Radiation Hydrodynamic Simulation of the Formation of Circumplanetary Disks

Yuri Fujii (IAR, Nagoya University)

Oliver Gressel (AIP), Kengo Tomida (Osaka U.), Udo Ziegler (AIP)

Career Development Project for Researchers of Allied Universities

Planet Formation in PPD

Protoplanetary Disk (PPD)

Planetesimal formation

Planet Formation in PPD

Gas accretion = Formation of gas giants

Giant impact or capture Check out JAXA MMX mission!

Giant impact

Triple transit of Jupiter by Europa, Callisto and Io (24 January 2015, Hubble telescope)

Galilean Moons

Image from NASA/JPL

Satellite Formation

- In circumplanetary disks (CPD)
 - Minimum mass sub-nebula models

e.g. Lunine & Stevenson (1982), Lissauer & Stewart (1993)

- Solid enhanced minimum mass model Mosqueira & Estrada (2003ab), Miguel & Ida (2016)
- Gas-starved disk model

Canup & Ward (2002, 2006), Sasaki+ (2010), Ogihara+ (2012)

- Others (based on simulations)

Fujii+ (2014, 2017), Shibaike+ (2017), Cilibrasi+ (2018)

Satellite Formation

- In circumplanetary disks (CPD)
 - Minimum mass sub-nebula models
 - Solid enhanced minimum mass model

isolated system (learn controlling parameters)

Gas-starved disk model
Others (based on simulations)

embedded in PPD (learn environments)

Satellite Formation

- In circumplanetary disks (CPD)
 - Minimum mass sub-nebula models

e.g. Lunine & Stevenson (1982), Lissauer & Stewart (1993)

- Solid enhanced minimum mass model Mosqueira & Estrada (2003ab), Miguel & Ida (2016)
- Gas-starved disk model

Canup & Ward (2002, 2006), Sasaki+ (2010), Ogihara+ (2012)

- Others (based on simulations)

Fujii+ (2014, 2017), Shibaike+ (2017), Cilibrasi+ (2018)

• From tidally spreading solid disks

Crida & Charnoz (2012), Hyodo+ (2016)

What does CPD look like?

0.35 Candidate around TW Hya 0.30 - 0.25 - 0.20 [m]y beam⁻¹] 1.2 0.15 3 au - 1.0 0.10 -0.8-0.9- 0.8 0.6 - 0.4 - 0.2 30 au (Tsukagoshi+ 2019) 0.0 0.5 -0.50.0 -1.0dR.A. [arcsec]

Detailed Analysis of Flow onto CPD

Tanigawa, Ohtsuki & Machida (2012)

- Local (shearing box) simulation
- 11 layers of nested grids finest grid ~ 1/4R_J smoothing length ~ 0.0007r_H
- Isothermal
- Inviscid
- 0.4M_J at 5.2AU

Poloidal inflow No inflow from midplane

HD simulation of Tanigawa+ (2012)

Shock surface

laminar flow

High altitude: \rightarrow Fall and accretion

Shock surface

Visualized by T, Takeda (Vasa Entertainment & NAOJ

Circumplanetary disk

Midplane: \rightarrow No accretion!

T. Tanigawa's slides from SPS2019)

RHD Simulations (Szulagyi 2017)

Finest grid ~ 0.8R_J Smoothing length ~ 5R_J~ 0.01r_H γ=1.43 Bell & Lin opacity Viscosity: α~0.004 1M_J planet @5.2AU

Need to wait until planet cools down

Without fixed planetary temperature: T_{max}~13,000K (Szulagyi+ 2016)

Realistic EOS

Tomida+ (2013)

Need Magnetic Fields?

Cosmic rays, X-rays, and radionuclides don't give sufficient ionization for magnetorotational instability (MRI) to be well-developed in satelliteforming region.

Fujii+ (2011, 2014), Turner+ (2014), Keith & Wardle (2014)

However,

- outer radii can sustain MRI
- thermal ionization can trigger MRI at inner radii (when T ≥ 2500)

Keith & Wardle (2014), Fujii+ (2017)

Radiation HD Simulations

• Code: NIRVANA3.5 (Ziegler 2004&2011, modified by Oliver Gressel)

600

initial temperature

- •Adopted realistic EOS table by Tomida+ (2013, 2015), α =10⁻⁴
- •Opacity: Semenov (2003), Helling+ (2000)
- •planet: 1 Jupiter mass, orbit=3.5AU

•resolution: Nr x N $_{\theta}$ x N $_{\phi}$ = 160x80x128 (base) + 3–5 levels of SMR

Radiation HD Simulations

• Code: NIRVANA3.5 (Ziegler 2004&2011, modified by Oliver Gressel)

initial temperature

- •Adopted realistic EOS table by Tomida+ (2013, 2015), α =10⁻⁴
- •Opacity: Semenov (2003), Helling+ (2000)
- •planet: 1 Jupiter mass, orbit=3.5AU

Vertical Temperature Distribution

5 levels of refinement (finest grid width: $\sim 2R_J$)

Vertical Density Distribution

5 levels of refinement (finest grid width: $\sim 2R_J$)

Specific Angular Momentum

Balance of Forces

Summary

- We performed global RHD simulations of formation of circumplanetary disks
- We adopted tabulated EOS by Tomida+ (2013, 2015) so that we can calculate temperature accurately
- Although it is not thin Keplerian, we observed CPD forming in our simulations from early stage
 -> start satellite formation before solid depletes?
- What's important? Mass? Temperature? Complicated?
- Will thermal ionization change the results?
 MHD simulations are needed

MRI Regulates Temperature?

1D model of CPDs by Fujii+ (2017)

→ Thermal ionization triggers MRI

→ Accretion rate increases

Bell & Lin opacity No compression heating

Capture of Moons in Resonance

