Fragmentation of molecular clouds, filaments, the core mass function and the origin of the stellar initial mass function

Ph. André CEA - Lab. AIM Paris-Saclay

Thanks to: D. Arzoumanian, V. Könyves, Y. Shimajiri, A. Roy, P. Palmeirim, E. Ntormousi

A "universal" star formation product: the IMF

See Bastian, Covey, Meyer ARA&A 2010

Also Kroupa 2002; Chabrier 2003

Possible variations in the early Universe e.g. Cappellari et al. 2012

Ph. André – Zooming in on Star Formation – Nafplio – 11 June 2019

Origin of the IMF: Nature or Nurture? Two main classes of IMF models

- "Nature": Gravo-turbulent cloud fragmentation models (e.g. Larson 1985; Padoan, Nordlund, Jones 1997; Padoan & Nordlund 2002; Klessen & Burkert 2000; Hennebelle & Chabrier 2008).
 Stellar masses largely determined at prestellar stage of star formation; stellar IMF is inherited from the prestellar CMF resulting from cloud fragmentation.
- 2) "Nurture": (Competitive) Accretion between protocluster seeds at the protostellar stage of YSO evolution (e.g. Zinnecker 1982; Bonnell+2001; Bate+2003). Final stellar masses unrelated to initial prestellar cores masses
- This talk: Modification to the gravo-turbulent fragmentation picture based on Herschel results on core/star formation, which emphasize the role of filaments.

See S. Offner et al. 2014 PPVI for a detailed review/discussion of models

Ph. André – Zooming in on Star Formation – Nafplio – 11 June 2019

The cloud/clump mass function is shallower than the IMF but the prestellar core mass function (CMF) resembles the IMF

Outline:

Introduction

 'Universality' of filamentary structures in the cold ISM

• *Herschel* results supporting a filament paradigm for star formation

• The role of molecular filaments in the origin of the IMF

Conclusions

Ph. André – Zooming in on Star Formation – Nafplio – 11 June 2019

Herschel GB survey

Arzoumanian+2011

IC5146

~ 5 pc

Herschel has confirmed the presence of a 'universal' filamentary structure in the cold ISM

Filaments dominate the mass budget of GMCs at high column densities

cf. Schisano+2014, Könyves+2015

Column Density PDF for Aquila GMC

Ph. André – Zooming in on Star Formation – Nafplio – 11 June 2019

Nearby filaments have a common inner width ~ 0.1 pc

Network of filaments in IC5146

Herschel 500/250 µm

Example of a filament radial profile

Ph. André – Zooming in on Star Formation – 11/06/2019

HERSCHEL Sound Bell Sun

Distribution of mean inner widths for ~ 600 nearby (d < 450pc) filaments

D. Arzoumanian+2011 & 2019 (A&A, 621, A42) [but some width variations along each filament: Ysard+2013]

Possibly linked to magneto-sonic scale of turbulence? (cf. Padoan+2001; Federrath 2016)

Challenging for numerical simulations & models (cf. R. Smith+2014; Ntormousi+2016; Auddy, Basu+2016)

Is a characteristic filament width consistent with the observed power spectrum of cloud images?

Simple tests Power spectrum of image with synthetic 0.1 pc filaments A. Roy et al. 2019, arXiv:1903.12608 10⁹ **Injecting a population of synthetic** $P(k) [Jy^2/sr]$ $P(k) = A_{ISM} k^{-2.75} + P_0$ 0.1 pc filaments with contrast ~ 50% 10⁸ in SPIRE 250 µm image of Polaris 0^7 translucent cloud **Synthetic** 06 Power: filaments 0^{5} contribution 60 0^{4} 0.01 0.10 1.00 40Spatial angular frequency, k [arcmin⁻¹] **Difference from power-law fit** Residuals: Power-law – Fit MJy/sr 🞖 **Synthetic** 0.5 4 pc0.0 **Conclusion:** Observed power spectra remain consistent with a characteristic Original -0.5 filament width ~ 0.1 pc for realistic filling factors and filament contrasts 0.01 0.10 1.00 Spatial angular frequency, k [arcmin⁻¹] Ph. André – Zooming in on Star Formation – 11/06/2019

Simple tests Power spectrum of image with synthetic 0.1 pc filaments A. Roy et al. 2019, arXiv:1903.12608 10⁹ **Injecting a population of synthetic** $P(k) [Jy^2/sr]$ $P(k) = A_{ISM} k^{-2.75} + P_0$ 0.1 pc filaments with contrast ~ 50% 10⁸ in SPIRE 250 µm image of Polaris 0^7 translucent cloud **Synthetic** 06 Power: filaments 0^{5} contribution 60 \cap^4 0.01 0.10 1.00 40 Spatial angular frequency, k [arcmin⁻¹] **Difference from power-law fit** Residuals: Power-law – Fit MJy/sr 🞖 **Synthetic** 0.5 4 pc 0.0 **Extensive tests performed by** Arzoumanian+2019 (A&A, 621, A42) Original -0.5 **Results of filament profile fitting are** robust for high-contrast filaments 0.01 0.10 1.00 Spatial angular frequency, k [arcmin⁻¹]

Ph. André – Zooming in on Star Formation – 11/06/2019

~ 75^{+15}_{-5} % of prestellar cores form in filaments, above a typical column density N_{H₂} \gtrsim 7x10²¹ cm⁻²

Ph. André – Zooming in on Star Formation – Nafplio – 11 June 2019

Marsh al. 2016, MNRAS

Examples of Herschel prestellar cores in Aquila

- Core = single star-forming entity
 (Need to receive 0.01.0.1 m)
 - (Need to resolve $\sim 0.01-0.1 \text{ pc}$)
- Starless = no central proto ★
- Prestellar = bound & starless

[For definitions, see:

Di Francesco et al. 2007, PPV

Ward-Thompson et al. 2007, PPV

André+2000, Williams+ 2000, PPIV]

Lack of substructure within the cores identified with *Herschel* in nearby (d < 450 pc) clouds

> Progenitors of individual stars or binary systems, but not "clusters"

Herschel ~ 15" resolution at λ ~ 200 µm \Leftrightarrow ~ 0.02 pc < Jeans length (*a*) d = 300 pc

Perbo 58: CARMA/SZA interferometer 3mm

Strong evidence of a column density transition/ "threshold" for the formation of prestellar cores

 $CFE(A_V) = \Delta M_{cores}(A_V) / \Delta M_{cloud}(A_V)$

Ph. André – Zooming in on Star Formation – Nafplio – 11 June 2019

Most prestellar cores form near the column density "threshold" (in 'transcritical' filaments)

Total prestellar core mass as a function of background A_V

Fragmentation of filaments – Core spacing

ALMA 3mm mosaic of the Orion A ISF

Some evidence of hierarchical fragmentation within filaments (e.g. Takahashi+2013; Kainulainen+2013; Teixeira+2016)

Two fragmentation modes:

- « Cylindrical » mode ← → groups of cores separated by ~ 0.3 pc
- « Spherical » Jeans-like mode ← →
 core spacing < 0.1 pc within groups

Two-point correlation function of ALMA dense cores

Evidence of two fragmentation modes in filaments:

Example of the massive filament in NGC6334 (M/L ~ 1000 M_{\odot} /pc; W = 0.15 +- 0.05 pc)

Evidence of two fragmentation modes in filaments:

Recent identification of groups of compact (< 0.03pc) ALMA $3mm/N_2H^+$ cores associated with ArTéMiS clumps within the massive NGC6334 filament

Detection of transverse velocity gradients across filaments: Evidence of accretion within sheet-like structures?

see also H. Kirk+2013 for Serp-S

Ph. André – Zooming in on Star Formation – June 2019

Detection of transverse velocity gradients across filaments: Evidence of accretion within sheet-like structures?

Fernandez-Lopez+2014; Dhabal, Mundy+2018 see also H. Kirk+2013 for Serp-S

Simple modeling of the CO/Herschel data around the Taurus/ B211 filament consistent with accretion in a sheet/shell

A filament paradigm for ~ M_{\odot} star formation?

Schneider & Elmegreen 1979; Larson 1985; Nagasawa 1987; Inutsuka & Miyama 1997; Myers 2009 ... **Protostars & Planets VI chapter** (André, Di Francesco, Ward-Thompson, Inutsuka, Pudritz, Pineda 2014)

- 1) Large-scale MHD compressive flows associated with multiple expanding shells create filamentary molecular clouds with ~ 0.1 pc-wide filaments
- 2) Gravity fragments the densest molecular filaments into prestellar cores close to or above $M_{line,crit} \sim 16 M_{\odot} pc^{-1}$
- 3) Prestellar cores collapse to protostars/YSOs

Filament fragmentation can account for the peak of the prestellar CMF and (possibly) the "base" of the IMF

Determination of the Filament Line Mass Function (FLMF)

Mass per unit length, M_{line} (M_O/pc) André+2019, A&A, submitted

Filament sample: 599 nearby filaments in IC5146, Orion B, Aquila, Polaris,Ophiuchus, Taurus, Pipe, Musca(Arzoumanian et al. 2019, A&A, 621, A42)Complete for supercritical filaments ($M_{line} > 16 M_{\odot}/pc$) according to tests

Ph. André – Zooming in on Star Formation – 11/06/2019

Salpeter-like distribution of characteristic core masses from distribution of filament line masses

Local effective Jeans mass in a thermally supercritical filament:

Given filament properties (cf. Arzoumanian+2011, 2013, 2019):

$$M_{line} \sim \Sigma_{fil} \times W_{fil} \sim M_{line, vir} \equiv 2c_{s,eff}^2/G \text{ with } W_{fil} \sim 0.1 \text{ pc}$$

 $M_{Jeans} \sim M_{BE} \sim 1.3 c_{s,eff}^4/(G^2 \Sigma_{fil}) \propto \Sigma_{fil} \propto M_{line}$

Distribution of line masses for HGBS filaments

André+2019, A&A, submitted See also André+2014 PPVI

$$\Rightarrow \Delta N/\Delta \log M_{BE} \propto M_{BE}^{-1.4+-0.2}$$

(Salpeter index: -1.35)

Full CMF/IMF results from the convolution of the distribution of filament line masses by the CMF in individual filaments (Y.-N. Lee, Hennebelle, Chabrier 2017)

Dependence of the prestellar CMF on background cloud (column) density

Tentative determination of the CMF resulting from a single (massive) filament: NGC6334 (M/L ~ 1000 M_{\odot} /pc)

Detection of 21 compact (< 0.03pc) 3mm continuum/N₂H⁺ cores with ALMA

Summary: A filament paradigm for star formation and the IMF?

- Herschel results support a filament paradigm for star formation and the IMF although many issues remain open and/or strongly debated
- Filament fragmentation appears to produce the peak of the prestellar CMF and likely accounts for the < base > of the IMF

Salpeter power law IMF may be inherited from the observed Salpeter-like distribution of supercritical filament masses per unit length (due to accretion ?)

High-resolution polarimetric imaging at far-IR/submm λ s from space with SPICA can lead to **decisive progress in** our understanding of **the role of magnetic fields** (See SPICA-POL White Paper: arXiv:1905.03520)