The JCMT BISTRO Survey: Grain alignment in the Ophiuchus Molecular Cloud

Kate Pattle

National Tsing Hua University

Zooming in on Star Formation, Nafplio, 11th June 2019

BISTRO: Overview

- A James Clerk Maxwell Telescope (JCMT) Large Program mapping nearby (<2kpc) star-forming regions in 850µm and 450µm polarized light with the POL-2 polarimeter
- ~140 survey members across 7 partner regions and the East Asian Observatory
- P.I.s: Derek Ward-Thompson (UK), Pierre Bastien (Canada), Keping Qiu (China), Tetsuo Hasegawa (Japan), Woojin Kwon (Korea), Shih-Ping Lai (Taiwan)
- BISTRO-1 and -2 awarded 448 hours of observing time to map: Ophiuchus, Orion A & B, Perseus, Serpens Main and Aquila, Taurus L1495/B211, Auriga, IC5146, M16, DR15, DR21, NGC 2264, NGC 6334, Mon R2, Rosette

Survey paper: Ward-Thompson et al. 2017, ApJ 842 66 Orion A: Pattle et al. 2017, ApJ 846 122 M16: Pattle et al. 2018, ApJ 860 L6 Ophiuchus A: Kwon et al. 2018, ApJ 859 4 Ophiuchus B: Soam et al. 2018, ApJ 861 65 Ophiuchus C: Liu et al. 2019, ApJ 877 43 IC5146: Wang et al. 2019, ApJ 876 42 Perseus B1: Coudé et al. 2019, ApJ 877 88

Are magnetic fields dynamically important in protostellar cores?

A test: are protostellar outflows aligned with the magnetic field?

Are magnetic fields dynamically important in protostellar cores?

Hull & Zhang 2019, FrASS 6 3

Are magnetic fields dynamically important in protostellar cores?

Hull & Zhang 2019, FrASS 6 3

Are magnetic fields dynamically important in **prestellar** cores?

Prestellar core magnetic fields are:

- Approximately linear, often ~30° to the core's minor axis (a projection effect; Basu 2000)
- Generally without a clear hourglass morphology
- $\sim 10^{1} 10^{2} \, \mu G$

Right ascension

Question: How far into prestellar cores are our observations actually tracing?

Declination

Radiative torque alignment: differential extinction cross sections for left-and right-circularly polarized light induce torques on (hence spins up) irregular grains. Paramagnetic grains become magnetised, and precess around the magnetic field direction

What material is actually traced by polarization observations?

Polarization efficiency as a measure of grain alignment

$$p(I) = p_0 \left(\frac{I}{I_0}\right)^{-\alpha}$$

We expect $0 < \alpha < 1$

 $\alpha = 0$ indicates all grains are equally aligned – no depolarization

 $\alpha = 1$ indicates statistical noise in Stokes Q and U

Two possibilities:

- A genuine lack of signal in Q and U: complete depolarization
- Insufficient signal-to-noise to detect Q and U emission

What material is actually traced by polarization observations?

What material is actually traced by polarization observations?

The effect of Ricean statistics on observed polarization fraction

The Ophiuchus Molecular Cloud

A nearby region of low-tointermediate-mass star formation (138pc; Ortiz-Leon et al. 2018)

Contains a number of dense clumps with differing star formation histories in close proximity

Global influence from Sco OB2 association, ~11pc to the west

Two embedded B stars

An excellent laboratory for testing star formation theories

Measuring α in Ophiuchus L1688

Measuring α in Ophiuchus L1688

Oph B & C: $\alpha \sim 0.6 - 0.7$, $P_{100mJy/beam} \sim 2\%$

Grains are not as well-aligned in Oph B & C as in Oph A, but some alignment persists

The radiation field of Ophiuchus

from Sco OB2 (West to East across cloud) Two B stars, embedded in cloud, but not in clumps:

HD147889: B2V

S1: ~B4V

The radiation field of Ophiuchus

R: SCUBA-2 850µm, G: Herschel 100µm, B: Spitzer 8µm Pattle et al. (2015) MNRAS 450 1094 Global influence from Sco OB2 (West to East across cloud)

Two B stars, embedded in cloud, but not in clumps:

HD147889: B2V

S1: ~B4V

The radiation field of Ophiuchus

	Plane-of-sky distance (pc)		Upper-limit ionizing photon flux $(s^{-1}m^{-2})$		
Region	HD147889	S1	HD147889	$\mathbf{S1}$	Total
Oph A	0.62	0.05	$7.0 imes 10^{10}$	1.5×10^{11}	2.2×10^{11}
Oph B	1.13	0.51	2.1×10^{10}	1.2×10^{9}	$2.2{ imes}10^{10}$
$\underline{\rm Oph \ C}$	0.91	0.50	3.2×10^{10}	1.2×10^{9}	3.4×10^{10}

Ionizing photon flux on Oph A is an order of magnitude higher than on Oph B and C

Oph A and B behave differently despite both actively forming stars

Oph B and C behave the same despite differing star formation histories

Are differences in grain alignment properties due to the higher (and bluer) radiation field on Oph A?

R: SCUBA-2 850µm, G: Herschel 100µm, B: Spitzer 8µm Pattle et al. (2015) MNRAS 450 1094

Summary

- We generally see ordered, non-hourglass magnetic fields in dense clumps and cores
- Fitting a single power-law model is likely to result in overestimation of the extent to which grain alignment has been lost
- An accurate power-law index can in many cases be recovered by fitting the mean of the Ricean distribution
- Grains in the Oph A region are well-aligned with the magnetic field at high visual extinction, probably due to its strong external radiation field
- Grains in Oph B and C retain some alignment with the magnetic field at high extinctions despite having a much weaker external radiation field than Oph A
- The clumps' star formation history does not appear to affect the grain alignment
- Grain alignment in Ophiuchus appears to be driven by incident radiation field
- Grains may remain aligned at much higher extinctions than has previously been believed to be the case

Thank you!