Complexities

Péter Gacs

Computer Science Department
Boston University

Spring 2018

Models of computation: non-uniform and uniform

Kolmogorov complexity, uncomputability

Cost of computation: time, space

NP-completeness

Randomness

Algorithmic probability

Logical depth

 Logic circuit: A network whose nodes contain:
o Logic gates (like AND, OR, NOT, NOR).
e Inputs and outputs.
o If the network is not acyclic, also some memory elements.
A set of gates is if for every n and every Boolean
function / : {0, 1}* — {0, 1}, there is a circuit built from such
gates computing it. In quantum computing, this is frequently
meant by computational universality.
o The of a circuit can be measured by its size, width, depth,
working time, and so on.

¢ In the theory of computing, this computational model is not
sufficiently expressive since it allows only a finite number of
possible inputs. The notion of computability cannot even be
formulated here.

Turing machines

e The approriate models of computation have an infinite amount
of memory: Examples:

 Turing machines

¢ Cellular automata

» Random access machine (don’t ask the details).

e Many others (including unilorm circuits).
All the reasonable models are equivalent in what functions they
can compute.

* We can list all Turing machines, indexing them as 7},. A Turing
machine U is universal if it interprets its input as a pair (p, x)
where p is a program of an arbitrary Turing machine 7} and x is
the input: so U(p, x) = T)(x).

Compression

Information in some 0-1 string
Xr=x1x9 ...-Iy.

Ifz=0101...01 then can be described by just saying: “take n/2
repetitions of 01”. The sequence can be “compressed”, or
“encoded” into a much shorter string.

Fixing a standard for interpreting compressed descriptions: Some
computer T reading the description p as input.

Cr(x) = 7{3%; Ipl.

Description complexity of z on T'.

Invariance

There is an optimal machine U for descriptions: for every machine
T there is a constant ¢ with

Cyx) < Cr(x) +c.

All the machines you are familiar with are optimal. So, the
description complexity of a string « is essentially an inherent (and
interesting) property of x. From now on,

C(x) = Cu(x).

Description complexity upper and lower bounds

Upper bound It is easy to see that C(x) < |z| + ¢ for some constant
c.

Lower bound For each k the number of binary strings x of length n
with C(z) < n — k is at most 2** (so most strings are nearly
maximally complex). Indeed, the total number of strings with
descriptions of length < n — k is at most
14244 9rhl < gnk,

The latter proof did not provide any concrete example of a string
with even C(x) > 100. Not by accident.

Uncomputability

 Description complexity is deeply uncomputable. Proof via an
old paradox.

e There are some numbers that can be defined with a few words:
say, “the first number that begins with 100 9’s”, etc. There is a
first number that cannot be defined by a sentence shorter than

100. But—I have just defined it!

» This is a paradox, exposing the need to define the notion of
“define”. Now, let “p dclines 2” mean U(p) = .

e Assume C(z) is computable, so there is an algorithm that on
input &, computes C(x). Then there is also an algorithm Q that
on input £, outputs the first string 2(k) with C(x) > k.

¢ Let g be the length of a program on U for the above algorithm
Q. For some number £, we can write now some program r(k)
for U that outputs x(k).

e We also need some constant p bits to tell U what to do with this
information, but then

[7(k)| < p +q +logy k.

If & is suflicently large then this is less than k: contradiction.

Given a universal Turing machine U,

timey (p, x)

is the of U(p, x). Could be viewed as the of
this computation.
This notion seems too dependent on arbitrary choices.

e Depends on the machine model used. “Random access machine”

may do it faster than a Turing machine.

e Why not measure (storage, space) used instead?
Fortunately, any two “reasonable” computation models (no
massive parallelism), say Turing machines and cellular
automata, simulate each other in polynomial time; so the
dependence on the model is limited. (The exclusion of
quantum computers is debatable!)

There are some easy bounds between space and time cost, but
the deeper relation between them is little understood.

 For an algorithm (a program) p on Turing machine U, its
is defined in a worst-case manner:

tp(n) = max timey (p, x).

|x|=n

For example we say that it runs in time O(n?) if there are
constants ¢, d with t,(n) < en? +d.

 For technical reasons, though we can say whether a function /(-)
is computable, we don’t define its computational cost. Instead,
we define . We say that

/() € DTIME(¢(n))

if there is an algorithm computing f(-) in time O(¢(n)).

P = J;, DTIME(#*) is the class of functions computable in

EXP = |, DTIME(2*) is the class of functions computable in

Let divide(z, y) = 1 if integer y (written in binary) divides
integer x, and 0 otherwise.
Let factorize(x, y) = 1 if x has some divisor < y and 0 otherwise.

There is a well-known polynomial algorithm for computing
divide(z, y): we learned it in school.

There is no known polynomial algorithm for computing
factorize(z, y): the trial division algorithm is exponential.

The biggest unsolved problems of computational complexity
theory concern . For example the most used
cryptography algorithms use the unproved assumption that

factorize(-, -) ¢ P.

e The class P is very important for complexity theorists; typicaly,
by an algorithm, one means a polynomial-time one.

¢ Polynomial time algorithms are often contrasted with
exponential-time ones. Consider the following two problems,
both about a graph G of n vertices.

e Find the largest number of disjoint edges.

e Find the largest number of independent vertices.
Brute-force search (trying all possibilities) solves both of these
problems in exponential time, so both are in EXP.

e The first problem also has a (nontrivial) polynomial-time
algorithm, so it is in P.
The second problem is not known to have one, and since it is
NP-hard (see later) most bets are against it.

Most spectacular results of computer science are positive: 11pper
bounds on complexity, even even when they started as answers for
questions on lower bounds.

In the 1950’s Kolmogorov asked his students to prove

that multiplication of two n-digit numbers takes 7% elementary
steps, just like the school algorithm.

The answer—with repeated improvements—was an upper bound
O(nlognloglogn).

Universality

A simple diagonal argument, going back to Cantor and Gédel,
shows that the partial function U(z,) computed by a universal
Turing machine cannot be extended to a computable one.

e Let H(x) = 1 if U(x, x) is defined (if U(z, x) halts), and 0 if it is
not. Finding the value of H(z) is the famous halting problem: it
is also undecidable.

» Let H'(x) be the same thing, after ¢ steps. The same kind of
diagonalization shows that

f@) = H" (@)
cannot be computed in time 21!/|z|, so

f(-) € DTIME(2") \ DTIME(2" /).

Most undecidability results and lower bounds are proved via
reduction. Consider an equation of the form

22 =8y% — 2 — 2y + 11,

asking for integer solution. Hilbert’s 10th problem about
Diophantine equations asks for an algorithm to solve all such
problems. Now we know that there is no such algorithm.

Let D(E) = 1 if Diophantine equation E is solvable, and 0
otherwise. A famous construction defines a computable function
p(x) with

D(p(x)) = H(x).

(p encodes the work of a universal Turing machine into equations.)
This shows that D is at least as hard as H, and we write

H <D.

Completeness

e Generously considering all polynomial algorithms efficient,
computer scientists are interested in polynomial-time
reductions. If f(x) = g(p(x)) by a polynomial-time function
p(x), then we write

fSpg

This upper-bounds the complexity of / but is used even more
frequently to lower-bound the complexity of g.

 Function f is hard for a class of functions € (in terms of
polynomial reductions) if / >, g for all elements of C.

e fis complete for € if it is hard for € and also belongs to €. So f
is one of the hardest elements of C.

» Example: the function H 2 (x) is complete for EXP.

Generalize the game of Go, to an n X n board.

e Let W (x) be the function that is 1 if configuration x (an n X n
matrix) is winning for White and 0 if it is not. A clever
reduction shows that /" is complete for EXP. So /" can only be
computed in exponential time.

o Let W’(z) be 1 if White will win in < n2 steps and 0 otherwise.
A reduction shows that /"’ is complete for PSPACE, the class of
functions computable using a polynomial amount of memory.
What does this say about the time needed to compute ¥’ (x)?
Nothing, (other than bets). See below.

A subset of PSPACE holds particular interest: yes/no questions
in which the “yes” answer (return value 1) has a proof checkable
in polynomial time.

Example: given a graph G of size n, let I(G) = 1 if G has an
independent subset of size n/2 and 0 otherwise.

e The class of such functions (predicates) is called NP (for
“nondeterministic polynomial”, ignore why). An immense
number of interesting and important problems belong to NP.

e [(-) is proved to be NP-complete. Does this lower-bound its
time complexity? We don’t know. In the inclusions below, we
don’t know which one is equality—just that all cannot be.

P c NP ¢ PSPACE ¢ EXP.

Still, the NP-completeness of a problem is considered a strong
evidence for its hardness.

Randomness

The following variant of Kolmogorov complexity is very
convenient.

Let a Turing machine T be said to have the preli< property if
whenever binary string p is a prefix of ¢ and T'(p) is defined then
T(p) = T(q). For such a machine T let

Krp(x) = Tm@gx Ipl.

Again, there is an optimal prefix machine //, and we will write
K(x) = Ky (x). It is not hard to see that

C(x) < K(x) < C(x) + 2log C(x).

Let P(x) be any probability distribution over finite
strings x. The complexity upper and lower bounds generalize
nicely: We have

K(x) < —log P(x) + cp.
for some constant cp. On the other hand,
P{x:K(x) < —logP(x) -k} < 27%.
This, with other considerations, justifies calling
d(z, P) = —log P(x) — K(x)

the of x with respect to distribution P.
We consider x more random when K(x) is closer to its upper bound
—log P(x) + cp.

Complexity and entropy

Let H(P) = Y, P(x)log(1/P(x)) be the entropy of the computable
distribution P. We have

[H(P) - > P@)K(@)| < cp

for a constant cp. So entropy is nearly average complexity,
justifiying the name “algorithmic entropy” for K(x).

Algorithmic probability

Let us feed an infinite string of random bits 7 to our optimal prefix
machine /. We write V() = x if /" halts on some prefix of 7 and
outputs z. The algorithmic probability of x is defined as

m(x) = Prob{V(n) = x}.

This is the probability that the optimal prefix machine with a
monkey at the terminal outputs x. The distribution m(x) is not
computable (and does not add up to 1). It dominates all
computable distributions: for every computable distribution P
there is a constant dp with

P(x) < dp - m(x)
An important theorem says

K(x) = —logm(x) + O(1).

e Let my(z) be the probability that /() outputs x in < ¢ steps.
The quantity

depth,(x) = min{ ¢ : my(x)/m(x) > ¢ }.

is (a version of) Bennett’s . It is larger than ¢ if the
conditional probability that x arises in ¢ steps provided it arises
atall is < &.

¢ Any simple random process (“randomized computation”) needs
at least depth,(z) steps to produce x with probability > em(z).
So depth is a certain pedigree of long evolution (alas,
uncomputable).

e If a string x is random with respect to a computable distribution
P then its depth is nearly bounded by the time needed to
sample P; so random strings are shallow (these include the
simple strings, too).

A variant (presented by Charlie) considered rather the
difference

K'(z) — K(z)

instead of —log m,(x)/m(x) (for technical reasons, these are not
quite the same).

¢ Little is known about the existence of strings of a certain depth.
For large n, are there strings x of length n with, say,

K@) < n/4, K"(x)>n/2?

The question K" (@) < n/2is of type NP.

We can produce a string x with K" (x) > n/2 by brute force
search, in time 722", But who knows whether we can faster, say
in time n3?

Topics missed

Randomized computing.

Pseudo-randomness, cryptography.
¢ Can randomness be replaced with pseudo?
¢ Interactive proofs, [P = PSPACE.

¢ Transparent (holographic) proofs, their use to lowerbound the
complexity of approximations.

e Quantum computing. . .

	Introduction
	Models of computation
	Compressibility
	Uncomputability
	Cost of computation
	Lower bounds
	Universality
	Reductions
	Completeness
	NP problems
	Randomness
	Algorithmic probability
	Logical depth
	Topics missed

