IMF origin and episodic accretion constrained by a rich cluster of massive cores and outflows

Thomas Nony (IPAG, Grenoble)

<u>Special credits to:</u> **F. Motte**, **F. Louvet**, J. Molet, K. Marsh, N. Brouillet, A. Gusdorf, S. Bontemps, et al.

The ALMA-IMF team: *PIs* F. Motte, F. Louvet, A. Ginsburg, P. Sanhueza, *co-Is* including C. Battersby, V. Chen, T. Csengeri, N. Cunningham, R. Galvan-Madrid, A. Guzman, A. Lopez, X. Lu, L. Maud, F. Nakamura, F. Olguin, J.-F. Robitaille, A. Stutz, K. Tatematsu, F. Wyrowski ...

- 1) What is the origin of the stars' mass distribution (IMF)?
 - \rightarrow build the cores' mass distribution (CMF)

- 2) What do protostellar ejections tell us about the accretion process?
 - → study the time-variability of protostellar outflows

1/ The CMF / IMF similarity in low-mass SF regions

Submm ground-based, Herschel, and NIR extinction surveys of the past 2 decades (Motte+ 1998, 2001; Testi & Sargent 1998; Johnstone+ 2000; Stanke+ 2006; Alves+ 2007; Nutter & Ward-Thompson 2007; Enoch+ 2008; André+ 2010; Könyves+ 2015, ...).

The IMF seems determined by fragmentation at the prestellar stage

1/ Assumptions behind the CMF/IMF comparison

- Measured core mass = total mass available to form a star
 What about the impact of accretion streams toward high-mass cores?
 What about sub-fragmentation and stellar multiplicity?
- 2. Uniform gas-to-star mass conversion of cores, ε (m) = cst
 > Does ε increase with core density like in clumps (e.g., Louvet+ 2014)?

3. Snapshot (~ 10⁵ yr) = true CMF,
vs IMF integrated over several episodes of SF, ages ~ 10⁶ − 10⁷ yr
➢ Is star formation continuous or does it evolve with time?

1/ The CMF / IMF similarity in low-mass SF regions

Submm ground-based, Herschel, and NIR extinction surveys of the past 2 decades (Motte+ 1998, 2001; Testi & Sargent 1998; Johnstone+ 2000; Stanke+ 2006; Alves+ 2007; Nutter & Ward-Thompson 2007; Enoch+ 2008; André+ 2010; Könyves+ 2015, ...).

The IMF seems determined by fragmentation at the prestellar stage From studies limited to <10 M_{\odot} cores... ... in regions not typical of the main mode of star formation in galactic disks.

T. Nony, Zooming in on SF

1/ <u>W43-MM1</u>: a "mini-starburst" protocluster

1/ <u>W43-MM1</u>: ALMA data

ALMA Cycle 2 and 3 data:

- ▶ 12m + 7m (ACA) arrays
 → Scales 0.5"-20" (~ 0.01-0.5 pc at 5.5 kpc)
- 8 spectral windows at 1.3 mm
- 33 fields mosaic

Mass completeness ~1.6 M_{\odot}

Cores extraction:

- Using getsources, a multi-scale algorithm (Men'shchikov+2012)
- line-free band + wide band (2 GHz)

Table 1. Basics parameters of the merged data spectral windows.

Spectral	$v_{\rm obs}$	Bandwidth	Resolution		rms
window	[GHz]	[MHz]	["] [km s ⁻¹]		а
SiO(5-4)	217.033	234	0.48	0.3	2.5
CO(2-1)	230.462	469	0.46	1.3	3.1
¹³ CS(5-4)	231.144	469	0.46	0.3	3.1
Continuum	233.4	1875	0.43	1.3	1.9
$\overline{(a)} 1\sigma$ rms in [mJy beam ⁻¹]					

Cores' mass calculated from dust continuum emission (*S*^{int}) - including a correction for optical thickness

- dust temperature T_d estimated with PPMAP (Marsh+15)

T. Nony, Zooming in on SF

1/ <u>W43-MM1</u>: continuum image and core extraction

T. Nony, Zooming in on SF

1/ <u>W43-MM1</u>: continuum image and core extraction

1/ Core Mass Function within the W43-MM1 ridge

Slope $V = -0.96 \pm 0.13$ on 1.6-100 M_{\odot}: CMF much flatter than the IMF (-1.35) => It would suggest an atypical IMF for stars of 1-50 M_{\odot} (ϵ =50%). (Schneider+18)

Or CMF evolution:

- Continuous mass growth of massive cores
- \Rightarrow Flatter
- New episodes of filament and core formation
- \Rightarrow maybe steeper...

→ Adressed by the ALMA-IMF LP

1/ The ALMA-IMF Large Program

- 1) What is the origin of the stars' mass distribution (IMF)?
 - \rightarrow build the cores' mass distribution (CMF)

- 2) What do protostellar ejections tell us about the accretion process?
 - → study the time-variability of protostellar outflows

2/ Characterize episodic ejection

High-velocity CO reveal episodic ejection

2/ Characterize episodic ejection

Estimation of the time elapsed between 2 knots/ejecta, Δt

- 48 measures on 22 lobes from 14 cores
- unknown inclination: homogeneous correction with a mean angle of 57.3°
- \Rightarrow episodic ejection with $\Delta t \sim 500$ yr (800 yr before correction)

To be compared to models (see e.g. Vorobyov+18)

to observed timescales of accretion burst/variability

Conclusion and perspectives

- ➤ A rich cluster of 131 cores was revealed in W43-MM1, with a large mass range (2 000 AU and ~1-100 M_☉),
 Among them 13 forming high-mass stars (M > 16 M_☉)
- The W43-MM1 CMF is markedly flatter than the reference IMF
 Do CMF evolve with time? @ALMA-IMF
- ejection episodicity ~ 500 yr measured over a large sample of jets reminiscent of disk-instabilities?
 - of episodic inflow of gas from the clump?
 - ⇒ models are needed to interpret the complex accretion/ejection behaviour