Self-correction in Wegner's 3D Ising lattice gauge theory

David Poulin, Roger Melko, and Matthew Hastings

Institut Quantique & Département de Physique Université de Sherbrooke Canadian Institute for Advanced Research

Quantum Information in Cosmology Copenhagen, Denmark, April 2018

2 Wegner's Ising lattice gauge model

Introduction & Motivation

Wegner's Ising lattice gauge model

3 Homology

Self correcting memory

• Passive device that stores information reliably

- At finite temperature.
- Without fine-tuning, i.e. its parameters can fluctuates a little.
- With no imposed symmetry.
- We are interested in systems
 - Composed of finite state systems (Ising spins).
 - Interacting locally on a lattice.

Contrasts with

- Local cellular automata.
- Fault-tolerant computer.

which have time-dependent hamiltonians and/or consume power.

2D Ferromagnetic Ising model

$$H = -J\sum_{\langle i,j\rangle}\sigma_i^z\sigma_j^z$$

- Degenerate ground state = 1 bit of information.
- At finite temperature, error droplet *D* has energy cost $2J|\partial D|$.
 - Large droplets suppressed by Boltzmann factor $e^{-2\beta J|\partial D|}$.
- Magnetization $\langle M \rangle = \frac{1}{N} \sum_{i} \langle \sigma_{i}^{z} \rangle$ retains information.
- This protection is due to a symmetry $U = \prod_i \sigma_i^x$, UHU = H.
- Symmetry is spontaneously broken below Curie temperature (Landau-Ginsburg).

2D Ferromagnetic Ising model

• Consider a symmetry-breaking perturbation (magnetic field)

$$H = J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z + B \sum_j \sigma_j^z$$

- Unique ground state with extensive energy bias, one meta-stable states.
- At finite temperature, in meta stable state, error droplet *D* has energy cost $2J|\partial D| 2B|D|$.
 - Large droplets favored by Boltzmann factor $e^{-\beta J |\partial D| + \beta B |D|}$.
- All initial states are driven to state with $\langle M \rangle < 0$.
- Self-correcting behavior requires symmetry, does not survive generic perturbation.
- Extends to all systems with local order parameter A, by adding local perturbation ∝ A to the Hamiltonian.

Why care? 1. Classical

- Self-correcting memory is possible under local cellular automaton, even in 1D (Gács'86)
 - Why not time-independent Hamiltonians, e.g. including clock?
- Gibbs' phase rule suggests it should be impossible for time-independent Hamiltonians
 - Co-existence of *d* + 1 phases only occurs in codimension-d region of phase space.
 - Only on line B = 0 of (B/J, T/J) phase diagram.

Why care? 2. Quantum

Stable quantum memory = quantum hard drive

- Proposals in 2 and 3 dimensions (Bacon'06, Hamma et al. '08, Hutter et al. '12, Pedrocchi et al. '12, Michnicki'14, Brell'16)
- ... have been disputed (Haah & Preskill'12, Landon-Cardinal & Poulin '13, Landon-Cardinal et al. '15)
- Known to be possible in 4D (Dennis et al. '02).
- Stable quantum memory is more difficult to achieve:
 - If E_0 and E_1 differ even by a constant ϵ , then $|\psi(t)\rangle = \alpha |\phi_0\rangle + e^{-i\epsilon t/\hbar}\beta |\phi_1\rangle$ leads to decoherence.
 - Contrasts with extensive energy bias leading to thermal instability.
- Should understand classical case before moving on to quantum.
 - I.e. Ising model with field on single site is stable.

Introduction & Motivation

2 Wegner's Ising lattice gauge model

3 Homology

The model

- Cubic lattice with Ising spins $\sigma_e^z = \pm 1$ on each edge.
- Hamiltonian $H = -J \sum_{P} A_{P}$ where $A_{P} = \prod_{e \in \partial P} \sigma_{e}^{z}$.
- Local (gauge) symmetry associated to each vertex $U_V = \prod_{\rho: v \in \partial \rho} \sigma_{\rho}^X$ • $U_{\nu}HU_{\nu} = H$

Gauge

- Thermal state is gauge invariant.
- Extensive degeneracy.
- $U_{\nu}\sigma_{e}^{z}U_{\nu}=-\sigma_{e}^{z}$ for $\nu\in\partial e$
- So $\langle \sigma_{\mathbf{A}}^{\mathbf{Z}} \rangle = \mathbf{0}$.
- Elitzur's theorem.

Wilson loops – High temperature

- Gauge invariant observables are Wilson loops, $W_{\ell} = \prod_{e \in \ell} \sigma_e^z$ such that $\partial \ell = 0$.
 - $U_v W_\ell U_v = W_\ell$
- Consider homologically trivial loop ℓ = ∂S for some surface S.
 - $W_{\ell} = \prod_{P \in S} A_P$

$$\langle W_{\ell} \rangle = \frac{\sum_{\{\sigma\}} \prod_{P} e^{-\beta \sigma_{P,1}^{z} \sigma_{P,2}^{z} \sigma_{P,3}^{z} \sigma_{P,4}^{z}} W_{\ell}}{\sum_{\{\sigma\}} \prod_{P} e^{-\beta \sigma_{P,1}^{z} \sigma_{P,2}^{z} \sigma_{P,3}^{z} \sigma_{P,4}^{z}}}$$

$$= \frac{\sum_{\{\sigma\}} \prod_{P} (1 + \sigma_{P,1}^{z} \sigma_{P,2}^{z} \sigma_{P,3}^{z} \sigma_{P,4}^{z} \tanh \beta) W_{\ell}}{\sum_{\{\sigma\}} \prod_{P} (1 + \sigma_{P,1}^{z} \sigma_{P,2}^{z} \sigma_{P,3}^{z} \sigma_{P,4}^{z} \tanh \beta)}$$

$$(1)$$

- Expanding the red product gives the sum over all trivial loops $\ell = \partial S$, with a weight $(\tanh \beta)^{|S|}$.
- Since $\sum_{\sigma} \sigma = 0$ and $\sum_{\sigma} \sigma^2 = 2$, the leading contribution to $\langle W_{\ell} \rangle$ at low β is $(\tanh \beta)^{|S|} \sim e^{-\alpha |S|}$.

Wilson loops – Low temperature

• Consider homologically trivial loop $\ell = \partial S$ for some surface S.

• $W_{\ell} = \prod_{P \in S} A_P$

- In the ground state, we have $A_P = 1$.
- A flipped spin costs 8J in energy (4 neighboring plaquettes).
- In a diluted spin flip regime, the probability of a flipped spin is thus $p_f \propto e^{-8\beta J}$.
- $\langle W_{\ell} \rangle$ = (prob. ℓ has even # flips) (prob ℓ has odd # flips) $\propto e^{-\gamma |\ell|}$

High temperature $\langle \textit{W}_\ell
angle \propto e^{-lpha |\mathcal{S}|}$ Area law

Low temperature $\langle W_{\ell} \rangle \propto e^{-\gamma |\partial S|}$ Perimeter law

Phase transition at some finite T.

Introduction & Motivation

2) Wegner's Ising lattice gauge model

Homology

Homologically non trivial loops

- On some lattices, there exists $\ell \neq \partial S$ with $\partial \ell = 0$.
 - Bulk with a puncture.
 - Special boundary conditions.
 - Hyper-torus.
- *W*_ℓ is not a product of *A*_P, so ⟨*W*_ℓ⟩ is not fixed in the ground state: degeneracy beyond gauge symmetry.
 - One encoded bit.

- With all spins up, $W_z = +1$.
- Extensive degeneracy.
- Flipping all spins in xy plane sets $W_z = -1$.
- $L_{xy}HL_{xy} = H$.
- How does phase transition manifests itself on nontrivial *W*ℓ?

David Poulin (Sherbrooke)

Homology

Magnetic field

- A magnetic field $-B\sum_{e}\sigma_{e}^{z}$ breaks the gauge symmetry.
- Elitzur's theorem tells us that system doesn't magnetize, $\chi = 0$.
- Average energy difference between two sectors $W_z = \pm 1$ is at most 1² sub-extensive
 - Less when considering gauge group average.

 A_P

With field...

- Unique ground state $\sigma_{\rho}^{z} = 1$.
- In sector $W_7 = 1$.
- Lowest energy state in sector $W_z = -1$ obtained from L_{xy} .
- Energy difference 2BL² (sub-ext.).
- Much like 2D ferromagnetic Ising, but entropy fluctuates error membrane out of plane.

Introduction & Motivation

2) Wegner's Ising lattice gauge model

3 Homology

Experiment description

• Simulate thermal dynamics using Metropolis-Hastings MCMC.

- Use single-spin flip.
- Use gauge flip.
- Begin in lowest energy state with $W_z = -1$.
- Ramp up temperature to T_{hold} .
- Hold temperature for some macroscopic time.
 - 10,000×*L*³ MC updates.
- Ramp down temperature to T = 0, and measure W_z .

Experiment results

Without magnetic field B/J = 0

With magnetic field B/J = 0.2

Conclusion

- Self-correction is interesting in the classical and quantum setting.
- Self-correction is ruled out in symmetry broken phases with local order parameter.
- Elitzur's theorem rules out a local order parameter in systems with gauge symmetry.
- Well known phase transition $\langle W_\ell \rangle \propto e^{-\alpha |S|}$ vs $\propto e^{-\gamma |\partial S|}$.
- Additional degeneracy from homology.
 - No extensive energy splitting from any local field.
 - Numerical results consistent with finite T_{hold} and h phase transition.
 - Unconventional order parameter at finite *T*: defined algorithmically.
- Open questions
 - Can we prove stability?
 - Complete phase diagram?
 - Reduced to stability of 2D quantum model?