New light on metal-poor stars

Thomas Nordlander
Australian National University - Mount Stromlo

thomasn@mso.anu.edu.au

Stellar spectroscopy

Stellar atmospheres

$$
\begin{aligned}
& \mathscr{F}_{\text {tot }}=\mathscr{F}_{\text {rad }}+\mathscr{F}_{\text {conv }} \\
& \mathscr{F}_{\text {rad }}=\int F(\lambda) \mathrm{d} \lambda
\end{aligned}
$$

$$
\mathscr{F}_{\text {conv }} \propto \alpha_{\mathrm{MLT}}\left(\nabla_{T}-\nabla_{\mathrm{ad}}\right)
$$

$$
\alpha_{\mathrm{MLT}}=\frac{l}{H_{p}} \quad \nabla_{T}=\frac{\mathrm{d} \ln T}{\mathrm{~d} \ln P}
$$

MLT from spectroscopy: $\alpha \sim 0.5$

Fuhrmann, Axer, Gehren 1993

MLT from stellar evolution: α ~ 2

Code	Solar Z/X	$\boldsymbol{\alpha}$
STARS	0.0262	2.09
STARS	0.0195	2.025
V-R	0.0181	2.007
Dartmouth	0.0266	1.938
BASTI	0.0280	1.913
MESA	0.0261	1.877
MESA	0.0207	1.783
Y2	0.0253	1.743
PARSEC	0.0252	1.740
Padova	0.0235	1.680
Geneva	0.0194	1.647

Stancliffe, Fossati, Passy+ 2016

MLT from 3D simulations: $\alpha \sim 2$

Stein \& Nordlund 1998

Magic, Weiss, Asplund 2015

MLT from 3D simulations: $\alpha \sim 2$

$[\mathrm{Fe} / \mathrm{H}]=0$

Non-LTE = Statistical equilibrium

$$
0=\frac{\mathrm{d} n_{i}}{d t}=\underbrace{\sum_{j \neq i} n_{j}\left(R_{j i}+C_{j i}\right)}_{\substack{\text { Particle } \\ \text { number }}}-\underbrace{n_{i} \sum_{j \neq i}\left(R_{i j}+C_{i j}\right)}_{\text {Incoming transitions }}
$$

Radiative transitions: $\quad R_{i j}=A_{i j}+B_{i j} \bar{J}_{\nu}$
Collisional transitions: $\quad C_{i j}$
Radiation field
is non-local!

Non-LTE = Statistical equilibrium

Collisional transitions: $\quad C_{i j}$

Radiation field
is non-local!

3D RHD model atmospheres

Non-LTE in 3D

Gas temperature [K]

Radiation / gas temperature

SMSS 0313-6708 in 3D NLTE

TN, Amarsi, Lind+ 2017

SMSS 0313-6708 in 3D NLTE

$\begin{array}{llllll}\mathrm{Li} & \mathrm{Na} & \mathrm{Mg} & \mathrm{Al} & \mathrm{Ca} & \mathrm{Fe}\end{array}$

TN, Amarsi, Lind+ 2017

Extremely metal-poor stars

Thomas Nordlander

Australian National University - Mount Stromlo

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D
SkyMapper Extremely Metal-Poor Star Group
ANU: Martin Asplund, Michael Bessell, Gary Da Costa, Dougal Mackey, Anna Marino, TN, John Norris, Brian Schmidt
Monash: Andrew Casey, Alexander Heger; MIT: Anna Frebel; MPIA: Karin Lind; UNSW/ADFA: Simon Murphy

The SkyMapper EMP search

The SkyMapper EMP search

The SkyMapper EMP search

The SkyMapper EMP search

The SkyMapper EMP search

The SkyMapper EMP search

Da Costa, Bessell, Mackey, TN+ submitted

The SkyMapper EMP search

Da Costa, Bessell, Mackey, TN+ submitted

The SkyMapper EMP search

Da Costa, Bessell, Mackey, TN+ submitted

SMSS 0313-6708: $[\mathrm{Fe} / \mathrm{H}]<-6.5$

Keller, Bessell, Frebel+ 2014 TN, Amarsi, Lind+ 2017

The SkyMapper EMP search

Da Costa, Bessell, Mackey, TN+ submitted

The first $[\mathrm{Fe} / \mathrm{H}]=-6$ star: SMSS1605

Pop III IMF

Susa, Hasegawa, Tominaga 2014

Hirano, Hosokawa, Yoshida+ 2015

Summary

- MLT good enough for stellar atmospheres?
- 3D NLTE now feasible. Use at low [Fe/H]!

- EMP MDF slope = $1.5 \mathrm{dex} / \mathrm{dex}$
- Carbon-normal MDF drops at [Fe/H] ~ -4
- Evidence for 10 Msol Pop III star?

