

High-mass star formation The observer point of view

Sylvain Bontemps Laboratoire d'Astrophysique de Bordeaux CNRS – Université de Bordeaux

with T. Csengeri (Bonn), F. Motte (Grenoble), N. Schneider (Cologne), and the HOBYS, SPARKS, ALMA-IMF consortia.

Herschel HOBYS 70 - 500 μm

1. Introduction

How high-mass stars form (in the filament paradigm)?

- Filaments are the locations for Jeans fragmentation.
- Jeans masses (in filaments) are not in the high-mass regime (even considering some effective Jeans masses).

An additional process required to explain High-mass stars?

High-mass star and cluster formation?

• What links high-mass stars with cluster formation?

High density regions in GMCs

- Hubs, ridges, Massive Dense Cores (MDCs)
- A snapshot view for Cygnus X

HOBYS survey (Motte et al.) – Herschel 250µm Hennemann et al. (2012)

2. What observations tell us?

NGC6334 (1.75 kpc)

Tigé et al. 2017

2. What observations tell us?

Massive dense cores

HOB)

2. What observations tell us? Massive dense cores Cygnus X - North All MDCs host a 70µm source not many starless MDC Massive Dense Cores: HOBYS - SPIRE consortium Herschel/PACS 70 µm 0.1 to 0.2 pc 8

Three types of massive dense structures:

- Massive Dense Cores (e.g. Motte et al. 2007): 40 to 100-200 M_{sun}, 0.1-0.2 pc diameter.
- Hubs (~spherical, dense massive) (e.g. Myers 2009):
 - 1000 to 3000 M_{sun}, 0.3-0.5 pc diameter.
- Ridges (massive, dense elongated structures):

in the 10000s M_{sun} range, 2 - 10 pc x 0.3 - 0.5 pc.

Sequence in age? In mass inflow? Hubs = filament crossing/collision, or formed by longitudinal flows? or "big" MDCs? or evolved ridges?

CygX-N63

HOBYS - SPIRE consortium

Herschel/PACS 250 µm

PdBI 3.5 mm 3.2'' res. (4500 AU)

3. Observed fragmentation

Fragmentation of Hubs

SPARKS project (Csengeri et al.)

SPARKS: Search for high-mass Protostars with ALMA up to kilo-parsec scales

3. Observed fragmentation

Fragmentation of Hubs

SPARKS project (Csengeri et al.)

T. Csengeri and et al.: SPARKS: Survey for high-mass Protostars with ALMA Revealed up to Kpc Scales

> 100 high-mass Class
0 YSOs inside the
hubs (less than 4.5
kpc from ATLASGAL
catalog).

Csengeri et al. (2018).

ALMA 12m+ACA; 870 µm line free-continuum

^{3. Observed fragmentation} Fragmentation of Hubs The IR-quiet Hub W43-MM1

Three types of massive dense structures:

- Massive Dense Cores: 40 to 100-200 M_{sun}, 0.1-0.2 pc.
- Hubs (~spherical, dense massive): 1000 to 3000 M_{sun}, 0.3-0.5 pc.
- Ridges:

in the 10000s M_{sun} range, 2 - 10 pc x 0.3 - 0.5 pc. MDCs, Hubs, Ridges:

- They are forming high-mass stars.
- Top-heavy CMF Mass segregation of clusters?

Fragmentation:

- MDCS: rarely individual cores, but limited fragmentation.
- Hubs: Few to tens of protostars.
- Ridges: Tens of protostars.

4. Timescale of evolution? Timescale for High-mass star formation

- CO Outflows to estimate the typical accretion rates.
- In Cygnus X for Bontemps et al. (2010) cores.

Duarte-Cabral, Bontemps et al. 2013

4. Timescale of evolution? Timescale for High-mass star formation

- Powerful outflows.
- Linear correlation Accretion rates vs Masses.
- One expects F_{CO} in $M_{env}^{1.5}$.
- Collapse at ~0.1 pc instead of 0.03 pc?
- Equal Accretion time (~2 x 10^5 yr)

for low and high-mass SF.

Duarte-Cabral, Bontemps et al. 2013

A dynamical (gravity driven) evolution of MDCs, Ridges, and Hubs

Indirect evidences

• Starless MDCs/hubs are rare (short formation time) (Motte et al. 2007; Csengeri et al. 2014).

Massive dense cores are indeed out of equilibrium

• Turbulent support too small for MDCs; Small-scale convergent flows (gravity driven?) (Csengeri et al. 2011).

Ridges/hubs are dynamical structures in global collapse

- Short global dynamical time.
- Collapse directly observed (inverse P-cygni profiles). (Motte et al. 2003; Hartmann & Burkert 2007; Schneider et al. 2010; Peretto et al. 2013).
- Filament feeding is not dominant (in DR21; Schneider et al. 2010).

6. Formation scenario

A scenario to explain the rare occurrence of high-mass pre-stellar cores?

Motte, Bontemps, Louvet 2018, ARA&A 56, 41

Very good candidates to be high-mass pre-stellar cores:

Direct formation of HM PSC in massive dense structure?

7. What next?

A top heavy CMF in the central region of Hubs/Ridges/MDCs

- Where are the low-mass stars?
- Do they form before/after high-mass stars?
- Do they form more in the outskirts of densest structures?

A large ALMA program to progress on these critical issues:

- ALMA-IMF (Motte et al.) France, US, Japan, Chile.
- 15 highest mass protoclusters at d < 5 kpc at different evolutionary stages.
- Mosaics at 1 and 3 mm to get SF at larger scale, and to get both low and high-mass cores, and with cold gas tracers.

In a nutshell :

- 15 proto-clusters
- 65 hrs of 12m
- 1+3 mm mosaics; 2000 AU spatial resolution; 100s of LM, IM and HM Class0s.

7. What next? ALMA large Program - ALMA-IMF

F. Motte; Ginsburg; Sanhueza; Louvet; Cengeri; Bontemps; Nony; Lopez-Sepulcre, Galvan-Madrid; Ohashi, Rosolowky; Menten; Sakai; Guzman; Herpin, Lu; Marsh; Molet; Braine; di Francesco; Nakamura; Battersby; Stutz; Bally; Bronfman; Gursdorf; Ladjelate; Nguyen Luong; Hennebelle; Gomez; Chen; Svoboda

Summary

- 1. Three types of massive structures: Ridges, Hubs and MDCs.
- 2. They are the birth place for high-mass stars.
- 3. Top heavy CMF in all these structures.
- 4. High-mass accretion time = low-mass SF. (accretion rates proportional to mass).
- 5. Clear dynamical formation, self-gravity driven evolution of Ridges, hubs and MDCs.
- 6. Some (a very few) good candidates of high-mass pre-stellar cores.
- 7. What next? ALMA-IMF.