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Overview

n Spacepoint formation and calibration
n Pattern recognition
n Track fitting methods
n Vertexing
n Alignment
n High pile-up mitigation

P 2



Peter Hansen, NordForsk lectures

The tracking challenge

n Every second, 40 million beam-crossings are happening 
at the LHC,  producing thousands of tracks from typically 
60 individual collisions. About 1 kHz of the crossings are 
selected for later processing.

n Because of the high track density and high momentum 
very many channels are needed, causing rather large 
amounts of material in the tracking detectors.

n Thus,  we need highly efficient and error-tolerant track-
finders and –fitters, good calibration and alignment  
methods, robust vertexing and particle identification.

n In the future, the extrapolated computing technology 
cannot keep up with the flood of data using existing 
algorithms. New techniques will be necessary.
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ATLAS and CMS Inner Trackers

Many ATLAS  and CMS examples are used this lecture. A general principle is
to build detector planes roughly perpendicular to the tracks…
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The  Inner Detectors

The ATLAS ID

ATLAS ID material

The CMS silicon tracker
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Space-point reconstruction

Clustering of pixel cells performed in hardware 
by the ATLAS Fast Track Trigger
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Spacepoint formation

n Tracking detectors register �hits� from signals induced on 
pickup electrodes by an electron cloud made by a track.

n In case of a hit on only one electrode, the precision is
(Δ = the electrode size).

n Much better is it if the signal is
distributed over two electrodes.
Then          !"# = %('1, '2,+)

giving higher accuracy, but
you need to know both the
pulse-heights P and the
cloud width w.

/ 12D

Blum, Ronaldi: TPC tracking book
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Spacepoint formation

q In general, a track will give rise to a “cluster” of cell signals
and their barycenter is a popular estimator of the position.

q The pulse-heights, P, must  exceed a certain threshold and 
the electrodes must share a side, or at least a corner, 
forming a cluster. Summing over cluster cells, we get the 
barycenter:

(some use only the cells at the cluster edge, anyways you 
have to correct for finite cell size effects)

/i i ix Px P=å å
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Stereo view

n If you do not have pixels, only wires or strips, what about 
the second coordinate?

n In strip detectors double sided wafers are often used with 
strips on both sides having an angle between them. But 
large angles gives ghost hits!

n At high track densities, 20-80 mrad is a good choice, 
avoiding too many ghost hits, having good resolution in the 
bending plane and still some resolution in the second 
coordinate.

Ghost 1

Ghost 2 Track 1

Track 2
No ghosts
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Spacepoint calibration

n In general we must know the response function , 
the probability distribution of induced pulse-heights 
for a given track impact 

n (Actually, it would be lovely to know the inverse: the pdf for the track, 
given the pulse-heights. But we can not get that from test-beam..)

n The response function may vary from channel to 
channel and even vary in time. It must be 
calibrated from data.
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Lorentz angle and defects

n Due to the Lorentz force from the B-field, the electron drift 
direction in silicon sensors is rotated by a Lorentz angle. 
This needs to be corrected for to get the true hit position.

n Another complication is
the possibility of local radiation
damage to pixels or strips
biasing the barycenter.

§ In CMS, all this is handled
by comparing the observed
charge distributions with a
simulated template for a sample of
possible true tracks, where defects are accounted for.

Simultaneous alignment and Lorentz angle calibration in the 
CMS silicon tracker using Millepede II

Forward PIX Barrel PIX Forward PIX
• Highest resolution.

• Closest to the interaction point.

• Largest irradiation dose.

• Sensor properties can change 
during detector operation.

• Resolution most sensitive to 
misalignment and miscalibration.

Pixel detector

x

x

x

By = 3.8T

real track

fitted trajectory

predicted hit

measured hit

residual

Track-hit residuals

• Innermost detector

• Measures trajectories 
of charged particles

• Used in practically all 
physics analyses

• Estimation of pT, 
impact parameter

STRIP: 1DSTRIP: 1DSTRIP: 1DSTRIP: 1D PIXEL: 2DPIXEL: 2D
TEC TOB TID TIB FPIX BPIX
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Silicon tracker

Superconducting 
solenoid
• Magnetic field: 3.8T
• Bends trajectories 

of charged particles 

Length: 28.7 m

Diameter: 15 m

Weight: 14 000 T

CMS detector

One of the 2 multipurpose 
detectors at LHC.

• Track induces signal charge 
drifting under E field.

• Global hit position directly 
depends on global module 
position, orientation, curvature.

• Center of collected charge cluster 
treated as measured hit position.

d E  150V
x

Charged 
track z

hit

cluster

BPIX module: B = 0T BPIX module: B = 3.8T

• If B≠0, Lorentz force deflects 
the signal charge by angle θLA.

• Increases cluster size, shifts the 
hit position by ∆x.

• Lorentz angle parameterized in 
terms of mobility.

• Mobility depends on:

• accumulated irradiation dose

• temperature of the module

• bias voltage, ...

• Tracks measured in different 
magnetic fields are used to 
disentangle alignment and 
Lorentz angle effect.

∆x

B: -3.8T
(local Y)

θLA

d E  150V
x

Charged 
track z

hit

cluster

true

∆x = tan(θLA)·d/2 

tan(θLA) = μ·By

d = 285 µm

µ – mobility

Alignment procedure
• Similar to the official baseline alignment, extended to full 2012 data (65 million tracks):

• Alignment of module positions and orientations, accounting for movements (31 time 
intervals) of the large structures.

↳ ~92 000 parameters
+  Lorentz angle in BPIX (1 560 parameters):

1

Z

R

2 3 4 5 6 7 8

1

3

R

23 layers ×   8 rings
(~330 pb-1 each)

×    65 time intervals

•  To disentangle module alignment and Lorentz angle calibration.

Tracks from
#  (3.8T)
#  (0T)

Isolated muons Z→µµ decays Low pT tracks Cosmic rays
28 million 10 million 14 million 2.5 million

10 million 0.5 million

C�p = bMatrix equation:

mij ± !ij
fij
p
qj

– measured position of the hit;

– predicted position of the hit;

– “global” (detector) parameters;

– track parameters;

�2(p,q) =
tracksX

j

measurementsX

i

✓
mij � fij(p,qj)

�ij

◆2

• Misalignment and miscalibration of the detector increase track-hit residuals.

• Based on minimization of normalized track-hit residuals using function:

Track-based alignment with Millepede II

Up to 9 alignment parameters per sensorUp to 9 alignment parameters per sensorUp to 9 alignment parameters per sensor
x    y    z Shift along axis

α    β    γ Tilt around axis

w0  w1  w2 Surface distortion）
⟺
⟲

Calibration parameters  [NEW]

Lorentz angle

More than 200 000 parameters (p) can be determined simultaneously:

If not properly determined, affects the 
alignment parameters.

Conclusions

• Lorentz angle measured in BPIX for full 2012 data with high precision to see local 
variations and time dependence (using Millepede II and additional 0T data).

• Combined approach (simultaneous module alignment and Lorentz angle calibration) 
improves overall precision of hit reconstruction ⟹ tracking, vertexing, b-tagging. 

• Allows consistent use of 3.8T and 0T data in alignment.
• Will be in even higher demand after LS1, with more rapid Lorentz angle development.

∆t

∆x = ∆t·d/2
∆x = 0.03·285/2
∆x = 4 µm

• Consistent development in all rings of the BPIX.

• Clear offset between negative (Z<0) and 
positive (Z>0) parts (different bias voltage?).

• Variation of Lorentz angle equivalent to 
shift of the module by up to 4 µm.

• Different shape of evolution among layers.

• Can be the same behaviour delayed in distant 
layers (lower accumulated irradiation dose).

• Lorentz angle expected to change faster 
after LS1 due to increased irradiation dose.

Lorentz angle time dependence

• Analyzed residuals of 2 million high pT tracks.

• Median of the residuals calculated for each module (1 entry per module).

• Narrower peak clearly seen with simultaneous alignment and Lorentz angle calibration.

Validation of the result

fij  linearization, matrix size reduction

Nazar Bartosik (Deutsches Elektronen-Synchrotron, Germany)

on behalf of the CMS Collaboration

EPS HEP 2013 (18-24 July, Stockholm, Sweden)
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Lorentz angle

T

n In ATLAS, the Lorentz angle is extracted from the 
cluster size vs incident angle in the first tracking 
iteration. (from Simone Montesano)

FF
FF
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Splitting of  merged clusters

T

n At high track densities, clusters of fired detector cells from two 
different tracks may merge.

n For example, a jet with pT=1TeV has typically only 0.1mm 
between two tracks at the innermost ATLAS pixel layer.

n ATLAS uses an NN algorithm  to split pixel clusters again
(Prokofieff and Selbach 2012)

n Uses charge, shape, previous layer, incident angle
n The cell charge in pixel detectors is estimated using

Time-over-Threshold. 

FF
FF
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Alejandro Alonso (Niels Bohr Institute)  Ctdwit  2017 9th March 2017

Tracking in Dense Environments (TIDE)

✦ In busy environment, large probability to have 2 or more very close charged particles

✦ Neural network to identify clusters shared by more than 1 particle, split them and 
estimate the position and error of each one:

✦ Uses cluster charge, shape, correlation with previous layer and incidence angle

✦ Improves: b-tagging, ! reconstruction, jet -mass reconstruction, etc..

✦ Performance validated in data by independent 2 methods:

✦ Geometrical extrapolation and using the overlap region in phi

✦ Energy loss (dE/dx) in the pixel:

15

ATL-PHYS-PUB-2015-044

ATL-PHYS-PUB-2016-007



Splitting merged clusters

T
FF

FF

Improvements in Run2:

§ A NN  evaluates if a
pixel cluster is shareable.

§ Such can be shared without
penalty (see later on “score”)

§ Clusters are first split
after Pass 1 track reco, taking
advantage of track info.This yields:

§ a 10-17% improvement in track reconstruction
efficiency in jet cores,

§ a 7-13% increase in b-tagging efficiency

§ a significant reduction of CPU (factor 4 when joined by other
improvements in Run2 reco).
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Dead and noisy channels

n Any clustering algorithm must handle dead or noisy 
channels to avoid false clusters.
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Peter Hansen,  tracking algorithms
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Spacepoints in drift-tubes

The ATLAS TRT flags time-bin t
where the signal exceeds some 
threshold. Must calibrate the 
distance R(t-t0) from the track to 
the each wire.

ATLAS TRT
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Refinements of  drift radii

Large pulses will trigger the 
threshold sooner for the same 
track impact -> small correction
for large time-over-threshold or 
High-Threshold hit.

At a track refit, the track impact 
along the wire, angle and other 
info is available.

Small corrections for time-of-flight,
signal propagation and other 
effects can be made at this point.

ATLAS TRT
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Big water Cherenkov detectors

For calibration Super-K needs
for each single PMT:

1) The gain = charge / photo-electron.

2) The quantum and collection efficiency.

3) The timing calibration and resolution.

4) The background level. 

In addition it needs the water transparency,
temperature, the geo-magnetic field
etc at each point in space.

A variety of light sources, radioactive
sources and even small linear
accelerators are used in the calibration. 

The “space-points” are here
the signals on each PMT:
the charges on the anode
and their arrival times.
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From space-points to tracks

§ Given a collection of space-points we need to group together  
those space-points that belong to a track and determine the 
tracks features.

§ The important feature of a track is its momentum, so we
open a parenthesis on momentum measurement

§ Then we will look at tracking at trigger level

§ Then study two track fit algorithms:
the Kalman filter and the global chi-squared fit.
Adaptive global methods are also discussed.
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Momentum measurement (..

This and next three slides are from Christian 
Jorams summer student lectures
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Momentum accuracy
P 21
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Multiple scattering
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Total momentum error  ..)
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Fast pattern recognition

n How to associate a subset of hits to a track at trigger level?

n Predefined templates, i.e. patterns of fired cells defining an 
allowed track. Used in fast trigger algorithms.

n The cell tower is an example from the calorimeter world.

n Hough transform is another method. For straight tracks in 
two dimensions, each hit corresponds to a straight line in 
the slope-intercept plane. Peaks in this plane where many 
lines intercept reveal the hits-on-tracks.
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Simple Hough transform

n Histogram methods may provide fast seeds for high 
momentum tracks – here an example from the ATLAS TRT:

ATLAS TRT
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General Hough transform

n Scan in two dimensions (di=-Cir+dhit)
n Count number of compatible hits.  

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

Example global pattern: Hough Transform

Hough Space

Curvature
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C
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! define transformation that transforms hits into so-called Hough space

under application of different track hypotheses (scan)

! find maxima in Hough space 
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Conformal mapping
n Preserves angles, but not lengths. 
n The points:

u=x/(x2+y2)
v=y/(x2+y2)

will lie on a straight line in (u,v)
space for hits on a circle passing
through (x,y)=(0,0).
q A straight line can be characterized by its 

point closest to the origin, with distance
d (“DOCA”) and direction θ.

14.04.2009 Page 6 David Münchow 

Conformal Mapping    

• Angle preserving, 
not length preserving 

• Easier tracking for lines 
→ transform circles to straight lines 

• Transformation: 
 
 
 
 
• Reference point              must be on the circle 
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Hough Transformation    

• Line tracking with Hough transformation 
• Take all possible lines through a point in conformal 

space 
• Describe it with parameters 
r and θ  

 
• Add it as a count to a 
r-θ-matrix (parameter space) 

( ) θθθ sincos yxr +=



Conformal mapping
n For each hit (u,v), all d and θ of lines passing through the hit 

are entered in a
histogram and the
local peaks are found.

n From these we
immediately get the
circle parameters.

n Used by BES III, Belle II and PANDA. 
n Even implemented on FPGA.

14.04.2009 Page 9 David Münchow 

Hough Transformation    

• Find peaks to get track parameter 

radius r’ 
angle θ 
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Riemann track fit
n Another fast non-iterative circle fit is the Riemann fit where a 

circle in a 2-D plane is transformed into a plane in 3-D that 
intersects the Riemann sphere

n The parameters of the plane through L are quickly found as 
a linear combination of the hit coordinates, and these can 
then be mapped to the circle parameters of L’.

Figure 2. An illustration of the Riemann sphere K (with north pole N and south pole S) and
the important feature that a circle L0 in the plane E maps onto a circle L on the sphere.

with r0 = (x0, y0, z0)T and

x0 =
NX

i=1

pixi
� NX

i=1

pi, y0 =
NX

i=1

piyi
� NX

i=1

pi, z0 =
NX

i=1

pizi
� NX

i=1

pi

Given n, c is computed by:
c = �nTr0

The parameters n and c of the plane can then be mapped to a set of parameters of the
corresponding circle in the (x, y)-plane [5].

3. The modified Riemann fit
Chernov [6] recommends centering and scaling of the measurements before mapping to the
Riemann sphere in order to achieve invariance of the fit under translations and similarity
transformations. For this purpose, it is convenient to transform the measured points to Cartesian
coordinates:

Xi = Ri cos�i, Yi = Ri sin�i, i = 1, . . . , N

Centering is then achieved by:

Xc,i = Xi �X, Yc,i = Yi � Y , i = 1, . . . , N

with

X =
1

N

NX

i=1

Xi, Y =
1

N

NX

i=1

Yi

After collecting all centered measurements Xc,i and Yc,i in vectors Xc and Yc, the scaling is done
by defining a scaling factor s:

s = b/
q

(Xc
TXc + Yc

TYc)/N

Xcs = s ·Xc, Ycs = s · Yc

3

R. Frühwirth and A.Strandlie, J.Phys.Cond 762(2016)012032
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Multiple scattering fit
n In many experiments, like mu3e, MS dominates resolution:

n A triplet of hits provides 6 constraints, but a helix with MS in 
the middle plane is described by 8 parameters (6 helix 
parameters plus two MS angle projections)

n The missing constraints can be supplied by minimizing:

!" #$% = '()(+,-)/
01/

+ 3()(+,-)/
04/

where R3D is the helix radius and the two angles are the 
azimuthal and polar scattering angles, respectively. This 
minimalization leads to a fast online estimate of R3D .

arXiv:1606.048802

March 8th, 2017 D. vom Bruch, Mu3e 4

The Mu3e Detector

10 cm

4.5 cmTarget 

Inner pixel layers 

Scintillating           f     bres 

Outer pixel layers

i

Recurl pixel layers 

Scintillator tiles

μ Beam

B
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Associative memory – ATLAS FTK
The associative memory where each hit is seen
by all possible templates is the most advanced
example.
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The state vector

n Let at each detector surface the track be given by a vector 
(position, direction, 1/p), along with its uncertainties:

Figure from ATLAS reconstruction group
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Helix parametrization
n An example of a state vector is helix parameters, where 

90o-λ is the track angle to the B field, R is the radius, s the 
path length and h is a sign. This gives the trajectory:

n A track in a detector with cylinder symmetry is a collection of 
helices at each “cylinder surface”.

The helix 
!  An example of a state vector of track parameters is 
!  The helix, where 90o-% is the track angle to the B field, R is 

the radius, s the path length and h is a sign 

 

!  A track in a detector with cylinder symmetry is a collection of 
helices at each “cylinder surface”. 

 
 

0
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Perigee parameters

n The perigee parameters

are often used to describe the track state at the closest 
approach to the beam (z) axis. 

§ q/p is measured with approximately gaussian uncertainty.
§ d0 has a sign convention following that of the angular 

momentum of the track wrt the z axis

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

Track Parameters
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! the trajectory of a charged particle in magnetic field can (at any point) be

parameterised through five parameters

! ATLAS choice                               , accomplished by 5x5 covariance C 

two local variables (depends on surface), localisation w.r.t. surface

three global variables for momentum representation

! one track parameters

flavor per surface type

! different from

classical helix

representation

to comply with

ID and MS magnetic

field

4

covariances, but excludes obviously the hit collection. A simple refit such a slimmed track after it
has ben read from the persistent storage would recreate the full track information as achieved in the
original event reconstruction. The flexible TSOS container design of the Track class was hereby a
key feature, since it allows to create a track collection of stripped hits and a Perigee representation2

that is then written to disk. The track collection size could be significantly reduced (depending on
the track collection, the reduction factor varies between 6 to 10).

Representation for Physics Analysis Few analyses based on data taken with the ATLAS detector
will directly incorporate the Track objects. The Track itself is, in general, not more than a trajectory
representation of the particle when passing through the detector, while the — for the event analysis
— most important representation of the particle as a four momentum vector at the production vertex
is not given by the Track; neither is particle identification3 nor the vertex association performed at
the stage of track reconstruction. In the ATLAS EDM, the Track information is represented as a
TrackParticle object for further use in a particle-oriented event analysis. Vertex fitting with or
without constraints can be performed on TrackParticle objects, but needs the extrapolation engine
to express the trajectory with respect to the (iteratively fitted) vertex position. To enhance common
tracking tools to work together with the TrackParticle object (which combines a broader bundle
of aspects to be dealt with in event reconstruction), without breaking the philosophy of keeping the
tracking modules independent from specific reconstruction algorithms, a new TrackParticleBase
class has been introduced that concentrates the tracking-relevant information and builds the new
interface for tracking tools. These tools are designed to operated also on event reconstruction and
analysis level; a detailed description of the new TrackParticleBase class can be found in Sec. 4.

2 Trajectory Parameterisation: The ParametersBase class

The parameterisation of a particle trajectory with respect to a given surface is inevitable for track
reconstruction. It can be done in many di�erent ways, for a charged trajectory in magnetic field a
minimal set of five parameters has to be chosen; it can be reduced by one parameter for a trajectory
representation in a no-field environment or a neutral particle that follows a straight line. This is, since
the charge q and the momentum magnitude p are superfluous for the purely geometrical description of
a line. For constrained vertex fitting that includes both charged and neutral particle traces, however,
the momentum (hypothesis) is necessary — see Sec. 5.
The trajectory parameterisations for both neutral and charged particles are thus realised in the ATLAS
tracking EDM as a set of five parameters

x = (l1, l2, ⇥, �, c/p)T , (1)

when l1 and l2 denote the local coordinate expression on the given surface (and thus depend on the
surface type), ⇥ and � are the azimuthal and polar angle, respectively, and c is defined as

c =

�
⌅⇤

⌅⇥

q if q �= 0,

1 if q = 0.
(2)

For every surface type that is defined in the ATLAS reconstruction geometry [4], a dedicated pa-
rameterisation exists, realised by a specific class to ensure an unambiguous identification of the given
measurement frame. In track fitting — since the trajectory itself can not be measured, but only a lo-
calisation at discrete points in the detector can be done — a set of measurement mapping functions hj

is needed to map the track parameterisation on a measurement surface to the measured coordinates
and thus to establish a predicted measurement4. This yields for the single predicted measurement

2This is for the simple convenience of the user that is not forced to refit the track collection if the focus is only drawn
onto the impact parameterisation.

3Only a ParticleHypothesis exists for the steering of material e�ects integration.
4Since the two most common track fitting techniques, the least squares method and the Kalman filter are both linear

estimators, these measurement functions are even required to be linear, or at least approximated by a linear function.

P 34



The projection matrix H

n To compare with measurements m, the track state x needs 
to be mapped onto “measurement space”. We linearize:

n H=δm/δx, where H is the projection matrix
(assuming for simplicity that x=0 corresponds to m=0)

n Let a set of strips form a small angle α with the x axis. The 
track parameters are x and y at each plane.

produces the y’-coordinate perpendicular to the tilted strip. 
This yields immediately the raw hit strip number m. 

€ 
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y
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Spectrometer example

z pixel planes
distance between planes d

Using units of Tesla,m, and GeV/c 
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Spectrometer example

y-z pixel planes
distance between planes d
Field B
x
y
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The Kalman filter

nDetermines the track state vector dynamically from 
measurements at each detector surface.

n These are either discarded or used to update the 
existing state vector.

nNeeds only inversion of small matrices. Fast.
nCan account for noise, multiple scattering and 

energy loss at each surface. Efficient.
n Is equivalent to the least squares fit, but provides 

pattern recognition integrated in the fit.
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Seeding

nWe need track seeds with a high efficiency
and modest fake rate. Many possible strategies:

Start from two
outer layers:

nATLAS and CMS use the inner pixel layers for 
seeds and then proceed outwards for track finding

Figure from Mankel
arXiv:0402039v1

Seeding 

 
! We need TRACK SEEDs with a reasonable 

success rate. Different strategies are used, 
depending on both geometry and physics: 

 

! For each seed we may let the filter proceed 
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Figure 32: Seeding schemes with nearby (left) and distant layers (right).

Though the number of hits required for a seed is in general dictated by the
dimensionality of the parameter space, additional hits can very efficiently decrease
the ghost rate of the seeds. Figure 33 shows the construction of seeds consisting
of three drift chamber hits each [61]. In this example without magnetic field,
only two hits would be minimally needed to define a seed, but the example shows
that using hit triplets reduces the combinatorics considerably.

4.2 2D Versus 3D propagation

Many detector layouts allow track following in a projection. For example, drift
chambers with many wires parallel and of same length may allow separation of
a pattern space that is measured in a plane orthogonal to the wires. This means
that parameter propagation during the track following process is far less costly
in terms of computations, and that the seeds can be constructed from only two
measured hits in the case of a field-free area, or from three hits within a magnetic
field. It should be noted that in presence of a magnetic field, a 2D treatment is
only possible if the field is oriented parallel to the wire, and homogeneous in wire
direction. An example for such an application is the pattern recognition in the
ARGUS drift chamber (fig. 34), where the seeds are constructed from three hits
in the outer layers, and the track following proceeds towards the beam line [62].

However, pattern recognition in projections cannot avoid that at some point,
3D information must be inferred. This can be achieved by performing track
finding independently in all available projections, and then merging compatible
projected track candidates into a 3D object. For an unbiased tracking, at least
three independent views must exist (see sect. 2.2.3), and each view must possess

51

Figure from Mankel 
arXiv:0402039v1 

Connect all
inner layer hits
to each outer
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Cellular automaton seeding

nCMS and Belle II have cellular automatons running 
in parallel GPU threads 

Great improvement in CMS fake rate:
1/100 wrt HLT 2016
-30% wrt triplet propagation method.

23 

• Cell: allowed doublet of hits.
• Cells start in state=0
• If there is an outer neighbour in the same

state, then state++
• Continue until states do not change
• Select eg quadruples by chosing

state=2 start cells

P 40
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The propagator F

n Let the track transport from layer k-1 to k be given by

n Let the predicted state be denoted by a tilde. If f is not 
already linear in x, we Taylor expand it:

where Ck is the covariance matrix for the predicted state
and Q contains the additional random perturbations in the 
step, such as multiple scattering and energy loss.
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Covariance matrices V and C

n A pair of random variables xi and xj has the covariance matrix:

It is symmetric and have diagonal elements equal to the      
variances of the x’es.
Off-diagonal elements describe the degree of correlation
between xi and xj.
u Any set of functions fi of the x’s has (to lowest order in a 

Taylor expansion) the covariance matrix:

uThis is the chain rule.
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The propagator F – simple example

n The F propagator is exactly the same as the transfer matrix
of accelerator physics.

n For our example spectrometer we have the z projection
propagation from the second to the third plane (a drift
space in accelerator language).
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The propagator F – complex case

n In regions with an inhomogenous B field, the preferred 
method is Runge-Kutta integration. Here, the trajectory 
derivatives are sampled at a number of intermediate 
positions, weighted so that the error is 5th power in h, the 
small time-step to the next plane: 
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The propagator F – complex case

n Let us try a grossly nonlinear case y=exp(t):

n Victory!
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The residual r

n The difference between a measurement m and its 
prediction by the track state, Hx, is called the residual:

V is the covariance matrix of the measurements 
R is the covariance matrix of the residuals.
(Note that the contribution from the track is here added to 
the measurement variance. The measurement is not used 
yet. If the hit contributes to the track, the track variance is 
instead subtracted from the residual variance).

At this point you can reject a measurement mk on the basis of 
rk

2/Rkk . This is the pattern recognition part of the KF.
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Updating the state vector:

n A way to update the track state with the newly added hit is 
to take a weighted average of the predicted track state and 
the state suggested by the new measurement:

1 1 1 1

1 1 1 1

(( ) )

( )

k k T
k k k k k k

k T
k k k

x C C x H V m

C C H V H

- - - -

- - - -

= +

= +
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Updating the state vector:

n An equivalent way is to use the gain matrix K: 
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Filtered residuals

n The filtered residual, its covariance and χ2 are
1 2 1(1 ) , (1 ) ,k T

k k k k k k k kr H K r R H K V r R rc- -= -   = -   =

Figure from Fleischmann
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Smoothing

n We have reached the end with n hits. Now the procedure is 
repeated backwards. This is used to update the state at 
each surface k with the information from all the other:

n Finally the state at the innermost surface is extrapolated to 
the perigee, and this result is used in further analysis.

1 1 1
| | | 1

1 1
| | | | | 1 | 1

( )

( ( ) )

b
k n k k k k

b
k n k n k k k k k k k k

C C C

x C C x C x

- - -
+

- -
+ +

= +

= +
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Combinatorial Kalman Filter

qIFor tracking in dense track environments, the nearest hit
might not be the best. 
qThe Combinatorial Kalman Filter (Mankel 1997) keeps many
options open for propagating a seed until one of them conquers
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Outlier removal and iterations

qISeveral iterations are normally used:

q The smoother fit can use updated
space-points (applying small corrections
depending on track parameters).

qAt the smoother step, outliers contributing a large χ2
can be removed
(due to δ-electrons, nearby tracks or noise)

q The easiest tracks (high pT, many hits-on-track)
are reconstructed first and their hits removed

q The remaining hits are now fitted with more relaxed
requirements.

Finally repeat outside-in, using seeds in the outer layers,
to pick up long-lived decays and photon conversions.
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Global (Newton-Raphson) fits

n The global least-squares fit requires to know in advance 
which hits belong to the track.

n It minimizes the weighted sum of distances between the 
fitted track and the assigned hits, adjusting the track states 
at each surface.

n It is mathematically equivalent to the Kalman smoother for a 
fixed selection of hits on a track. 

n If all measurement errors are Gaussian,  it is also equal to 
the maximum likelihood fit. 
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Global fits
n In the approximation where the expected measurements

are linear in the track parameters x, we minimize:

where m is a vector of measurements at all the surfaces.
q The solution is:

For normally distributed m, this is also the maximum 
likelihood estimate of the parameters.
The factor

is also the covariance matrix C of the track parameters.

1 1 1( )T Tx H V H H V m- - -=
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Newton-Raphson fit

n If  the projection h(x) is not linear, we can Taylor expand 
around an initial value x0 obtaining approximately:

we insert now instead

x1 may not exactly minimize χ2 – but it is, after all, better 
than x0. Thus we iterate until |xn –xn-1| < ε. 

This is basically MINUIT.

2
1

0 0

2 2
1 1

0 02

( ) 2 ( ( ))

( ) 2 ( )

T

T

d x H V m h x
dx
d x H V H Cov x
dx

c

c

-

- -

= -

= =

2 2 2
1

1 0 2( )d d
x x

dx dx
c c-= -
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Track fits in Super-Kamiokande

§ Reconstruct Cherenkov rings
§Extract track parameters X=
§Vertex position
§Momentum and direction
§Particle ID
By maximizing the total likelihood:
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Track fits in Super-Kamiokande

§ The individual pdf’s are far from Gaussian ! 
§ So good seeding is very important to avoid local minima
and CPU consumption is very high 
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Dealing with multiple scattering

n The global chi-squared track fit can allow at each scattering 
plane a MS angle treated as an extra track parameter with a 
contribution to χ2 of

n Alternatively we can introduce correlations between 
surfaces in the covariance matrix V:

n MS is approximately Gaussian.

n The Global Chisquared and the Kalman Filter only work 
optimally with Gaussian deviations from expectations.

( )20/q q

TV V S S® + Q /S r dq= ¶ 2
0jj jqQ =
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Dealing with Non Gaussian errors 

n Special methods  are needed to take care of non-gaussian
influences. Typical example is hard photon radiation where 
the probability density for the electron to retain a fraction z 
of its energy follows the Bethe-Heitler law 
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Gaussian Sum Filter

n Branch the Kalman filter at each surface into parallel paths 
using a finite number of different Gaussian errors.

n This is the same as modelling e.g. the Bethe-Heitler as a 
sum of Gaussians

where the weights gi, the average, μi, and variance, σi
2, of the 

energy are determined beforehand from simulation.

New  Tracking

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction - part I /  16-09-2008  

Fig. 1. The probability density function f (z) of the Bethe-Heitler distribution
for different amounts of material (t) [2].

where gi is the weight of a component and ⇥(z;µi,⇤i)
describes a gaussian distribution with mean µi and standard de-
viation ⇤i. Each component in the mixture represents a different
degree of hardness of the bremsstrahlung radiation. The number
of components in the gaussian-sum is arbitrary. However, once
the number of components is fixed, the weight, mean and
standard deviation of each component must be determined.
These are found using an iterative process that minimises the
’distance’ between the the Bethe-Heitler distribution and the
gaussian-mixture approximation. In this study, values for the
parameters are obtained by minimising the CDF distance,

DCDF =
Z ⌅

�⌅

��F(z)�G(z)
��dz (3)

where F(z) and G(z) are the cumulative distribution functions
(CDF) of the Bethe-Heitler model and the gaussian-sum ap-
proximation respectively. The values of the mixture parameters
also have a dependence on the amount of material, (t). In this
implementation of the GSF, the weight, mean and standard
deviation of the components are parameterised as fifth-order
polynomials in t. The full results from the study to determine
the mixture parameters are provided in [3].

The basic structure of the GSF is similar to that of the
KF; it includes measurements one-by-one, using a sequence of
extrapolation and measurement-update steps. A schematic dia-
gram of this process can be seen in figure 2. The extrapolation
step involves both the geometric propagation of the state and
correction for material effects. In general the propagated state
is a gaussian-mixture. When the propagated state encounters
material, it is convoluted with a gaussian mixture which models
the radiative energy loss based on the amount of material
traversed.

The extrapolation stops at a measurement. Information pro-
vided by the measurement is used to update the track param-
eters and covariance matrix of each component. This update
uses the same approach as the KF, invoking Bayes’ theorem.
In addition, the weights of the components are adjusted to
reflect the compatibility of the measurement with individual
components.

The convolution of an extrapolated state with the mixture

Fig. 2. A schematic diagram of the operation of the GSF. The extrapolation
step is responsible for the geometric propagation of the state as well as consid-
ering material effects. The measurement update is responsible for combining
information from the extrapolated gaussian mixture with the measurement in
the inner detector.

modelling the energy loss results in a multiplication of the
number of components, leading quickly to a combinatorial
explosion. Hence the number of components in the state is
artificially regulated to stop it exceeding a predetermined max-
imum. The technique used in this study to regulate the state
size was to merge similar components. The Kullback-Leibler
distance was used to determine alike components,

DKL =
Z ⌅

�⌅
ln

����
⇥(�⇥x ;�⇥µ ,�⇥⇤ )

⇥⇤(�⇥x ;
�⇥
µ⇤ ,
�⇥
⇤⇤ )

����⇥(�⇥x ;�⇥µ ,�⇥⇤ )d�⇥x (4)

where ⇥(�⇥x ;�⇥µ ,�⇥⇤ ) and ⇥⇤(�⇥x ;
�⇥
µ⇤ ,
�⇥
⇤⇤ ) are the multi-

dimensional gaussian PDFs of two components within the state
mixture, with �⇥x representing a set of parameters describing the
trajectory. The components with smallest distances are replaced
with a single component with equivalent mean and standard
deviation. The weighting of the new component is equal to the
summed total of the weights of the original components.

Further detail concerning the operation of the GSF is given
in [4], [5].

III. THE ATLAS TEST-BEAM

The GSF requires precise information concerning the amount
and location of material within the detector. The layout of the
ATLAS inner detector is very complex and so initial testing
of the GSF was done using the 2004 ATLAS test-beam, which
had a comparatively simple design. The layout of the test-beam
(figure 3) was designed to resemble a slice of the ATLAS Inner
Detector barrel. The amount and distribution of material was
comparable to that of the full ATLAS detector at � = 0. In
the test-beam, 6 pixel modules were arranged in 3 layers, and
8 SCT modules were arranged in four layers. The pixels and
SCT modules were placed in a constant 1.4T magnetic field. 6

GSF& DAF and DNA #'$

! Electron fitting is not straigh-forward with least-squares estimators

(rely on gaussian error assumption)

! One way out: Gaussian Sum Filter (GSF)

basic idea: model the non-gaussian energy loss through several gaussian

and fit a multi-variant track model (picture)

! ATLAS-specific solution

Kalman filter with dynamic noise

adjustment (DNA), i.e. a probe mechanism

and eventual inflating of errors according

to the traversed material budget

(danger of biasing !!!)

Figure from Salzburger lectures

See eg R. Frühwirth and S. Frühwirth-Schnatter, 1998 
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Gaussian Sum Filter

n Effectively the track state branches out into a number of 
possibilities at each plane.

n Component reduction, must be carried out at some point to 
keep the number of branches from exploding.

n The resulting algorithm is very efficient in recovering from 
hard bremsstrahlung, but is also very CPU consuming.  
Often restricted to electron candidates. 

From A. Strandlie, CMS simulation 2003
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Global optimization

n In case of competing assignments of hits to a given track 
candidate - or to noise - what is the optimal assignment?

n In essence this is the travelling salesman’s problem. It is 
not sure that the nearest hit is the best choice. The problem 
should be tackled by minimizing a total energy function.

n In the Elastic Arms Algorithm a number of “deformable track 
templates” must first be found. These should also include a 
“noise template”. The number of tracks stays fixed, but 
which hits are assigned to which tracks is not yet fixed.
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Global optimization

n A “metric” Mia is defined, typically as the squared distance
from hit i to track template a.

n One could try to minimise to minimize a “total energy”:

where the “assignment strength” Sia is either 0 or 1.

q However, optimizing the Sia’s is tricky since the energy-
landscape is very “spiky” with lots of local minima.
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Elastic arms and annealing

n This is tackled by annealing and fuzzy assignment strength:

where β=1/T and λ is a “chisquared cut” of the order 10.

Si0 is here the assignment strength to noise (Mi0=λ)

n We now start at a high “temperature” where the Sia’s are 

relatively large, even for distant hits. Few local minima.

n The track parameters are then iterated to the global 

minimum of E using its derivatives a la Newton-Raphson
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Elastic arms and annealing

n We then lower the temperature (by eg 5%), repeat
and continue until T<<1.

n At this point, all the Sia’s take ~discreet values of 0 and 1. elastic arms algorithm was then used to perform the pattern recognition together

β [cm-2]

X
a2  /

 Σ
iV

ia

10
-1

1

10

10 2

10 3

10 4

10 5

10 -1 1 10 10 2 10 3 10 4

Figure 30: Development of χ2 with increasing β (corresponding to decreasing
temperature) with 10 muon tracks [41].

with the stereo layers, arranging the tracks vertically. Proper operation of this
method was shown with test events with ten muon tracks, where the convergence
of the tracks in the annealing from a temperature parameter of 0.1 cm−2 to
104 cm−2 is illustrated in fig. 30 by the decrease of the χ2 per track. While the
algorithm was actually performing the task of vertical pattern recognition after
horizontal initialization, the computing time for the annealing with 10 tracks
turned out to be already about 4000s, and it increased at least with the second
power of the number of templates. For this reason, dense events with 100 and
more track candidates could not be seriously addressed with this method.

For this reason, a subsequent study [56] focused on the reduction of the pro-
cessing effort. The first major step was the extension of the segment initialisation
to 3D. This was achieved by using the segments found from triplets in the xz pro-
jection to convert the information from the stereo layers to 3D coordinates: the

46

Chisquared for 10 muon tracks in 
HERA-B with decreasing temperature.
(From Borgmeier Diploma Thesis 1996)

More is found in R.Mankels review 
(arXiv:040239v1) from 2004.
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Deterministic Annealing Filter

n A problem with a global method like Elastic Arms is that the 
number of tracks must be known beforehand.

n It gives you better hit sharing, but not better track finding 
efficiency.

§Therefore Frühwirth and Strandlie proposed to modify the 
(local) Kalman filter using an assignment probability Sik

for assigning hit i in plane k to the current track, thus giving
all hits a say in the propagation of a given seed.
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DAF assignment probabilities

n The assignment probability for each of nk measurements in 
layer k to the current track is assumed to be proportional to 
a multivariate Gaussian:

where x here is the smoothed track state, but without 
involving layer k in the fit, and T a temperature parameter 
(the last  term is the “track contribution” to the error, which 
can often be ignored). 

This is nothing but the likelihood for a track to produce a 
given hit using scaled measurement errors. However, what 
we want is the posterior probability of the track parameters.

*( ; , )i i i T
k k k k k k k km H x TV H C Hf f= +

€ 

σ

P 67



DAF assignment probability

n Allowing for the hypothesis that no hit is produced by the 
track in layer k, we normalise the assignment probability as:

n The cut term may be parametrized as

where     acts as a     cut-off at low temperature.
(Frühwirth and Strandlie, Comp.Phys.Comm 120,197 (1999))
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DAF algorithm

n The filtered state can take several measurements per 
detector layer into account by using their weighted mean.

Figure from Fleischmann
PhD thesis (ATLAS)
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DAF in practice

n The Deterministic Annealing Filter is reported to be especially 
effective in finding the best left-right choices in drift tubes.

n It can be used as an �afterburner� and may significantly 
improve momentum resolution.

Simulated performance in an
“ATLAS-like” setup of the DAF,
either in standalone mode or as
a track fitter following a CKF or GSF
track finder. (Frühwirth and Strandlie,
2006)
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DAF as a multi-track fitter

n It may be extended it to a multi-track fitter with several filters 
propagating in parallel.
(Frühwirth and Strandlie, Comp.Phys.Comm,133(2000)34).

n In this case, the normalisation of assignment probabilities 
needs to be changed so that the sum runs over all accepted  
tracks competing for the measurements.

n The procedure again starts at a high temperature and iterates 
with decreasing tolerance, but without working with a fixed 
number of tracks. Candidates are rejected along the way.
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Track scoring

n To resolve competition among tracks for the same hits, a 
“score” is used to decide the further fate of a track.

n ATLAS uses a combination of sub-scores:
Ø Number of precision hits
Ø Number of outlier hits
Ø Holes (track passing through live sensor with no signal)
Ø Shared hits (penalized if hit is not “shareable”).
Ø Total χ2 per degree of freedom
§ In a second pass the hits not yet assigned to a track may be 

reconsidered with larger tolerances to form, for example, low pT
tracks or tracks from secondary interactions (long lived decays).
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Track scoring
P 73

LCHb has in Run2 split the trigger in two levels, which enables 
online alignment and calibration. But CPU bandwidth is an issue.
To speed up, a shallow neural net has been designed (using the
TMVA framework) for on-line rejection of fake tracks :

22 inputs -> m linear nodes ->
m non-lin nodes –>
m linear nodes   ->
m non-lin nodes ->
Decision

The result is a 16% saving

12Mar 20, 2018 S. Pagan Griso, CDT 2018

Early track candidate rejection

● Based on track quality requirements, p
T
, “promptness” (e.g. d

0
, z

0
), …

● A lot of empirical optimization in balancing early rejection of fake 
combinations to reduce CPU time but maintaining high efficiency

● Cut-based approach powerful and more easily under control

● Multivariate techniques rapidly emerging showing large benefits
(see also e.g. Havukainen's contribution)

LHCb-PUB-2017-011
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Finding the primary vertex

n Every few minutes the �beam-spot� with high concentration of 
track perigees is recalculated.

n Hereafter, just two tracks suffices to provide an accurate seed 
for a vertex Kalman Filter. 

Figure from Mankel
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n Great care must be taken in this very first step.

n ZEUS: candidate track pairs were ranked according to how 
many other pairs they agreed with. The best pair then 
started the chi-squared fit.

n CMS: finds regions with a high density of track pair 
crossings. Each track pair is weighted by a decreasing 
function of the distance between their two perigees. The 
position with the largest weight is the seed.

Finding the first vertex seed
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n Several vertices fitted simultaneously (20 vertices above)
n Several iterations with decreasing tolerance for assigning a 

track to a vertex a la the Multitrack DAF.

ATLAS Multi Vertex Finder

Munich, September 15-19, 2008 page 5

AdaptiveMultiVertexFinder
(Finding through fitting approach)

INPUT

Tracks
Track selection

Seeding 

tracks

New vertex is seeded

Seed Finder

Vertex is fit together 

with all previous ones

Adaptive Multi Vertex FitterRemaining

tracks

Fit is completed

• Adaptive multi vertex finder: default ATLAS reco. algorithm

• Uses a dedicated adaptive multi vertex fitter

– Several vertices are fitted simultaneously, competing against each other in 
order to get a certain track assigned to them.

– An annealing procedure is used: the assignement of tracks to vertices gets 
harder as the fit iteration number increases and the vertex position is known 
with more precision.

• The signal (tagged) vertex is selected according to the highest "pt
2/Ntrk

Figure from Saltzburger
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n The alternative to a Kalman Filter is the Newton-Raphson 
least squares fit (for vertices called a Billoir fit):

n It requires that the collection of tracks associated with each 
vertex is known in advance.

n Not only the vertex is fitted, but also the track momenta, this 
time with the constraint that they should all come from the 
same vertex point. This yields improved momenta.

Billoir vertex fit
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n Let                           be the vertex position for n tracks
n Let                           be the i’th track momentum
n Let                          be the 5 track parameters of the i’th track 

at some reference surface.

n To first order in a Taylor series: 
n v0 and p0i are estimates of the vertex and track momenta.
n Let                                       and      be the covariance matrix 

for            where i is the track number.
n Then

Billoir vertex fit
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n Like in the track fit, we solve the 3+3n equations minimising 
χ2:

n The real work for the programmer is in the initial calculation 
of D and E - and in the initial guess of v0

Billoir vertex fit
Tatjana Lenz master thesis
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n Now interchange      with     and continue until convergence
n The covariance of the fitted parameters is at each step:

n We also get correlations between the track momenta:

Billoir vertex fit

v0 v
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q If you have some partial prior knowledge about the beam 
collision position b, just add an extra contribution to the χ2 , 
which will change its derivatives:

n If you have an exact constraint, like momentum 
conservation, you can use the method of Lagrange 
Multipliers:

n Where λ are 3 new arbitrary fit parameters and d is some 
function that in principle is exactly zero.

Exploiting external constraints
P 81
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n Jets with a B-hadron can be identified by the lifetime (~1.5 
ps) and high mass of the b quark (~4.2 GeV)

b-jet tagging

From the ATLAS B-physics group
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q One way to find b-jets is to reconstruct the decay chain:
b-jet  ->  B-+X  ->  D0+X+Y  ->  K-+X+Y+Z 

Where X are b-quark fragmentation particles, Y are other
particles from B- decay and Z other particles from D decay.

q Another way is to use multi-variate techniques on the 
number of found vertices along the jet-axis, their distances 
from PV, the mass and number of tracks at each vertex etc 
to discriminate between b-quarks and lighter partons.

using secondary vertices
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q Due to the high B-meson mass, its leptonic decay (~10%)
has a higher pT

rel than leptons from light parton jets

Using a lepton tag
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q ATLAS combines the S=d0/ Δd0 for all tracks in a jet:

S is the impact parameter
significance and f(S)
its light jet probability.
The P(jet) estimator has many
nice properties.

q Finally combine everything:
combined Likelihood
or Multi-Variate Analysis 

Combining all of  it

06/05/2009 Rémy Zaidan – Berkeley 5
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• Simple IP based: JetProb
– Based on IP distribution for prompt tracks.
– This distribution can easily be extracted 

from data:
• Measure distribution of negative IP in 

minimum bias events
– Performance is mostly sensitive to fake 

tracks.

• Simple SV based: SV0
– Fits the secondary vertex and returns the significance of the 

decay length of the secondary vertex.
– Less sensitive to fake tracks but more sensitive to resolution.

• Track Counting
– Simply counts the tracks with high impact parameter.
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B-tagging at Belle II
P 86

B meson production at Belle II

Jochen Gemmler Flavor Tagging using Deep Neural Networks in Belle II 09.03.2017 7/22



B-tagging at Belle II
P 87

Flavor Tagging, New Approach
using a 9 layer perceptron

nodes

x(k+1)
i = �(k+1)

⇣P
j=1 w(k)

ij x(k)
j + w(k)

i0

⌘

Jochen Gemmler Flavor Tagging using Deep Neural Networks in Belle II 09.03.2017 12/22

140 input features: kinematics, PID, Pvalues ..

Flavor Tagging, New Approach
using a 9 layer perceptron
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B-tagging at Belle II
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!" ∈ {0,1}

Training the Neural Network

binary classification
tn 2 {0, 1}

loss function

compare network output yn and true information tn
cross-entropy
E(w) = �

P
n=1[tn lnyn + (1 � tn) ln(1 � yn)]

stochastic gradient descent

weight update
�wi = �⌘rEn(w

i)

weight update with momentum
�wi = �⌘rEn(w

i) + µ�wi�1

Jochen Gemmler Flavor Tagging using Deep Neural Networks in Belle II 09.03.2017 13/22

Training the Neural Network

binary classification
tn 2 {0, 1}

loss function

compare network output yn and true information tn
cross-entropy
E(w) = �

P
n=1[tn lnyn + (1 � tn) ln(1 � yn)]

stochastic gradient descent

weight update
�wi = �⌘rEn(w

i)

weight update with momentum
�wi = �⌘rEn(w

i) + µ�wi�1

Jochen Gemmler Flavor Tagging using Deep Neural Networks in Belle II 09.03.2017 13/22Train on 12 million events



B-tagging at Belle II
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Receiver Operating Characteristic

false positive rate
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Lagrange Multipliers

n Let x be the track parameters of the two tracks that form a 
conversion candidate. The constraints must be expressed 
as some functions, H(x), being exactly zero.

n We again expand around an approximate solution xA:

n In a photon conversion, the e+e- emerge parallel from a 
common point, and the expression is like

n Where the p�s and r�s refer to the start points of the tracks.

( ) ( ) 0A A
H x x H x D x d
x

¶
- + = D + =

¶

1 2
1 2 1 2 1 2

1 2

( , , , ) ( , )A A
p pd H p p r r r r
E E

= = - -

P 90



Lagrange Multipliers

n The function to be minimized is now (dropping vector bars):

q The minimum is found in the space of the track  
parameters x=(p,r) and the real constants λ.

q The �0� refer to the unconstrained solution from the track 
fits and the �A� to the previous iteration of this fit.

q The solutions have to be iterated since the constraint 
equations were linearized.

q MINUIT does all of that behind the scenes, but is not 
normally possible to use in a reconstruction program.

2 1
0 0 0( ) ( ) 2 ( ( ) )T T

Ax x V x x D x x dc l-= - - + - +
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Solution to the constrained fit

n (put derivatives of chi2 to zero and solve by substitution):

0 0

0
1

0

0 0 0
2 1

( ( ) )

( )

T

D A

T
D

T
x D

T
D

x x V D
V D x x d

V DV D

V V V D V V

V

l
l

c l l

-

-

= -
= - +

=

= -

=
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New ParticleDiscovery
The Xb*0 involves elegant 
cascade that CMS tracker 
handles beautifully. 

Candidate event display
Λ0

π from Λ0

proton

π from Ξ−

muons

π from PV
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Alignment

n In order to have high resolution and unbiased tracking, the 
detector elements must be correctly aligned.

n This is partly achieved by optical survey, and for example  
laser alignment systems, to track short-term movements.

n The ultimate alignment precision, however, is achieved by 
using the fitted tracks themselves.
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Peter Hansen, NordForsk lectures

Local alignment with tracks

n How to determine the alignment corrections to the position 
and orientation of each detector element from the 
reconstructed tracks?

n Consider a single measured coordinate yi and a track model 
y=h(x,α), where x are the track parameters and α are the 
alignment corrections.

n A straight forward estimate of δαi is simply the
average residual <ri = yi – h(x,α)>

n If the considered plane does not take part in the fitted track, 
ri is called an unbiased residual.

n This �local alignment� requires in general many iterations 
because the correlations between planes induced by the 
fitted tracks are ignored with this method.
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Alignment with tracks

From ATLAS alignment paper
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Global alignment with tracks

n In the �global� approach we define a total χ2 of a large track 
sample:

where r are the residuals, α the alignment parameters of the 
detector elements and x the individual track parameters.

We would like to simultaneously minimise χ2 both with 
respect to the millions of x�s and to the many α�s.

Sounds impossible, but it isn�t!
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Global alignment with tracks

n After fitting for the track parameters, x, we have to first
order the total derivative wrt the alignment :

where A is the partial derivative of r wrt α.

n If R is diagonal, the derivative receives only contributions 
from local detector elements for which A=δr/δα is non-zero.

n Finding δα so that total derivative be zero thus results in M
coupled equations, just like for the Billoir vertex fit.
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Global alignment with tracks

n The M equations to be solved are :

n CMS minimises the distance between the two sides of the 
equation with a program called MINRES.

n ATLAS calculates eigenvectors and eigenvalues of the 
second derivative, exploiting the sparseness of this matrix,
in order to do a fast inversion.
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Global alignment with tracks

n The explicit solution to the alignment problem is thus

or, assuming r is linear in α,:

where                                    is the covariance matrix of the 
residual vector of a track. See ATL-INDET-PUB-2007-009.
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Eigen-modes of  distortion

n Let

Then the covariance of the corrections is C(Δα)=A-1 .
Since this matrix has an inverse, it can be diagonalized and 
written in terms of its eigenvectors u and eigenvalues d.

where
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Eigen-modes of  distortion

n The eigenvectors are collective orthogonal distortions of the 
detector. The change in the χ2 due to the correction Δα
receives independent contributions from each mode j:

n Thus we can identify and correct the contributions from the 
ortho-normal modes independently of each other.
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Weak modes

Clearly there is a problem if dj=0.
Small eigenvalues of A correspond to small
dχ2/dα. These are called ”weak modes”, poorly
constrained by the data.

There are some distortions which cannot be seen in the 
residuals but still may spoil the momentum measurement.
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Weak modes

The only way out is to use external constraints. 
If, for example, an optical survey yields the alignment shift
αsurvey with precision σ, you could add a piece

In general, if relations g(α)=0 exist with covariance G, add:

Exact constraints, such as energy-momentum conservation, 
are best taken into account with Lagrange multipliers.
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Effect of  weak mode misalignment

n ATLAS saw the troubles from weak modes already in 
simulation. Extra constraints from cosmics and 
combined detectors helped a lot.

n 2008                                                   2011
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Curls and twists (q anti-sym)

n A rotation in φ proportional with R of the various layers would 
approximately conserve the helix-shape but bias the 
momentum (different for positive and negative charge).
That is called a curl.

n

n A rotation of the end of a cylinder layer would approximately
conserve the helix-shape but bias the momentum in an η
dependent way. That is called a twist. 
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3 Systematic deformations

Whilst any correctly constructed alignment algorithm (e.g. [22, 23]) is capable of producing a geometry

which provides an efficient and good quality track fit, it is far more difficult to guarantee that the track

parameter reconstruction is free from systematic biases [2].

It is possible to find geometries which satisfy the assumed track model but lead to biased physics

measurements. These are commonly called the weak modes of alignment as they correspond to near-

singular modes of the solution to the alignment problem. The weak modes can be also defined as the

geometry deformations to which track-hit residuals or the χ2 of the track fit remain invariant.
The track parameters that are can be most easily significantly distorted and resultantly effect physics

measurements the most are the measured particle momentum (track curvature) and impact parameters

This note concerns the measurement and removal of these biases.

The weak mode deformations cannot be identified (measured) just by studying the quality of indi-

vidual track fits. In order to identify these deformations, one needs either external information or to rely

on measurements (observables) which are universal and dependent on the reconstructed track parame-

ters. An example of such observables is provided by known resonances, notably those decaying into

two oppositely-charged particles (e.g. Z → µ+µ−, J/ψ → µ+µ−, K0S → π
+π−). In this study we also

used the electromagnetic calorimeter of ATLAS to provide an independent measure of electron energy

(momentum).

!"

x

y

#Φ%R

#Φ%z z

y

x

(a) “curl” (b) “twist”

Figure 3: Examples of basic distortions affecting the measured particle momentum in a charge-

antisymmetric way: the “curl” (a) and the “twist” (b). The detector deformation as well as the impact

on the reconstructed particle momenta are shown schematically. The original paths are shown as dashed

lines, whilst the reconstructed trajectories as continuous lines.

3.1 Charge-antisymmetric deformations

Classes of deformations referred to as sagitta deformations, consist of detector movements orthogonal to

the track trajectory and hence affect the reconstructed track curvature (measured momentum) oppositely

for positively and negatively charged particles.

In the plane transverse to the uniform magnetic field, the circular trajectory of a charged particle with

radius R can be approximated by a second order polynomial, a parabola:

R2 = r2 + (t − R)2 =⇒ t = R −
√

R2 − r2
R≫r
!
1

2R
r2, (3)

7

From the ATLAS Silicon alignment group, Bruckman et al
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Checking for twists and curls

n No effect of twists and curls seen after alignment
n (Note: measurement uncertainty alone gives a resolution of 0.6 TeV-1)
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Z → µ+µ− decays as well as the E/p method were used to set independent limits on the residual
momentum bias integrated over the entire detector region (barrel or end-cap). Results from the two

methods are summarized in Table 3. From there, a conservative upper limit of |δcurl| < 0.03 TeV−1 can
be inferred, corresponding to the momentum bias of < 0.12% at pT = 40 GeV.
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Figure 29: Momentum bias measured in Release 17 data as a function of η using E/p (left) and Z → µ+µ−

iterative (right) techniques.

For the sake of estimating systematics to particular physics analysis, it is useful to view the residual

momentum biases as a function of η. Figure 29 shows them measured independently from the two
methods. The agreement is satisfactory. Except for the extreme η bins, the observed systematics do not
exceed 0.05 TeV−1 corresponding to the upper limit on the momentum bias of < 0.2% at pT = 40 GeV.
It comes as no surprise that the charge-symmetric component measured with the Z → µ+µ− decays

remained qualitatively unchanged with respect to the one observed in Release 16.

8.2 Caveats

Sagitta-like momentum biases can be introduced by the movements of the detector. It has been estab-

lished, that movement on the order of 20 µm can be induced by changes in the detectors’ global conditions
(e.g. temperature, magnetic field etc.). Preliminary results indicate that these movements can cause bi-

ases of up to 4% at 40 GeV in the forward regions. It should be noted, however, that when these biases

are averaged over φ cancel to large extent. On average over time, the biases also cancel. An upcoming
note will document these effects.

9 Impact parameter distortions

Residual misalignment effects leading to a distorted d0 measurement are parametrised in order to adjust

simulated events, reflecting the performance of collected events. For this, the impact parameter, d0, with

respect to the primary vertex is measured in data as a function of η and φ. The measured values are
then used as an input to the alignment algorithm with simulated events, where the impact parameter d0
is distorted according to the values measured in data.

32

E/p (e+ e-) Z->mu+mu- mass
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Radial distorsions

n There are also weak mode distortions affecting charges 
symmetrically – but different at different phi.

From the ATLAS Silicon alignment group, Bruckman et al
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Checking radial deformations

n Phi dependence of low mass resonances

From the ATLAS Silicon alignment group, Bruckman et al
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B field rotations
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Figure 5: Result of the rotation of the tracker around the x-axis with respect to the magnetic field (aligned

with the z-axis) shown in the r − z view (Left) and the x − y view (Right).

represent the real tracks of charged particles. They are measured in the detector drawn with dashed lines.

Open red circles show the real detector hits (shown for one track only). Filled red circles correspond

to the open ones in the reconstruction. The filled red circles are the ones used for reconstruction, and

thus the track parameters become biased. The discrepancy between the real tracks and the fitted ones is

shown in the lower left plot. This causes the track hits in the x−y plane to be displaced in such a way that
the their curvature changes (Fig. 5 right). Here again, the dashed lines represent real tracks and the solid

lines the reconstructed ones. The measured curvature is changed exactly the same way as for the radial

deformation of Fig. 4. The bias on the measured pT has a oscillatory φ dependence with the amplitude
proportional to cot θ.
The effect can be easily quantified considering the rotation of the B-field relative to the stationary

tracking system. The magnitude of the Lorentz bending force is modified by the field rotation:

|B⃗ × p⃗| = Bpsinθ −→ Bpsin(θ − sinφαrot)
αrot≪1
! Bp(sinθ − cosθsinφαrot) = BpT (1 − cotθsinφαrot), (12)

where we assumed the vertical pivot of the magnetic field by a small angle αrot around the x axis. Equa-
tion 12 leads to the same scaling of the reconstructed momentum:

p −→ p(1 − cotθsinφαrot). (13)

Measurement of such oscillatory behaviour of e.g. reconstructed mass of a resonance decaying into

a narrow cone allows for a precise measurement and realignment of the magnetic field map relative to

the tracking system. Indeed, such a procedure was used to correct the magnetic field map of the ID as

documented in Section 5.3. The uncertainty achieved on the measured relative angle (<0.1 mrad) is an
order of magnitude smaller than the estimated accuracy of the mechanical assembly and survey.

3.2.2 Bias on the transverse impact parameter

Bias on the impact parameter of the reconstructed charged track can occur from various deformations of

the detector geometry and can be associated with biases on other track parameters, e.g. sagitta distortions.

Nonetheless, a pure local d0 bias can be generically described by:

t −→ t + δd0, (14)

10

From the ATLAS Silicon alignment group, Bruckman et al
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Correcting for B field rotation

n The needed extra constraint is here provided by the K0 mass.
n The rotations in data are found from interpolation among

simulated rotated samples.
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Table 2: Rotation values obtained in different detector regions. Quoted errors are statistical only (from

the amplitude fit).

End-cap C Barrel Minus Barrel Plus End-cap A

RBx from K
0
S [mrad] 0.53 ± 0.02 0.26 ± 0.06 0.40 ± 0.04 0.67 ± 0.02

RBx from J/ψ [mrad] 0.48 ± 0.03 0.61 ± 0.11 0.41 ± 0.13 0.52 ± 0.03
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Figure 10: The fitted mass of the K0s as a function of the φ-direction in the four η-regions: η < −1.05,
−1.05 < η < 0, 0 < η < 1.05 and 1.05 < η. 2010 data (pre-correction) and 2011 data (post-correction)
are shown.

resolution, the estimated resolution of the di-muon invariant mass is a measure of detector effects. Muons

from Z decays tend to have considerably higher pT and are less sensitive to systematic effects in the ma-

terial description compared to lower-mass resonances.

This section shows distributions of the reconstructed invariant mass of the Z boson for 2011 data

before charge-antisymmetric alignment corrections (Release 16), and Monte Carlo simulation of a per-

fectly aligned detector. Systematic misalignment effects are probed by searching for biases of the invari-

ant mass as function of various kinematic quantities, such as the difference in curvature or η between the
two decay muons and the φ of positively and negatively charged muons.

5.4.1 Mass distributions

Figure 12(a) shows the distribution of the reconstructed Z invariant mass for data in Release 16, and

perfectly aligned Monte Carlo. Figures 12(b) - 12(d) similarly show the Z mass for events where both

muons fall within the barrel region (defined as |η| < 1.05), where both muons are in end-cap A (1.05 <
η < 2.5), and where both muons are in end-cap C (−2.5 < η < −1.05). The agreement between data and
Monte Carlo is good, although not quite ideal. For all regions, the resolution in data is slightly worse

17
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The pile-up challenge 
P 112

U. S. CMS Upgrade Planning  for the HL-LHCV. O’Dell, 3 September 2015

U.S. CMS Upgrade Planning for the
High Luminosity LHC

Vivian O’Dell, Anders Ryd
For the Phase 2 upgrade team

1

• The HL-LHC, a high-luminosity upgrade to the LHC, and future colliders like FCC 
represent a significant challenge in terms of data processing

• Thousands of tracks, vertices, calorimeter clusters that must be accurately analyzed 
to yield viable physics analysis

• Despite this wealth of information, not much of it pertains to interesting physics!

3/20/18 Lindsey Gray | 4 Dimensional Trackers2

The Challenge of the HL-LHC (and beyond…)

• High pileup density significantly affects the purity of track assignment to 
vertices

• Total pileup (at HL-LHC levels) only changes the range of densities seen by 
experiment

• 10-20% variations in efficiency depending on primary vertex location 

3/20/18 Lindsey Gray | 4 Dimensional Trackers5

The Effects of High Pileup in Reconstruction
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• High pileup density significantly affects the purity of track assignment to 
vertices

• Total pileup (at HL-LHC levels) only changes the range of densities seen by 
experiment

• 10-20% variations in efficiency depending on primary vertex location 

3/20/18 Lindsey Gray | 4 Dimensional Trackers5

The Effects of High Pileup in Reconstruction
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Even with new high granularity
trackers, the pile-up 200
at HL-LHC will significantly
reduce physics reach.

This goes both for performance
and sheer processing
capacity



Multithreading 

n Because of power limitations, we are stuck with a clock
speed of 3 GHz.

n However, the number of cores still grows (eg Xeon-Phi 
has 64 cores and 256 threads)

n The threads share memory and
can be swapped in and out fast.
This way you avoid idling and
save memory.

n But all the software has to be
changed so that shared
services know who they are
serving and respond accordingly

P 113

Disclaimer
• Charles will talk this afternoon about many of the specifics of how 

we are implementing multi-threading in Athena


• This is where the framework will take the primary load of 
exploiting the parallelisation we have available to us during 
event processing


• Exploiting concurrency between different events


• Exploiting inter-algorithmic concurrency within each event


• However, although the framework will do a lot of the heavy lifting 
for concurrency…


• It is useful to understand how one might solve generic 
parallelisation problems


• This will help you to manage any pieces of concurrency 
infrastructure that you need to use, or can use, properly

Cartoon of event processing

- each event is a different colour

- each shape is a different algorithm

6



New timing layers for HL-LHC 

n CMS: enclose entire tracker. 
n Barrel:   Thin crystals with SiPM, σt = 30ps
n Endcap: Low Gain Avalance Dev 3mm2, 30-50ps
n ATLAS: 2.4 < η < 4.2. LGAD 1mm2, σt = 30-50ps

Low gain -> thin detector -> high dV/dt -> good timing

P 114

3/20/18 Lindsey Gray | 4 Dimensional Trackers4

How to Take Advantage of Beam-spot Time Spread

Mitigation with Precision Timing

Interactions are also
distributed in time with a
spread of 100-200 ps

With su�cient time
resolution and coverage for
charged particles, traditional
three-dimensional vertex fit
can be upgraded to a
four-dimensional fit

For 20-30 ps time

resolution, back of the

envelope expectation is a

3-5x reduction in e↵ective

pileup density for track-vtx

association and associated

quantities

Josh Bendavid (Caltech, LPC DR) CMS Precision Timing 6

Need	to	discriminate	vertices	with	time	spread	of	~180	ps,	must	have	time	track	timing	
resolution	significantly	smaller	than	beamspot spread	so	that	tracks	cluster	in	time.

σt beamspot

σt detector



Timing in reconstruction 
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> = 200µCMS Simulation <
• With the track-time at 

distance of closest approach 
it becomes possible to 
cluster tracks in 2D into 
vertices

• This significantly increases 
the distance between 
vertices and hence makes 
them harder to confuse

• Expect 5-10x improvement in 
vertex merging rate 
(achieved 9x)

• Expect 3-5x reduction in 
track-vertex association 
false positives (achieve ~3x)

3/20/18 Lindsey Gray | 4 Dimensional Trackers10

Using the Time-at-vertex in Reconstruction

Great reduction of confusion. Everything benefits: isolation, MET, b-tag…

Timing info can be included in the Kalman smoother step

Timing in reconstruction 



Timing in analysis 
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• Requiring |dZ| < 1 mm and |dZ| < 3 σ_z to associate tracks there are a huge 
number of tracks ( 50% for Z(μμ) ) from pileup in the hard-scatter vertex

• Spuriously associated tracks will enter into isolation regions of physics 
objects, MET sums, jets, anything measured in the event

• Large improvement assuming a hermetic timing layer, total improvement 
scales with solid angle that is covered by the detector

3/20/18 Lindsey Gray | 4 Dimensional Trackers11

Effect of Timing on Track-Vertex Association
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• Adding track timing to track-vertex association, here requiring Δt < 4*σt , 
there is a significant improvement in the efficiency of isolated muons and 
taus. This applies to electrons and photons.

• 15% improvement in efficiencies at center of beamspot, direct impact on 
acceptance of physics analyses that use isolated objects

3/20/18 Lindsey Gray | 4 Dimensional Trackers12

Impact of Track Timing at the Analysis Level

Increase in efficiency of isolated
objects.
Benefit seems to scale with
timing coverage.

Combine with calo-timing and get
also better H->γγ vertexing



Timing in analysis 
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At 70% efficiency working point 2x reduction in background rate for forward b-tagging 
- Important for di-Higgs measurements

CMS MTD also projects beneficial improvements to b-tagging at low rapidities
- Important acceptance gain for central signatures (see backup)

3/20/18 Lindsey Gray | 4 Dimensional Trackers16

B-tagging Results

B-tagging

Nikola Makovec 14

Up to x3.5 improvement
in forward b-jet tagging

� B hadrons have significant lifetime
� Secondary vertex (SV)
� Impact parameter (IP)
� Combine in multivariate discriminant (MV)

Using the HGTD a ~50% reduction in MET resolution is seen in the far tails
- Significant impact on analyses dependent on MET tails

A similar reduction in the rate of spurious MET tails is seen in the MTD studies as well

3/19/18 Lindsey Gray | 4 Dimensional Trackers15

MET Results

Missing transverse momentum

Nikola Makovec 15

� Up to 50% reduction of missing transverse momentum tails thanks to:
� Improved pile-up jet suppression in the forward region
� Improved soft term track missing transverse momentum resolution

Preliminary
Preliminary

ATLAS forward light jet rejection
70% improved

Significant MET improvements.

New possibilities for heavy stable
particle searches.



Data scouting 
P 118

Even with the planned detector upgrades, the increasing luminosity
will force higher trigger thresholds, especially for jet based triggers.

This may cause us to miss possible new physics with weak couplings.

Already now, all calibration and alignment has moved upstream to 
online HLT and calibration farms.

Trend at LHC is to also move suitable analysis to the trigger level:

Javier Duarte 
Fermilab
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• ATLAS trigger-object  
level analysis (TLA) uses 
tighter centrality 
requirement  

• Able to start the fit at  
mjj > 394 GeV

ATLAS-CONF-2016-030

Javier Duarte 
Fermilab
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• Using “Calo Scouting,”  
low mass spectrum✴ is fit  
above mjj > 489 GeV 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Figure 1: Dijet mass spectra (points) compared to a fitted parameterization of the background
(solid curve) for the low-mass search (left) and the high-mass search (right). The lower panel
in each plot shows the difference between the data and the fitted parametrization, divided by
the statistical uncertainty of the data. Examples of predicted signals from narrow gluon-gluon,
quark-gluon, and quark-quark resonances are shown with cross sections equal to the observed
upper limits at 95% CL.

Figure 1 shows the dijet mass spectra, defined as the observed number of events in each bin
divided by the integrated luminosity and the bin width, with predefined bins of width corre-
sponding to the dijet mass resolution [16]. The dijet mass spectrum for the high-mass search is
fit with the parameterization

ds

dmjj
=

P0(1 � x)P1

xP2+P3 ln (x)
, (1)

where x = mjj/
p

s and P0, P1, P2, and P3 are four free parameters, and the chi-squared per
number of degrees of freedom of the fit is c2/NDF = 38.9/39. The functional form in Eq. (1)
was also used in previous searches [4, 6–17, 43] to describe the data. For the low-mass search
the functional form in Eq. (1) gave a poor fit to the data, c2/NDF = 27.9/21, so we used the
following parameterization which includes one additional parameter P4 to fit the dijet mass
spectrum:

ds

dmjj
=

P0(1 � x)P1

xP2+P3 ln (x)+P4 ln (x)2 (2)

Equation (2) gave a good fit to the low-mass data, c2/NDF = 20.3/20. A Fisher F-test with a
size a = 0.05 [44] was used to confirm that no additional parameters are needed to model these
distributions, i.e. in the low-mass search including an additional term P5 ln (x)3 in Eq.( 2) gave
a similar fit to the low-mass data, c2/NDF = 20.1/19, and was rejected by the Fisher F-test. In
Fig. 1 we show the result of binned maximum likelihood fits, performed independently for the
low-mass and high-mass searches. The dijet mass spectra are well modeled by the background
fits. The lower panels of Fig. 1 shows the pulls of the fit, which are the bin-by-bin differences
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Figure 1: Dijet mass spectra (points) compared to a fitted parameterization of the background
(solid curve) for the low-mass search (left) and the high-mass search (right). The lower panel
in each plot shows the difference between the data and the fitted parametrization, divided by
the statistical uncertainty of the data. Examples of predicted signals from narrow gluon-gluon,
quark-gluon, and quark-quark resonances are shown with cross sections equal to the observed
upper limits at 95% CL.

Figure 1 shows the dijet mass spectra, defined as the observed number of events in each bin
divided by the integrated luminosity and the bin width, with predefined bins of width corre-
sponding to the dijet mass resolution [16]. The dijet mass spectrum for the high-mass search is
fit with the parameterization

ds

dmjj
=

P0(1 � x)P1

xP2+P3 ln (x)
, (1)

where x = mjj/
p

s and P0, P1, P2, and P3 are four free parameters, and the chi-squared per
number of degrees of freedom of the fit is c2/NDF = 38.9/39. The functional form in Eq. (1)
was also used in previous searches [4, 6–17, 43] to describe the data. For the low-mass search
the functional form in Eq. (1) gave a poor fit to the data, c2/NDF = 27.9/21, so we used the
following parameterization which includes one additional parameter P4 to fit the dijet mass
spectrum:

ds

dmjj
=

P0(1 � x)P1

xP2+P3 ln (x)+P4 ln (x)2 (2)

Equation (2) gave a good fit to the low-mass data, c2/NDF = 20.3/20. A Fisher F-test with a
size a = 0.05 [44] was used to confirm that no additional parameters are needed to model these
distributions, i.e. in the low-mass search including an additional term P5 ln (x)3 in Eq.( 2) gave
a similar fit to the low-mass data, c2/NDF = 20.1/19, and was rejected by the Fisher F-test. In
Fig. 1 we show the result of binned maximum likelihood fits, performed independently for the
low-mass and high-mass searches. The dijet mass spectra are well modeled by the background
fits. The lower panels of Fig. 1 shows the pulls of the fit, which are the bin-by-bin differences

✴ Note: only the first 27 fb-1 is used due to  
an inefficiency in the L1 jet HT trigger
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HEP.TrkX is a US based initiative to develop generic machine learning
algorithms for track reconstruction.

An initial study shows the potential of a recurrent (LSTM) and a
convolutional (CNN) network and the combination of the two.
The LSTM acts like a fast Kalman Filter and the CNN is good for parameter 
estimation

Figure 12. Difference between true and predicted values of track slope (left) and intercept (right) for the
CNN+LSTM model shown in Fig. 11. The distributions are constructed using events with up to six tracks.

formance, the model is trained by maximizing the following log gaussian likelihood, which relates
the true track parameters y, their predicted values f (x), and the covariance matrix Σ output by the
network:

L(x, y) = log |Σ| + (y − f (x))TΣ−1(y − f (x)) (1)

Figure 13 illustrates the predicted track parameters and their uncertainties for an example event
with six tracks.

The convolutional filters learned by the model provide insight into the features that the model has
learned to extract. A filter can be visualized by using gradient ascent to find an input image that max-
imizes the filter’s output activation [21]. Using this technique we generated the images shown in fig-
ure 14, which provide visualization of the filters in the second convolutional layer of the CNN+LSTM
model.

Figure 13. Example 2D toy detector event (left) with a graphical illustration of the output predictions (right)
for the straight line track parameters and covariances. The prediction is generated by sampling track parameters
many times according to their covariance matrix and plotting the resulting lines.
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7 ATS to ACTS

‣ Established an open-source 
ACTS project at CERN/gitlab 
- growing functionality 

- growing developers base 

mainly from ATLAS and FCCSW 

- main clients are  

FCCSW (mainly for FCC-hh) 
Tracking ML challenge (starting) 
ATLAS  

- Latest release 0.03.01,  
in synch with FCC development

5

https://gitlab.cern.ch/acts/a-common-tracking-sw
http://acts.web.cern.ch/ACTS/

https://its.cern.ch/jira/projects/ACTS/summary

ACTS is an initiative (mainly by ATLAS
people) to provide a generic toolbox
of tracking algorithms for future
experiments



Summary of  particle tracking

n Precise spacepoints is the most important thing!
n Need to be continously calibrated and aligned – online.
n Trigger level tracking uses pre-fabricated templates or Hough

transforms.
n Fits find the max likelihood track and vertex states. The 

Kalman Filter, Gaussian Sum Filter and chisquared
minimization are the standard methods.

n Further refinements are possible using global methods.
n In future high lumi scenarios, the increase in combinatorics

will be mitigated by adding a time-dimension.
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