Brown dwarf formation across environments Kora Muzic (CENTRA, ULisbon)

with V. Almendros-Abad, A. Scholz, K. Peña Ramírez, R. Jayawardhana, R. Schödel, V. C. Geers, L. Cieza, J. Ascenso, A. Bayo, et al.

FC Fundação para a Ciência e a Tecnologia NCIA. TECNOLOGIA E ENSINO SUPERIO

centra

Brown dwarfs

Objects below Hydrogen-burning limit (mass < 0.075 M_o**)**

They cool down as they age

Possible formation channels:

- Turbulent fragmentation
- Disk fragmentation
- Ejection from multiple systems
- Photoevaporation

Brown dwarfs

Young BDs share many properties with low-mass stars (disks, outflows, multiplicity properties...)

Most brown dwarfs probably form like stars*

*at least down to 5-10 Jupiter masses

Multiple unsolved questions:

How far in mass does the stellar IMF extend? Do the lowest-mass objects form "like stars" or "like planets"? Is BD formation environment dependent?

Does the brown dwarf formation efficiency depend on star forming environment?

Brown dwarf formation theories: Yes, it should matter

Stellar Density

Gas Density

Massive stars

Bonnell et al. (2008)

Jones & Bate (2018)

SONYC - Substellar Objects in Nearby Young Clusters browndwarfs.org/sonyc

Goal: find all the young brown dwarfs in diverse regions and examine their properties Strategy: deep optical and NIR photometry + spectroscopic follow-up How deep can we go? 5-10 Jupiter masses (nearest SFRs, extinction dependent)

5 regions (<5 Myr) > 700 spectra ~ 100 confirmed brown dwarfs and very-low mass stars

SONYC - Substellar Objects in Nearby Young Clusters

Power-law IMF $dN/dM \propto M^{-\alpha}$

<mark>α = 0.6 - 1</mark> N(*)/N(BD) = 2 - 5

Other similar works

	α	Mass range	Reference
σOri	0.6 ± 0.2	0.006 - 0.35	Peña Ramírez+2012
Collinder 69	0.2 - 0.4	0.01 - 0.65	Bayo+2011
Upper Sco	0.45 ± 0.11	0.009 - 0.2	Lodieu+2013
IC 348	0.7 ± 0.4	0.012 - 0.075	Alves de Oliveira+2013
ρ Oph	0.7 ± 0.3	0.004 - 0.075	Alves de Oliveira+2013

New massive cluster program

RCW 38

Densest stellar system within 4 kpc

> 10 x denser than NGC 1333
~100 x denser than Cha-I
Rich in massive stars

Density similar to Cha-l Rich in massive stars

1-2 Myr

NGC 2244

FLAMINGOS/Gemini-S JHK imaging Complete down to ~0.02 M_o Stellar part well characterized by Gaia DR2 Below ~0.1 M_o statistical determination of membership (comparison to a control field)

Spectroscopic follow-up in progress - see poster by Víctor Almendros-Abad

Muzic et al. (2019, subm.)

Initial Mass Function

RCW 38

NGC 2244

Muzic et al. (2017, 2019 subm.)

Star-to-BD number ratio

 $N(0.075 - 1 M_{\odot})$ $N(0.03 - 0.075 M_{\odot})$

Muzic et al. (2019 subm.)

Star-to-BD ratio versus stellar surface density

Muzic et al. (2019, subm.)

Star-to-BD number ratio

N(*)/N(BD) = 2 - 5

The span does NOT reflect differences between the region, rather the uncertainties!

Sources of uncertainties:

- Ages, distances, isochrones, extinction law (see Scholz et al. 2013)
- Spectroscopic follow-up
 - SONYC: completeness
 - \circ massive clusters: lack of
- Treatment of incompleteness (RCW 38)
- Unresolved binaries
 - $\circ~$ our simulation show that the system IMF α is flatter than the resolved one, but within uncertainties for RCW 38 (Muzic et al. 2017)

Conclusions

For every 10 star, star forming regions produce 2 - 5 brown dwarfs

Brown dwarf formation in the Milky Way seems to be universal

There is no clear evidence for variations in the formation efficiency of BDs and VLM stars due to the lack or presence of <mark>OB stars</mark>, or a change in <mark>stellar densities</mark>

If environment has an influence on BD formation, this must be on a much more subtle level than the observational uncertainties currently permit us to measure