Zoom on Star Formation • 10–14 June 2019, Na $\dot{\upsilon}\pi\lambda\iota o$

Star formation in nearby molecular clouds

Marco Lombardi (University of Milan) Zoom on Star Formation • 10–14 June 2019, Na $\dot{\upsilon}\pi\lambda\iota o$

Star formation in nearby molecular clouds

Marco Lombardi (University of Milan)

with

Joao Alves, Jan Forbrich, Josefa Großschedl, Birgit Hasenberger, Charles Lada, & Stefan Meingast

Molecular clouds show filamentary structures

Molecular clouds show filamentary structures

Number counts and NIR extinction

Number counts and NIR extinction

Alves et al. (2000)

Number counts and NIR extinction

VLT + NTT (BIK)

Alves et al. (2000)

VLT (BVI)

2MASS extinction map (Lombardi et al. 2010)

Perseus

10 pc

Lombardi • Alves • Lada (2006-2012) NICER, NICEST

NIR extinction

- * Probably the most robust technique (e.g., Goodman 2008)
 - insensitive (in the NIR) to the physical properties of the dust grains (Indebetouw et al. 2005; Ascenso et al. 2013)
 - relies on a well established dust-to-gas ratio (Savage & Mathis 1979; Lilley 1955; Bohlin et al. 1978)
 - used to calibrate others methods (X-factor for molecular line emission, opacity for dust emission)
- * Limited by the angular **density of background sources**
 - * Need for **deep observations** and **suitable methods** for analyzing them (Meingast et al. 2017, Lombardi 2018)

VISIONS public survey PI: Joao Alves

* ~550 sq deg in nearby molecular clouds

- * YSOs identification, characterization, proper motion
- * IMF, CMF, cluster formation, wide binaries
- Resolved KS relation (down to 0.1 pc)
- 3D structure, shape, and orientation of clouds (Gaia)
- Dust properties, jets,

<u>http://visions.univie.ac.at</u>

- Un-reddened stars occupy a small region in the color-color plane
- Reddened stars are shifted in this plane
- Best extinction estimate
 obtained from colors and errors
 of each star
- Need for a control field with negligible extinction for calibration

- Un-reddened stars occupy a small region in the color-color plane
- Reddened stars are shifted in this plane
- Best extinction estimate
 obtained from colors and errors
 of each star
- Need for a control field with negligible extinction for calibration

- Un-reddened stars occupy a small region in the color-color plane
- Reddened stars are shifted in this plane
- Best extinction estimate
 obtained from colors and errors
 of each star
- Need for a control field with negligible extinction for calibration

- Un-reddened stars occupy a small region in the color-color plane
- Reddened stars are shifted in this plane
- Best extinction estimate
 obtained from colors and errors
 of each star
- Need for a control field with negligible extinction for calibration

- Un-reddened stars occupy a small region in the color-color plane
- Reddened stars are shifted in this plane
- Best extinction estimate
 obtained from colors and errors
 of each star
- Need for a control field with negligible extinction for calibration

Intrinsic (unextinguished)
 colors have a non-trivial shape
 (in part due to galaxies)

- Intrinsic (unextinguished)
 colors have a non-trivial shape
 (in part due to galaxies)
- In many cases, we have partial measurements (missing bands)
 in the control field too

- Intrinsic (unextinguished)
 colors have a non-trivial shape
 (in part due to galaxies)
- In many cases, we have partial measurements (missing bands)
 in the control field too
- Extinction does more than a simple shift in the color-color region (selection effects)

- Intrinsic (unextinguished)
 colors have a non-trivial shape
 (in part due to galaxies)
- In many cases, we have partial measurements (missing bands)
 in the control field too
- Extinction does more than a simple shift in the color-color region (selection effects)

XNICER (Lombardi 2018)

XNICER (Lombardi 2018)

 Based on the extreme-deconvolution of the color distribution (Bovy et al. 2011)

KINCER (Lombardi 2018)

- Based on the extreme-deconvolution of the color distribution (Bovy et al. 2011)
- Can be used with noisy and incomplete measurements (both in the CF and SF)

KANICER (Lombardi 2018)

- Based on the extreme-deconvolution of the color distribution (Bovy et al. 2011)
- Can be used with noisy and incomplete measurements (both in the CF and SF)
- Takes into account the incompleteness due to extinction

KINCER (Lombardi 2018)

- Based on the extreme-deconvolution of the color distribution (Bovy et al. 2011)
- Can be used with noisy and incomplete measurements (both in the CF and SF)
- Takes into account the incompleteness due to extinction
- * Big **noise improvement** wrt NICER on VISION (~50% noise reduction)

XNICER (Lombardi 2018)

- Based on the extreme-deconvolution of the color distribution (Bovy et al. 2011)
- Can be used with noisy and incomplete measurements (both in the CF and SF)
- Takes into account the incompleteness due to extinction
- * Big **noise improvement** wrt NICER on VISION (~50% noise reduction)
- * Python code freely available: github.com/astrozot/xnicer

Fact 1. Stars form inside molecular clouds

LH 95 in LMC (ACS/HST, Dimitrios Gouliermis)
Fact 1.

Stars form in the densest parts of molecular clouds

LH 95 in LMC (ACS/HST, Dimitrios Gouliermis)

Perseus (Zari, Lombardi, et al. 2016)

Embedded clusters

- * Stars form in the **densest regions** of molecular clouds...
- * ...mostly in **clusters** (Lada & Lada 2003)
- * Early evolution of stars (infant mortality) responsible for shaping molecular clouds (e.g. Geyer & Burkert 2001)
- * ...which in turn are responsible for making more stars
- We need to study star formation and clusters in their early stages

2MASSS density map

Cluster identified as **star overdensities** (e.g. von Hoerner 1963, Gutermuth et al. 2009) Often *non-trivial* for young, embedded ones

Cluster identified as **star overdensities** (e.g. von Hoerner 1963, Gutermuth et al. 2009) Often *non-trivial* for young, embedded ones

YSOs form at high (*A_K* > 0.8 mag) column density
 (presumably high densities)

- YSOs form at high (*A_K* > 0.8 mag) column density
 (presumably high densities)
- SFR ∝ #YSOs, hence SFR is controlled by amount of dense gas

- YSOs form at high (*A_K* > 0.8 mag) column density
 (presumably high densities)
- SFR ∝ #YSOs, hence SFR is controlled by amount of dense gas
- * Related to the resolved Schmidt-Kennicutt relation: SFR $\propto A_K^\beta$ (Lombardi et al. 2011), with $\beta = 2-3$

SFR changes along the cloud by a factor ~10, following dense gas (YSO catalogs from Evans et al. 2003, Megeath et al. 2012, Großschedl et al. 2019)

Orion in 3D using Gaia DR2 parallaxes of YSOs: bent head, in total the cloud is 90 pc long! (Großschedl et al. 2018)

Fact 2. Molecular clouds have log-normal PDFs Fact 2. Molecular clouds have power-law PDFs

Log-normality of PDFs

Alves et al. (2014)

Log-normality of PDFs

Alves et al. (2014)

Log-normality of PDFs

Systematic residuals in the entire fitting region. Maybe Herschel will do better?

Alves et al. (2014)

Herschel PDF⁰⁻² of l⁰⁻¹Cal ¹⁰ ouds

 PDFs are hardly symmetric in log-log 10^{-2}

 10^{-3}

- * Turn @ $A_K \sim 0.15$ mag
- 10-1* Powendaw at higher columnaldensities
- Clouds contaminated by fg/bg material OrionA
 Pipe * Possibileritog-norFeatility only at low column
 Clensities

Frequency

Frequency

Ophiuchus North (Planck + Herschel)

Ophiuchus North (Planck + Herschel)

Alves, Lombardi, Lada (2017)

Ophiuchus North (Planck + Herschel)

What we really know about PDFs

What we really know about PDFs

SUMMARY

1. SFR correlates best with dense gas above $A_K \sim 0.8$ mag, in agreement with the resolved Smidth-Kennicutt relation

- 1. SFR correlates best with dense gas above $A_K \sim 0.8$ mag, in agreement with the resolved Smidth-Kennicutt relation
- 2. PDF of molecular clouds shows an extended power-law

- 1. SFR correlates best with dense gas above $A_K \sim 0.8$ mag, in agreement with the resolved Smidth-Kennicutt relation
- 2. PDF of molecular clouds shows an extended power-law
- 3. Local clouds our best chance to understand the scaling relations <u>http://www.interstellarclouds.org/html</u>

* Log-normal distributions are expected for ρ (Vázquez-Semadeni 1994, Padoan et al. 1997, Scalo et al 1998...)

- * Log-normal distributions are expected for ρ (Vázquez-Semadeni 1994, Padoan et al. 1997, Scalo et al 1998...)
 - * Fluido-dynamic equations are scale-free

$$\frac{\partial \rho}{\partial t} = -\rho \nabla \cdot \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla)\rho$$
$$\frac{\partial \boldsymbol{u}}{\partial t} = -(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \frac{1}{M^2} \frac{\nabla P}{\rho} + \frac{J^2}{M^2} \boldsymbol{g}$$

- * Log-normal distributions are expected for ρ (Vázquez-Semadeni 1994, Padoan et al. 1997, Scalo et al 1998...)
 - Fluido-dynamic equations are scale-free

$$\frac{\partial \rho}{\partial t} = -\rho \nabla \cdot \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla)\rho$$
$$\frac{\partial \boldsymbol{u}}{\partial t} = -(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \frac{1}{M^2} \frac{\nabla P}{\rho} + \frac{J^2}{M^2} \boldsymbol{g}$$

* Relative changes of ρ are equally expected

- * Log-normal distributions are expected for ρ (Vázquez-Semadeni 1994, Padoan et al. 1997, Scalo et al 1998...)
 - Fluido-dynamic equations are scale-free

$$\frac{\partial \rho}{\partial t} = -\rho \nabla \cdot \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla)\rho$$
$$\frac{\partial \boldsymbol{u}}{\partial t} = -(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \frac{1}{M^2} \frac{\nabla P}{\rho} + \frac{J^2}{M^2} \boldsymbol{g}$$

- * Relative changes of ρ are equally expected
- Central limit theorem predicts a log-normal

- * Log-normal distributions are expected for ρ (Vázquez-Semadeni 1994, Padoan et al. 1997, Scalo et al 1998...)
 - Fluido-dynamic equations are scale-free

$$\frac{\partial \rho}{\partial t} = -\rho \nabla \cdot \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla)\rho$$
$$\frac{\partial \boldsymbol{u}}{\partial t} = -(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} - \frac{1}{M^2} \frac{\nabla P}{\rho} + \frac{J^2}{M^2} \boldsymbol{g}$$

- * Relative changes of ρ are equally expected
- Central limit theorem predicts a log-normal
- Projection effects (in most cases...) do not significantly alter this expectation (Vázquez-Semadeni & García 2001)

Brightness

$$m_{\text{obs}} = -2.5 \log(F_{\star} e^{-\tau})$$
$$= -2.5 \log F_{\star} + 2.5\tau \log e$$
$$m_{\star} \qquad A_{K}$$

Extinction

 $m_{\rm obs} = m_\star + A_K = m_\star + 1.086\,\tau$

Brightness

$$m_{\text{obs}} = -2.5 \log(F_{\star} e^{-\tau})$$
$$= -2.5 \log F_{\star} + 2.5\tau \log e$$
$$m_{\star} \qquad A_{K}$$

Extinction

 $m_{\rm obs} = m_\star + A_K = m_\star + 1.086\,\tau$

Brightness

$$m_{\text{obs}} = -2.5 \log(F_{\star} e^{-\tau})$$
$$= -2.5 \log F_{\star} + 2.5\tau \log e$$
$$m_{\star} \qquad A_{K}$$

Extinction

 $m_{\rm obs} = m_\star + A_K = m_\star + 1.086\,\tau$

Brightness

$$m_{\text{obs}} = -2.5 \log(F_{\star} e^{-\tau})$$
$$= -2.5 \log F_{\star} + 2.5\tau \log e$$
$$m_{\star} \qquad A_{K}$$

Extinction

 $m_{\rm obs} = m_\star + A_K = m_\star + 1.086\,\tau$

Brightness

$$m_{\text{obs}} = -2.5 \log(F_{\star} e^{-\tau})$$
$$= -2.5 \log F_{\star} + 2.5\tau \log e$$
$$m_{\star} \qquad A_{K}$$

Extinction

 $m_{\rm obs} = m_\star + A_K = m_\star + 1.086\,\tau$

Brightness

$$m_{\text{obs}} = -2.5 \log(F_{\star} e^{-\tau})$$
$$= -2.5 \log F_{\star} + 2.5\tau \log e$$
$$m_{\star} \qquad A_{K}$$

Extinction

 $m_{\rm obs} = m_\star + A_K = m_\star + 1.086\,\tau$

 Star number counts follow approximately a power law

Log(Number counts)

* Star **number counts** follow approximately a power law

Log(Number counts)

- Star number counts follow approximately a power law
- Extinction shifts the number counts line to the right: we observe less stars

Log(Number counts) 10-10m

- Star number counts follow approximately a power law
- Extinction shifts the number counts line to the right: we observe less stars

Log(Number counts) c 10m o At

- Star number counts follow approximately a power law
- Extinction shifts the number counts line to the right: we observe less stars
 - Originally used to infer the extinction of the cloud (Wolf 1923, Bok 1937)

- Star number counts follow approximately a power law
- Extinction shifts the number counts line to the right: we observe less stars
 - Originally used to infer the extinction of the cloud (Wolf 1923, Bok 1937)
 - Can actually be a problem for most color-excess techniques

Lombardi (in prep.)

 Big square: resolution element of an extinction map

- Big square: resolution element of an extinction map
- True extinction very patchy (small squares)

- Big square: resolution element of an extinction map
- True extinction very patchy (small squares)
- The unresolved structures bias the extinction low: stars mostly seen where extinction is low

- Big square: resolution element of an extinction map
- True extinction very patchy (small squares)
- The unresolved structures bias the extinction low: stars mostly seen where extinction is low

- Big square: resolution element of an extinction map
- True extinction very patchy (small squares)
- The unresolved structures bias the extinction low: stars mostly seen where extinction is low

- Big square: resolution element of an extinction map
- True extinction very patchy (small squares)
- The unresolved structures bias the extinction low: stars mostly seen where extinction is low

- Big square: resolution element of an extinction map
- True extinction very patchy (small squares)
- The unresolved structures bias the extinction low: stars mostly seen where extinction is low

- Big square: resolution element of an extinction map
- True extinction very patchy (small squares)
- The unresolved structures bias the extinction low: stars mostly seen where extinction is low

- Big square: resolution element of an extinction map
- True extinction very patchy (small squares)
- The unresolved structures bias the extinction low: stars mostly seen where extinction is low

- Big square: resolution element of an extinction map
- True extinction very patchy (small squares)
- The unresolved structures bias the extinction low: stars mostly seen where extinction is low

- Big square: resolution element of an extinction map
- True extinction very patchy (small squares)
- The unresolved structures bias the extinction low: stars mostly seen where extinction is low
- Solution: weight each star by the inverse of its detection probability (Lombardi 2009)

