New light on metal-poor stars **Thomas Nordlander** Australian National University - Mount Stromlo

thomasn@mso.anu.edu.au

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

Stellar spectroscopy

Image credit: Christlieb/ESO

Stellar atmospheres

Image credit: Nedtheprotist/Wikipedia

Fuhrmann, Axer, Gehren 1993

MLT from stellar evolution: $\alpha \sim 2$ 2 20 **50** 10 $\alpha = 0$ logL/L_o 2 $\alpha = 1$ 2 α = $\alpha = 10$ $\alpha = 20$ $\alpha = 50$ Ω 0 $1M_{\odot} - Z = 0.02 Y = 0.289$

3.4

3.9 3.8 3.7 3.6 3.5 logT **Image credit: M. Salaris**

Code	Solar Z/X	α
STARS	0.0262	2.09
STARS	0.0195	2.025
V-R	0.0181	2.007
Dartmouth	0.0266	1.938
BASTI	0.0280	1.913
MESA	0.0261	1.877
MESA	0.0207	1.783
Y 2	0.0253	1.743
PARSEC	0.0252	1.740
Padova	0.0235	1.680
Geneva	0.0194	1.647

Stancliffe, Fossati, Passy+ 2016

MLT from 3D simulations: $\alpha \sim 2$

Stein & Nordlund 1998

Magic, Weiss, Asplund 2015

MLT from 3D simulations: $\alpha \sim 2$ [Fe/H] = 0 $\langle 3D \rangle_z$ _1<u>.5</u> _ 1D CX 1.80 2.3 Solar model 2.2 2.1 2 1.75 2.0 1.9 1.8 1.8 1.7 [10° erg/g/K] 1.20 1.62 3 1.9 σ log S $s_{bot} = 1.98$ 1.5 $\Delta s = 2.09$ 1.60 1.0 4 δs 0.5 2.0 1.55 0.0 -0.52.3 2.5 1.5 2.0 1.0 α_{mļt} 1.50 5 0.0 -0.5 0.5 1.5 2.0 2.5 1.0 Depth [Mm] 7000 6500 6000 5500 5000 4500 4000 T_{eff} [K]

Magic, Weiss, Asplund 2015

Non-LTE = Statistical equilibrium

Radiative transitions: $R_{ii} = A_{ii} + B_{ii} J_{\nu}$ **Collisional transitions:**

Radiation field is non-local!

Non-LTE = Statistical equilibrium

Radiative transitions: Collisional transitions:

Radiation field is non-local!

Bergemann, Lind, Collet+ 2012

See also Magic, Collet, Asplund+ 2013-2015

Non-LTE in 3D

Gas temperature [K]

 $0 = \frac{\mathrm{d}n_i}{\mathrm{d}t} = \sum_{j \neq i} n_j \left(R_{ji} + C_{ji}\right) - n_i \sum_{j \neq i} \left(R_{ij} + C_{ij}\right) \quad R_{ij} = A_{ij} + B_{ij} \overline{J_{\nu}}$

Radiation / gas temperature

SMSS 0313-6708 in 3D NLTE

 $\Delta \log W_{\lambda,\mu=1}$ (NLTE – LTE) 0.0 0.2

1000 400 600 800 *x* [Mm]

SMSS 0313-6708 in 3D NLTE

Extremely metal-poor stars

Thomas Nordlander Australian National University - Mount Stromlo

ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D

SkyMapper Extremely Metal-Poor Star Group

ANU: Martin Asplund, Michael Bessell, Gary Da Costa, Dougal Mackey, Anna Marino, TN, John Norris, Brian Schmidt Monash: Andrew Casey, Alexander Heger; MIT: Anna Frebel; MPIA: Karin Lind; UNSW/ADFA: Simon Murphy

SMSS 0313-6708: [Fe/H] < -6.5

The first [Fe/H] = -6 star: SMSS1605

Susa, Hasegawa, Tominaga 2014

Pop III IMF

Hirano, Hosokawa, Yoshida+ 2015

- MLT good enough for stellar atmospheres?
- 3D NLTE now feasible. Use at low [Fe/H]!

- Carbon-normal MDF drops at [Fe/H] ~ -4
- Evidence for 10 Msol Pop III star?

