
Self-correction in Wegner’s
3D Ising lattice gauge theory

David Poulin, Roger Melko, and Matthew Hastings

Institut Quantique & Département de Physique
Université de Sherbrooke

Canadian Institute for Advanced Research

Quantum Information in Cosmology
Copenhagen, Denmark, April 2018

David Poulin (Sherbrooke) Wegner’s self-correcting Copenhagen’18 1 / 19



Outline

1 Introduction & Motivation

2 Wegner’s Ising lattice gauge model

3 Homology

4 Numerical results

David Poulin (Sherbrooke) Wegner’s self-correcting Copenhagen’18 2 / 19



Introduction & Motivation

Outline

1 Introduction & Motivation

2 Wegner’s Ising lattice gauge model

3 Homology

4 Numerical results

David Poulin (Sherbrooke) Wegner’s self-correcting Copenhagen’18 3 / 19



Introduction & Motivation

Self correcting memory

Passive device that stores information reliably
At finite temperature.
Without fine-tuning, i.e. its parameters can fluctuates a little.
With no imposed symmetry.

We are interested in systems
Composed of finite state systems (Ising spins).
Interacting locally on a lattice.

Contrasts with
Local cellular automata.
Fault-tolerant computer.

which have time-dependent hamiltonians and/or consume power.

David Poulin (Sherbrooke) Wegner’s self-correcting Copenhagen’18 4 / 19



Introduction & Motivation

2D Ferromagnetic Ising model

H = −J
∑
〈i,j〉

σz
i σ

z
j

Degenerate ground state = 1 bit of information.
At finite temperature, error droplet D has energy cost 2J|∂D|.

Large droplets suppressed by Boltzmann factor e−2βJ|∂D|.

Magnetization 〈M〉 = 1
N
∑

j〈σz
j 〉 retains information.

This protection is due to a symmetry U =
∏

j σ
x
j , UHU = H.

Symmetry is spontaneously broken below Curie temperature
(Landau-Ginsburg).
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Introduction & Motivation

2D Ferromagnetic Ising model

Consider a symmetry-breaking perturbation (magnetic field)

H = J
∑
〈i,j〉

σz
i σ

z
j + B

∑
j

σz
j

Unique ground state with extensive energy bias, one meta-stable
states.
At finite temperature, in meta stable state, error droplet D has
energy cost 2J|∂D| − 2B|D|.

Large droplets favored by Boltzmann factor e−βJ|∂D|+βB|D|.

All initial states are driven to state with 〈M〉 < 0.
Self-correcting behavior requires symmetry, does not survive
generic perturbation.
Extends to all systems with local order parameter A, by adding
local perturbation ∝ A to the Hamiltonian.
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Introduction & Motivation

Why care? 1. Classical

Self-correcting memory is possible under local cellular automaton,
even in 1D (Gács’86)

Why not time-independent Hamiltonians, e.g. including clock?
Gibbs’ phase rule suggests it should be impossible for
time-independent Hamiltonians

Co-existence of d + 1 phases only occurs in codimension-d region
of phase space.
Only on line B = 0 of (B/J,T/J) phase diagram.
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Introduction & Motivation

Why care? 2. Quantum

Stable quantum memory = quantum hard drive
Proposals in 2 and 3 dimensions (Bacon’06, Hamma et al. ’08,
Hutter et al. ’12, Pedrocchi et al. ’12, Michnicki’14, Brell’16)
... have been disputed (Haah & Preskill’12, Landon-Cardinal &
Poulin ’13, Landon-Cardinal et al. ’15)
Known to be possible in 4D (Dennis et al. ’02).
Stable quantum memory is more difficult to achieve:

If E0 and E1 differ even by a constant ε, then
|ψ(t)〉 = α|φ0〉+ e−iεt/~β|φ1〉 leads to decoherence.
Contrasts with extensive energy bias leading to thermal instability.

Should understand classical case before moving on to quantum.
I.e. Ising model with field on single site is stable.
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Wegner’s Ising lattice gauge model

The model

Cubic lattice with Ising spins σz
e = ±1 on each edge.

Hamiltonian H = −J
∑

P AP where AP =
∏

e∈∂P σ
z
e .

Local (gauge) symmetry associated to each vertex
Uv =

∏
e:v∈∂e σ

x
e .

Uv HUv = H

Gauge
Wz

AP

Lxy
Thermal state is gauge invariant.
Extensive degeneracy.
Uvσ

z
eUv = −σz

e for v ∈ ∂e
So 〈σz

e〉 = 0.
Elitzur’s theorem.
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Wegner’s Ising lattice gauge model

Wilson loops – High temperature

Gauge invariant observables are Wilson loops, W` =
∏

e∈` σ
z
e

such that ∂` = 0.
Uv W`Uv = W`

Consider homologically trivial loop ` = ∂S for some surface S.
W` =

∏
P∈S AP

〈W`〉 =
∑
{σ}

∏
P e−βσ

z
P,1σ

z
P,2σ

z
P,3σ

z
P,4W`∑

{σ}
∏

P e−βσ
z
P,1σ

z
P,2σ

z
P,3σ

z
P,4

(1)

=

∑
{σ}

∏
P(1 + σz

P,1σ
z
P,2σ

z
P,3σ

z
P,4 tanhβ)W`∑

{σ}
∏

P(1 + σz
P,1σ

z
P,2σ

z
P,3σ

z
P,4 tanhβ)

(2)

Expanding the red product gives the sum over all trivial loops
` = ∂S, with a weight (tanhβ)|S|.
Since

∑
σ σ = 0 and

∑
σ σ

2 = 2, the leading contribution to 〈W`〉
at low β is (tanhβ)|S| ∼ e−α|S|.
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Wegner’s Ising lattice gauge model

Wilson loops – Low temperature

Consider homologically trivial loop ` = ∂S for some surface S.
W` =

∏
P∈S AP

In the ground state, we have AP = 1.
A flipped spin costs 8J in energy (4 neighboring plaquettes).
In a diluted spin flip regime, the probability of a flipped spin is thus
pf ∝ e−8βJ .
〈W`〉 = (prob. ` has even # flips) - (prob ` has odd # flips)

∝ e−γ|`|

High temperature
〈W`〉 ∝ e−α|S|

Area law

Low temperature
〈W`〉 ∝ e−γ|∂S|

Perimeter law

Phase transition at some finite T .

David Poulin (Sherbrooke) Wegner’s self-correcting Copenhagen’18 12 / 19



Homology

Outline

1 Introduction & Motivation

2 Wegner’s Ising lattice gauge model

3 Homology

4 Numerical results

David Poulin (Sherbrooke) Wegner’s self-correcting Copenhagen’18 13 / 19



Homology

Homologically non trivial loops

On some lattices, there exists ` 6= ∂S with ∂` = 0.
Bulk with a puncture.
Special boundary conditions.
Hyper-torus.

W` is not a product of AP , so 〈W`〉 is not fixed in the ground state:
degeneracy beyond gauge symmetry.

One encoded bit.

Gauge
Wz

AP

Lxy

With all spins up, Wz = +1.
Extensive degeneracy.
Flipping all spins in xy plane sets
Wz = −1.
LxyHLxy = H.
How does phase transition manifests
itself on nontrivial W`?
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Homology

Magnetic field

A magnetic field −B
∑

e σ
z
e breaks the gauge symmetry.

Elitzur’s theorem tells us that system doesn’t magnetize, χ = 0.
Average energy difference between two sectors Wz = ±1 is at
most L2: sub-extensive.

Less when considering gauge group average.

Gauge
Wz

AP

Lxy

With field...
Unique ground state σz

e = 1.
In sector Wz = 1.
Lowest energy state in sector
Wz = −1 obtained from Lxy .
Energy difference 2BL2 (sub-ext.).
Much like 2D ferromagnetic Ising, but
entropy fluctuates error membrane
out of plane.
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Numerical results
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Numerical results

Experiment description

Simulate thermal dynamics using Metropolis-Hastings MCMC.
Use single-spin flip.
Use gauge flip.

Begin in lowest energy state with Wz = −1.
Ramp up temperature to Thold.
Hold temperature for some macroscopic time.

10,000×L3 MC updates.

Ramp down temperature to T = 0, and measure Wz .

David Poulin (Sherbrooke) Wegner’s self-correcting Copenhagen’18 17 / 19



Numerical results

Experiment results
Without magnetic field B/J = 0 With magnetic field B/J = 0.2

Topological

Paramagnetic

Disordered

1.25

Thold /J

h/J

Glassy
1.32
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Numerical results

Conclusion

Self-correction is interesting in the classical and quantum setting.
Self-correction is ruled out in symmetry broken phases with local
order parameter.
Elitzur’s theorem rules out a local order parameter in systems with
gauge symmetry.
Well known phase transition 〈W`〉 ∝ e−α|S| vs ∝ e−γ|∂S|.
Additional degeneracy from homology.

No extensive energy splitting from any local field.
Numerical results consistent with finite Thold and h phase transition.
Unconventional order parameter at finite T : defined algorithmically.

Open questions
Can we prove stability?
Complete phase diagram?
Reduced to stability of 2D quantum model?
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