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■ Challenges to model molecular clouds 
■ Multi-scale physics 

■ Chemical evolution 

■ Challenges in theory: 
■ molecular cloud turbulence 

■ magnetic fields 

■ Challenges to observe 
■ Dust polarisation 

■ not yet fully understood: what, how? 

■ Ongoing research (e.g. BlastPol)

Introduction



SILCC-Zoom: Numerics
■ Simulations based on the SILCC 

simulations (Walch et al. 2015, 
Girichidis et al. 2016) 

■ part of a galactic disk 

■ Supernova driving 

■ Network for H2 and CO 
chemistry 

■ Varying magnetic field strengths



Zoom-in procedure

■ We select regions in which MCs are about to form (about 50-100 pc in size) 

■ We increase the resolution from 4 pc to ~ 0.1 pc

Seifried et al., 2017, MNRAS, 472, 4797



Chemical composition: H2

■ H2 (red line) present in lower density gas n < 30 cm-3 (blue line) 

■ H2 formation time scale ~ 30 Myr   >>  simulated time (a few Myr) 
■ Turbulent mixing from dense regions into low-density gas (Glover et al. 2010, 

Valdivia et al. 2016) 

■ Non-equilibrium chemistry 

■ Simple chemical postprocessing NOT possible for H2



Chemical composition: Convergence

■ H2 and CO content converge at ~ 0.1 pc 
■ Supported by analytical model (Joshi et al. 2019) 

■ Essential for synthetic observations

Seifried et al., 2017, MNRAS, 472, 4797 
Joshi et al. 2019, MNRAS, 484, 1735



Turbulence in MCs

■ Supernovae (SNe) 
■ drive turbulence in the diffuse ISM 

■ create MCs at collision interfaces (Koyama & Inutsuka 2000) 

■ maintain turbulence later-on? (see talk by Paolo Padoan) 

■ Impact of gravity in maintaining turbulence? (Ibanez-Mejia et al. 2016, 2017)

Inutsuka et al. 2014



Turbulence in MCs

■ SN exploding 25 pc away from a MC 
■ Dense parts of MC little affected 

■ SN is „channeling“ through the cloud
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■ Decay of  turbulence within a few 100 kyr 
■ the late the SNe, the lower its effect 

■ „cross section“ decreases 

■ Under solar neighborhood conditions: 
■ MC relatively inert against external SN 

during collapse 

■ ⇒ Turbulence driving not possible 

■ In CMZ: 
■ SNe more frequent 

■ ⇒ Turbulence driving by SN possible 
(Kauffmann et al. 2017)

Large SN impact                        Small SN impact 

Supernova driven turbulence 

Seifried et al. 2018, ApJ, 885, 81
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Polarisation radiative transfer

■ Combine MHD simulation of MCs with POLARIS (Reissl et al., 2016) 

■ Fully self-consistent dust polarisation radiative transfer:  
■ Application of Radiative torque (RAT) alignment theory (Lazarian & Hoang 2007) 

■ Standard dust model (size: 5 nm - 2 µm, a-3.5)

Seifried et al., 2019, MNRAS, 482, 2697



Polarisation radiative transfer

■ Combine MHD simulation of MCs with POLARIS (Reissl et al., 2016) 

■ Fully self-consistent dust polarisation radiative transfer:  
■ Application of Radiative torque (RAT) alignment theory (Lazarian & Hoang 2007) 

■ Standard dust model (size: 5 nm - 2 µm, a-3.5) 

■ λ = 70.4, 161, 243, 342, 515, 850, 1300, and 3000 µm 

■ Including realistic noise 
■ adapted to typical Planck/BlastPol observations

Seifried et al., 2019, MNRAS, 482, 2697



The influence of noise

■ Randomizes polarisation vectors in low-intensity regions 
■ Convolution improves quality 
■ Large deviations below 

■ 1 Msun pc-2 , AV ~ 0.1 

■ intensities below 3 x noise level

Seifried et al., 2019, MNRAS, 482, 2697



Which regions are traced by dust 
polarisation?
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Which regions are traced by dust 
polarisation?

■ Comparison dust polarisation <-> LOS-averaged magnetic field: 

■ Accuracy of field measurement: ≤ 5º 

■ ⟹ Dust polarisation probes dense structures 

■ ⟹ Less the diffuse foreground/background 

Seifried et al., 2019, MNRAS, 482, 2697



■ Dust polarisation probes dense structures: 

■ ⟹ Dust alignment effective in dense, well-shielded regions?! 

■ Requires sufficient radiation
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■ Dust polarisation probes dense structures: 

■ ⟹ Dust alignment effective in dense, well-shielded regions?! 

■ Requires sufficient radiation 

■ POLARIS: dust size-dependent information about alignment: 
■ smallest grains well aligned up to n ~ 1000 cm-3 (~ AV > 3) 

■ RAT still efficient 

■ Potential decrease towards higher                                                                     
densities 

■ ⇒ depolarisation in very dense cores                                                                          
(no resolved here)

lower threshold of 
aligned dust grains

Which regions are traced by dust 
polarisation?



Depolarisation 

■ Polarisation observations show depolarization 
■ Also visible in simulations 

■ Strongly tangled fields as a source of depolarization?



Depolarisation 

■ Polarisation observations show depolarization 
■ Also visible in simulations 

■ Strongly tangled fields as a source of depolarization? 

■ Quantify with mean variation along the LOS:
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■ Strong correlation



Depolarisation 

■ Large B-field variation in regions of low 
polarisation degree 

■ Strong correlation 

■ Depolarisation on cloud scale caused 
by tangled B-field 

■ … and not misaligned dust 

■ → Below 2% large variations: 

■ Observed field not representation 
for underlying magnetic field



Summary 

■ Molecular clouds modelling requires: 
■ On-the-fly chemical modeling for H2 and CO 

■ 0.1 pc resolution 

■ Molecular clouds become inert against external supernova 
■ Effect limited in time  

■ Self-consistent dust polarisation maps including radiative torque alignment with 
POLARIS 

■ Dust polarisation traces magnetic field 
■ in dense gas 

■ with an accuracy of ≤ 5º 

■ Depolarisation due to strong variation of B-field along LOS 
■ dust remains well aligned at AV > 3


