The far-infrared polarization spectrum of Rho Ophiuchi A from HAWC+/SOFIA observations

Fabio P. Santos

Post-doctoral Fellow

Max Planck Institute for Astronomy

Heidelberg, Germany Contact: fabiops@mpia.de

Magnetic Fields and Star Formation

- Role of magnetic fields in star formation
- Interstellar polarization from dust emission
- How to interpret polarization maps? Indirectly traces magnetic fields
 - Grain alignment

Magnetic fields in the Milky Way mapped through observations of interstellar polarization

Rho Oph A Molecular Cloud

- Rho Oph A: ~130 pc
- Warmed up by Oph S1 massive B3 star

Rho Oph A – HAWC+ Observations

- HAWC+ Observations:
 - Band C: 89 μm
 - Band D: 155 μm

Main Goal: combine pol. bands C and D

- Slope of polarization spectrum probe grain alignment efficiency
- Test Radiative Torques (RATs)

Magnetic fields in Rho Oph A

Santos et al. (2019, submitted - ApJ, arXiv: 1905.00705)

Magnetic fields in Rho Oph A

Santos et al. (2019, submitted - ApJ, arXiv: 1905.00705)

Band D

• Slope of polarization spectrum: $R_{DC} = P_D / P_C$

Good probe of grain alignment efficiency

Far-IR polarization spectrum

Map of $R_{DC} = P_D / P_C$

• Systematic dependence of polarization spectrum slope with cloud density

R_{DC} as a function of column density log N

- Hypothesis: differences in grain alignment efficiency
 - outer (warm) grains, well aligned
 - inner (cold) grains, poorly aligned

Far-IR polarization spectrum

- Very simple model:
 - Spherical dense core embedded in uniform background
 - Fit 7 model parameters based on *Herschel* data

- Transition radius R_T:
 - r < R_T: no polarized flux (no grain alignment) – free parameter
 - Test for RATs

Rho Oph A Molecular Cloud

Santos et al. (2019, submitted - ApJ, arXiv: 1905.00705)

• Comparing model with observations:

> • Calculate R_{DC} vs. log N for different R_T values: 0.3 R, 0.6 R and 0.9 R

Rho Oph A Molecular Cloud

R_{DC} as a function of column density log N

Santos et al. (2019, submitted - ApJ,

arXiv: 1905.00705)

• The observed decrease of ~50% in R_{DC} can be reproduced with the simple model

• Decrease in grain alignment efficiency likely responsible for trends in polarization spectrum slope – support for RATs

Zooming in on Star Formation - June 2019 - Nafplio, Greece

Final remarks

- First conclusive observation of systematic variations of the farinfrared polarization spectrum within an interstellar cloud.
- Consistent with reduced grain alignment efficiency in the core, based on very simple modeling of the cloud.
- New method to probe grain alignment efficiency. Grain alignment theory: critical connection between interstellar polarization and magnetic fields crucial to understand star formation.

Thank you!