computable in

exponential time.
• Let divide(x, y) = 1 if integer y (written in binary) divides
integer x, and 0 otherwise.
Let factorize(x, y) = 1 if x has some divisor ≤ y and 0 otherwise.

• There is a well-known polynomial algorithm for computing
divide(x, y): we learned it in school.
There is no known polynomial algorithm for computing
factorize(x, y): the trial division algorithm is exponential.

• The biggest unsolved problems of computational complexity
theory concern lower bounds. For example the most used
cryptography algorithms use the unproved assumption that
factorize(·, ·) < P.



• The class P is very important for complexity theorists; typicaly,
by an e�cient algorithm, one means a polynomial-time one.

• Polynomial time algorithms are often contrasted with
exponential-time ones. Consider the following two problems,
both about a graph G of n vertices.
• Find the largest number of disjoint edges.
• Find the largest number of independent vertices.

Brute-force search (trying all possibilities) solves both of these
problems in exponential time, so both are in EXP.

• The �rst problem also has a (nontrivial) polynomial-time
algorithm, so it is in P.
The second problem is not known to have one, and since it is
NP-hard (see later) most bets are against it.



Lower bounds

Most spectacular results of computer science are positive: upper
bounds on complexity, even even when they started as answers for
questions on lower bounds.

Example In the 1950’s Kolmogorov asked his students to prove

that multiplication of two n-digit numbers takes n2 elementary
steps, just like the school algorithm.
The answer—with repeated improvements—was an upper bound
O(n log n log log n).



Universality

• A simple diagonal argument, going back to Cantor and Gödel,
shows that the partial function U(x, x) computed by a universal
Turing machine cannot be extended to a computable one.

• Let H(x) = 1 if U(x, x) is de�ned (if U(x, x) halts), and 0 if it is
not. Finding the value of H(x) is the famous halting problem: it
is also undecidable.

• Let Ht(x) be the same thing, after t steps. The same kind of
diagonalization shows that

f (x) = H2|x| (x)

cannot be computed in time 2 |x |/|x|, so

f (·) ∈ DTIME(2n) \DTIME(2n/n).



Reductions

Most undecidability results and lower bounds are proved via
reduction. Consider an equation of the form

x3 = 3y6 − 2x4 − x2y + 11,

asking for integer solution. Hilbert’s 10th problem about
Diophantine equations asks for an algorithm to solve all such
problems. Now we know that there is no such algorithm.
Let D(E) = 1 if Diophantine equation E is solvable, and 0
otherwise. A famous construction de�nes a computable function
ρ(x) with

D(ρ(x)) = H(x).

(ρ encodes the work of a universal Turing machine into equations.)
This shows that D is at least as hard as H, and we write

H ≤ D.



Completeness

• Generously considering all polynomial algorithms e�cient,
computer scientists are interested in polynomial-time
reductions. If f (x) = g(ρ(x)) by a polynomial-time function
ρ(x), then we write

f ≤p g.

This upper-bounds the complexity of f but is used even more
frequently to lower-bound the complexity of g.

• Function f is hard for a class of functions C (in terms of
polynomial reductions) if f ≥p g for all elements of C.

• f is complete for C if it is hard for C and also belongs to C. So f
is one of the hardest elements of C.

• Example: the function H2|x| (x) is complete for EXP.



Example Generalize the game of Go, to an n × n board.

• LetW (x) be the function that is 1 if con�guration x (an n × n
matrix) is winning for White and 0 if it is not. A clever
reduction shows thatW is complete for EXP. SoW can only be
computed in exponential time.

• LetW ′(x) be 1 if White will win in ≤ n2 steps and 0 otherwise.
A reduction shows thatW ′ is complete for PSPACE, the class of
functions computable using a polynomial amount of memory.
What does this say about the time needed to computeW ′(x)?
Nothing, (other than bets). See below.



NP problems

• A subset of PSPACE holds particular interest: yes/no questions
in which the “yes” answer (return value 1) has a proof checkable
in polynomial time.
Example: given a graph G of size n, let I(G) = 1 if G has an
independent subset of size n/2 and 0 otherwise.

• The class of such functions (predicates) is called NP (for
“nondeterministic polynomial”, ignore why). An immense
number of interesting and important problems belong to NP.

• I(·) is proved to be NP-complete. Does this lower-bound its
time complexity? We don’t know. In the inclusions below, we
don’t know which one is equality—just that all cannot be.

P ⊆ NP ⊆ PSPACE ⊆ EXP.

Still, the NP-completeness of a problem is considered a strong
evidence for its hardness.



Randomness

The following variant of Kolmogorov complexity is very
convenient.
Let a Turing machine T be said to have the pre�x property if
whenever binary string p is a pre�x of q and T(p) is de�ned then
T(p) = T(q). For such a machine T let

KT(x) = min
T(p)=x

|p|.

Again, there is an optimal pre�x machine V , and we will write
K(x) = KV (x). It is not hard to see that

C(x) ≤ K(x) ≤ C(x) + 2 logC(x).



Let P(x) be any computable probability distribution over �nite
strings x. The complexity upper and lower bounds generalize
nicely: We have

K(x) ≤ − logP(x) + cP .

for some constant cP. On the other hand,

P{ x : K(x) < − logP(x) − k } ≤ 2−k .

This, with other considerations, justi�es calling

d(x, P) = − logP(x) −K(x)

the de�ciency of randomness of x with respect to distribution P.
We consider xmore random when K(x) is closer to its upper bound
− logP(x) + cP.



Complexity and entropy

Let H(P) =
∑
x P(x) log(1/P(x)) be the entropy of the computable

distribution P. We have

|H(P) −
∑
x

P(x)K(x)| ≤ cP

for a constant cP. So entropy is nearly average complexity,
justi�ying the name “algorithmic entropy” for K(x).



Algorithmic probability

Let us feed an in�nite string of random bits π to our optimal pre�x
machine V . We write V (π) = x if V halts on some pre�x of π and
outputs x. The algorithmic probability of x is de�ned as

m(x) = Prob{V (π) = x}.

This is the probability that the optimal pre�x machine with a
monkey at the terminal outputs x. The distributionm(x) is not
computable (and does not add up to 1). It dominates all
computable distributions: for every computable distribution P
there is a constant dP with

P(x) ≤ dP ·m(x)

An important theorem says

K(x) = − logm(x) + O(1).



Logical depth

• Letmt(x) be the probability that V (π) outputs x in ≤ t steps.
The quantity

depthε(x) = min{ t : mt(x)/m(x) ≥ ε }.

is (a version of) Bennett’s logical depth. It is larger than t if the
conditional probability that x arises in t steps provided it arises
at all is ≤ ε.

• Any simple random process (“randomized computation”) needs
at least depthε(x) steps to produce x with probability ≥ εm(x).
So depth is a certain pedigree of long evolution (alas,
uncomputable).

• If a string x is random with respect to a computable distribution
P then its depth is nearly bounded by the time needed to
sample P; so random strings are shallow (these include the
simple strings, too).



• A variant (presented by Charlie) considered rather the
di�erence

Kt(x) −K(x)

instead of − logmt(x)/m(x) (for technical reasons, these are not
quite the same).

• Little is known about the existence of strings of a certain depth.
For large n, are there strings x of length n with, say,

Kn
3
(x) ≤ n/4, Kn

2
(x) > n/2?

The question Kn
2
(x) ≤ n/2 is of type NP.

We can produce a string x with Kn
2
(x) > n/2 by brute force

search, in time n22n. But who knows whether we can faster, say
in time n3?



Topics missed

• Randomized computing.
• Pseudo-randomness, cryptography.
• Can randomness be replaced with pseudo?
• Interactive proofs, IP = PSPACE.
• Transparent (holographic) proofs, their use to lowerbound the
complexity of approximations.

• Quantum computing. . .


	Introduction
	Models of computation
	Compressibility
	Uncomputability
	Cost of computation
	Lower bounds
	Universality
	Reductions
	Completeness
	NP problems
	Randomness
	Algorithmic probability
	Logical depth
	Topics missed

