Star formation regulation: from clouds to the cosmos

Eve Ostriker

Princeton University

Multi-scale self-regulated SF

- Large-scale SF regulation by feedback
- GMCs and SFRs
- Galactic winds

The ISM, SF, and feedback

- ISM dissipation and losses are rapid, so large-scale self-consistent ISM state/SF regulation theory must account for *source terms*
- Energy source terms are mainly from *young massive stars*
- ⇒ self-regulated, feedback-modulated, quasi-equilibrium on large scales
- *⇒ extreme time-dependent cycling on small scales*

Self-regulation concept

When some gas in a system collapses

- new short-lived, high-mass stars are born
- these stars inject energy, momentum to their surroundings
- transforms state of ISM (phase changes), accelerates motions on a range of scales

may limit further collapse and may remove "fuel" from system

Star formation **now** regulates **future** star formation

TIGRESS*

C.-G. Kim & Ostriker (2017, 2018)

*Three-phase ISM Resolving Evolution with Star formation and Supernovae

Physics

- MHD, shearing box, FFT selfgravity
- External potential for old stars + DM
- Sink particles = star clusters
- Cluster particles set timedependent FUV field, SN rate/location
- Warm-cold ISM heated by PE effect
- Hot ISM created by SN shocks with resolved Sedov phase
- SN in clusters + OB runaways yields realistic space-time correlation of SNe with different ISM phases
- With local box, high resolution everywhere
- > Tall box to quantify fountain vs. wind
- Efficiently explore range of galactic environments

Feedback "yields" • Sets pressure $(P_{th}, P_{turb}, P_{mag}, P_{CR})$ in ISM – Higher PE heating rate from higher J_{FUV} \Rightarrow higher P_{th} in WNM and CNM Wolfire et al (1995, 2003) Ostriker et al (2010) If both warm and cold gas are present, expect $P_{th} \sim P_{two-phase} \propto J_{FUV} Z_d / Z_g \Rightarrow P_{th} = \eta_{th}, FUV \Sigma_{SFR}$ - Higher driving rate from higher SN explosion rate \Rightarrow higher P_{turb} (kinetic & magnetic), P_{CR} Ostriker & Shetty (2011)

 $\Rightarrow P_{\rm turb} = \eta_{turb,SN} \Sigma_{SFR}$

Thermal equilibrium

SNR/Superbubble momentum

 Superbubble has similar momentum/SN to individual SNR: p_{*,SNR} =2.8×10⁵ M_☉km/s ⟨n₀⟩^{-0.17} C.-G. Kim & Ostriker (2015), Iffrig & Hennebelle (2015), Martizzi et al (2015), Walch & Naab (2015)

Feedback momentum/mass from SNe: $p_*/m_* \sim (1-3) \times 10^3$ km/s

$P_{th} vs \Sigma_{SFR}$ in observations

- From Herschel/KINGFISH, use [CII] 158µ emission to obtain thermal pressure of primarily-atomic gas
- Sample of 31 galaxies also in THINGS and HERACLES
- kpc-scale resolution pointings
- Consistent with the prediction

 $P_{th}=P_{two-phase} \propto \Sigma_{SFR}$ from Wolfire et al (2003)

Herrera-Camus et al (2017)

P_{turb} vs Σ_{SFR} in observations

• Prediction from feedback:

 $P_{\text{turb}} \sim F_z = \frac{1}{4} \frac{p_*}{m_*} \Sigma_{SFR}$

on large scales

 Concentration of SF in clouds increases the momentum input/time/area relative to kpc-scale average

Jiayi Sun + PHANGS (2019, in prep)

Self-regulated Σ_{SFR} in disk galaxies

• Allowing for *thermal, turbulent,* and *magnetic* pressure as driven by star formation feedback:

 $P_{\text{th}} = \eta_{\text{th}} \sum_{\text{SFR}}, P_{\text{turb}} = \eta_{\text{turb}} \sum_{\text{SFR}}, P_{\text{mag}} = \eta_{\text{mag}} \sum_{\text{SFR}}$ $P_{\text{tot}} = (\eta_{\text{th}} + \eta_{\text{turb}} + \eta_{\text{mag}}) \sum_{\text{SFR}} = \eta_{\text{tot}} \sum_{\text{SFR}}$

• Vertical force balance: $P_{tot} \approx \mathcal{W} = \int \rho g_z dz = \Sigma_{gas} \langle g_z \rangle / 2 \equiv P_{DE}$

 $P_{\rm DE} = \Sigma_{gas} \frac{\langle g_z \rangle}{2} \approx \frac{\pi G \Sigma_{gas}^2}{2} + \Sigma_{gas} (2G\rho_*)^{1/2} \sigma_{gas,z}$

• Self-regulated equilibrium star formation rate:

$$\langle \Sigma_{\rm SFR} \rangle = \langle P_{\rm tot} \rangle / \eta_{\rm tot} = P_{\rm DE} / \eta_{\rm tot}$$

• Calibrating η values with numerical simulations, result is $\eta_{tot} \sim 1000 \text{ km/s} \Rightarrow$

 $\Sigma_{SFR} = 2 \times 10^{-3} M_{\odot} \text{ kpc}^{-2} \text{ yr}^{-1} \left(\frac{P/k}{10^4 \text{ cm}^{-3} K} \right) = f(\Sigma_{gas}, g_z)$

Ostriker, McKee, & Leroy (2010); Ostriker & Shetty (2011); C.-G. Kim, Kim, & Ostriker (2011) Shetty & Ostriker (2012); C.-G. Kim, Ostriker, Kim (2013); C.-G. Kim & Ostriker (2015,2017)

TIGRESS Evolution

11

Dynamical equilibrium

Varying galactic environment with TIGRESS: the required average equilibrium pressure is maintained See also: C.-G. Kim, W.-T. Kim, & Ostriker (2011), C.-G. Kim, Ostriker, W.-T. Kim, (2013) 12

Pressure vs. Σ_{SFR}

Colors: new TIGRESS simulations; lines from C.-G. Kim, Ostriker & W.-T. Kim (2013)

$$\Sigma_{SFR} \approx 2 \times 10^{-3} M_{\odot} \text{ kpc}^{-2} \text{yr}^{-1} \left(\frac{P/k}{10^4 \text{ cm}^{-3} \text{ K}} \right)$$

13

6/20/19

P_{DE} vs. Σ_{SFR} in observations

 $P_{\rm DE} = \pi G \Sigma_{\rm gas}^2 / 2 + \Sigma_{\rm gas} (2G \ \varrho_*)^{1/2} \sigma_z$

^{6/20/19} See also: Blitz & Rosolowsky (2006), Leroy et al (2008)

Connecting to small-scale star formation

Dense gas evolution

• Temporal phase shift in peaks of mass in different density regimes:

 $t_{\rm shift} \propto t_{\rm ff}(\rho)$

 Indication of hierarchical formation of self-gravitating structure

Dense gas and SFRs

 Detailed correlation between gas mass and SFR secularly improves with density

• With $\varepsilon_{\rm ff} \equiv \Sigma_{\rm SFR} (t + t_{\rm shift}) t_{\rm ff} / \Sigma_{\rm gas}(t)$ $\varepsilon_{\rm ff}$ increases with density

Dense gas=bound gas? Fraction of cloud mass that is bound

- Most structures, especially at low mass, are unbound
- No fixed density threshold for becoming bound: bound fraction increases with density threshold
- Simple virial parameter typically overestimates true "boundedness"
- Massive clouds are typically not bound even if $\alpha_{vir} < 2$

Mass

Padoan, Pan, Haugbolle, & Nordlund (2016)

10.1

18

Mao, Ostriker, & C.-G. Kim (2019)

SF efficiency per free-fall time

Can test how well analytic SF models fit numerical results using time series

$$\operatorname{SFR}_{m}(t) = \sum_{\text{object}} \epsilon_{\mathrm{ff}}(\alpha_{v,i}) M_{i} / t_{\mathrm{ff},i}.$$

[1] constant $\epsilon_{\rm ff}(\alpha_v) = \epsilon_{\rm ff,0}.$

[2] exponential

$$\epsilon_{\rm ff}(\alpha_v) = \epsilon_{\rm ff,0} \exp(-\beta \sqrt{3\pi^2/40}\alpha_v)$$

Padoan, Haugbolle, & Nordlund (2012): $\beta = 1.6$

[3] threshold

6/20/:
$$\epsilon_{\rm ff}(\alpha_v) = \epsilon_{\rm ff,0} H(\alpha_{v,{\rm cutoff}} - \alpha_v)$$

,

actic winds & fountains

Outflows driven by SNe: hot wind

- From TIGRESS simulations of Solar nbhd:
 - Hot gas escapes as nearly adiabatic wind carrying 10% of the mass converted to stars, 1% of energy in SNe
 - Warm gas has more mass, less energy: creates "fountain"

Outflows driven by SNe: hot wind

- From TIGRESS simulations across environments:
 - Bernoulli implies asymptotic speed $v_{hot} \sim 300-500 \text{ km/s}$
 - Mass loading insensitive to SFR
 - Energy loading increases weakly with SFR

Outflows driven by SNe: warm fountain

- Warm gas accelerated to v ~ 20-200 km/s, increases with SFR
- Exponential distribution dM/dv_z
- Creates fountain in massive galaxies ($v_z < v_{esc}$) For dwarf galaxy, gas could escape ($v_z > v_{esc}$)

Warm "fountain" gas may be further accelerated out of galaxy by cosmic ray pressure gradients when CR fluid streams at v_A

.G. Kim & Ostriker (2018)

U

*Carrying capacity for CR-driven wind*Mass-loss rate/area in disk: Mao & Ostriker (2018)

$$\dot{\Sigma} \sim 3 \times 10^{-3} \ M_{\odot} \ \mathrm{kpc}^{-2} \ \mathrm{yr}^{-1} \left(\frac{\Pi_0}{1 \mathrm{eV} \ \mathrm{cm}^{-3}}\right) \left(\frac{V_H}{200 \mathrm{kms}^{-1}}\right)^{-5/3} \left(\frac{u_0}{50 \mathrm{kms}^{-1}}\right)^{2/3}$$

• Mass-loss rate compared to SFR:

$$\frac{\dot{\Sigma}_{\text{wind,cr}}}{\Sigma_{\text{SFR}}} = \frac{\eta_{\text{cr}}}{c_s} \frac{\dot{\Sigma}_z c_s}{\Pi_0} \\ \sim 0.8 \left(\frac{\eta_{\text{cr}}}{600 \text{ km s}^{-1}}\right) \left(\frac{V_H}{200 \text{ km s}^{-1}}\right)^{-5/3} \left(\frac{u_0}{50 \text{ km s}^{-1}}\right)^{2/3} \left(\frac{A_c}{A_0}\right)^{1/3} \hat{z} \cdot \hat{s}.$$

• $u_0 \sim 20-200 \text{ km/s for SN-}$ driven "fountain" \Rightarrow wind mass-loss could exceed SFR for $V_H < 200 \text{ km/s}$

6/20/19

- Star formation is self-regulated by feedback at wide range of scales:
 - turbulent, thermal, radiation, magnetic, and cosmic ray energy densities are sustained by *energy input from massive stars*
 - these stresses control SF rates and efficiencies by mitigating or reversing gravitationally-induced collapse
- For disk galaxies, mean SFR adjusts so that turbulent, thermal, & magnetic pressure allow quasi-steady equilibrium in energy equation (gains=losses) and momentum equation (force balance)
- Most dense structures appear to be unbound, when taking into account full gravitational potential (tidal effects)
- Structures at higher density are increasingly correlated with SF; varying models for $\varepsilon_{\rm ff}$ fit SFR comparably
- Outflows driven by SNe create galactic winds and fountains
 - hot winds have mass loading ~ 0.1, energy loading ~ 0.01 0.1
 - warm fountains have v~ 20-200 km/s, mass loading ~ 1 at z~ kpc
 - Streaming cosmic rays may accelerate warm fountains into warm winds to produce mass loading >1 when $v_H \leq 200 \text{ km/s}$