Track reconstruction
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Overview

W Spacepoint formation and calibration
W Pattern recognition

W Track fitting methods
¥ Vertexing

= Alignment

= High pile-up mitigation
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The tracking challenge

Every second, 40 million beam-crossings are happening
at the LHC, producing thousands of tracks from typically
60 individual collisions. About 1 kHz of the crossings are
selected for later processing.

Because of the high track density and high momentum
very many channels are needed, causing rather large
amounts of material in the tracking detectors.

Thus, we need highly efficient and error-tolerant track-
finders and —fitters, good calibration and alignment
methods, robust vertexing and particle identification.

In the future, the extrapolated computing technology
cannot keep up with the flood of data using existing
algorithms. New techniques will be necessary.

Peter Hansen, NordForsk lectures
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ATLAS and CMS Inner Trackers
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Many ATLAS and CMS examples are used this lecture. A general principle is
to build detector planes roughly perpendicular to the tracks...
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The CMS silicon tracker
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Space-point reconstruction

=

)

o

© N

X ~
o T

—\\ Clusters
_ _ Sliding window
Pixel Column \ Dixe| Data Buffer 16

Clustering of pixel cells performed in hardware
by the ATLAS Fast Track Trigger
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Spacepoint formation

Tracking detectors register “hits” from signals induced on
pickup electrodes by an electron cloud made by a track.

In case of a hit on only one electrode, the precision is
A /12 (A = the electrode size).

Much better is it if the signal is *

pick-up electrodes

distributed over two electrodes. *
Then %x = f(P1,P2,w) TE-ﬁeld

ox

giving higher accuracy, but
you need to know both the
pulse-heights P and the

cloud width w.

\

Charge cloud \

Blum, Ronaldi: TPC tracking book 0

0 1 2 3 4 5 6 7 8 9

X

10
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Spacepoint formation

In general, a track will give rise to a “cluster” of cell signals
and their barycenter is a popular estimator of the position.

The pulse-heights, P, must exceed a certain threshold and
the electrodes must share a side, or at least a corner,
forming a cluster. Summing over cluster cells, we get the

barycenter:
X = ZBXZ. / ZB

(some use only the cells at the cluster edge, anyways you
have to correct for finite cell size effects)
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Stereo view

If you do not have pixels, only wires or strips, what about
the second coordinate?

In strip detectors double sided wafers are often used with
strips on both sides having an angle between them. But
large angles gives ghost hits!

At high track densities, 20-80 mrad is a good choice,
avoiding too many ghost hits, having good resolution in the
bending plane and still some resolution in the second

coordinate.

Track 2 Ghost 1 e

No ghosts

Ghost 2 Track 1 ——%—
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Spacepoint calibration

W In general we must know the response function ,
the probability distribution of induced pulse-heights
for a given track impact

® (Actually, it would be lovely to know the inverse: the pdf for the track,
given the pulse-heights. But we can not get that from test-beam..)

M The response function may vary from channel to
channel and even vary in time. It must be
calibrated from data.
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Lorentz angle and defects

Due to the Lorentz force from the B-field, the electron drift
direction in silicon sensors is rotated by a Lorentz angle.
This needs to be corrected for to get the true hit position.

Another complication is
s oomp | BPIX module: B = 3.8T
the possibility of local radiation
AX
OLa
/:'Iuster

damage to pixels or strips Charged
biasing the barycenter. track

In CMS, all this is handled @
by comparing the observed N
charge distributions with a
simulated template for a sample of
possible true tracks, where defects are accounted for.
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Lorentz angle

W In ATLAS, the Lorentz angle is extracted from the
cluster size vs incident angle in the first tracking
iteration. (from Simone Montesano)

16 JAN 2008 - FDR Meeting

Lorentz angle

Pixel Rphi cluster-size vs measured Angle (BLayer ) 1 %2/ ndf 42.36 / 27
po 2.85+0.11
2.4 p1 -0.1939 = 0.0125
B p2 0.006335 = 0.000347

2.2

@ DESCRIPTION: Due to the
magnetic and electric L
field, charges drift with a 1af
“Lorentz angle”. The el
measured position of the E
hits needs a correction B T, ool

PSRRI IR Sy il I S S I S S S
10 12 14 16 18 20 22 24 26 28 30

umm

2_

@ STRATEGY: Fitting the clustersize vs the \ncidence angle
measured for tracks, we find that the minimumlis at Lorentz
angle (focalization effect)
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Splitting of merged clusters

At high track densities, clusters of fired detector cells from two
different tracks may merge.

For example, a jet with p=1TeV has typically only 0.1mm
between two tracks at the innermost ATLAS pixel layer.

ATLAS uses an NN algorithm to split pixel clusters again
(Prokofieff and Selbach 2012)

Uses charge, shape, previous layer, incident angle
The cell charge in pixel detectors is estimated using
Time-over-Threshold.
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Splitting merged clusters

Fraction of non-split 2-particle clusters

0.8}
0.6-
0.4}

0.2F

——— NN clustering
------- NN with track information

ATLAS Simulation
s=7 TeV

| Improvements in Run2:

= A NN evaluates if a
pixel cluster is shareable.

| = Such can be shared without
penalty (see later on “score”)

10 10° 10"
Fraction of split 1-particle clusters

—

= Clusters are first split .
after Pass 1 track reco, taking
This yields: advantage of track info.

= a 10-17% improvement in track reconstruction
efficiency in jet cores,

= a 7-13% increase in b-tagging efficiency

= a significant reduction of CPU (factor 4 when joined by other
improvements in Run2 reco).
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Dead and noisy channels

= Any clustering algorithm must handle dead or noisy
channels to avoid false clusters.

) DESCRIPTION: some

pixels have intrinsic high
occupancy! (noisy) other
are not working (dead),
during reconstruction we
"mask” special pixels

p STRATEGY: simply plot
the occupancy and
decide a threshold for
dead and noisy. BTW: i : .
for dead pixels we need NB: this will be done with

O(1077) events! PixelMonitoring histograms!
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Spacepoints in drift-tubes

The ATLAS TRT flags time-bin t
where the signal exceeds some
threshold. Must calibrate the
distance R(t-t0) from the track to
the each wire.

L] l.:llitlnhruru:h.ﬂl.'in'l:::.l_l.':.f_‘_ﬁ-2'.
1= * [New lwae liee meskare (000 8 =0T
o New wae liee meskare (000 8 =2 T

20 GeV elzciron crossing the straw tube
B=2T (axial fie'd)

Dinft welocity (omiusec)

‘D 25 § 7.5 10 125 15 175 20

ATLAS TRT

Electric field (kWfom)

Peter Hansen, tracking algorithms
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Refinements of drift radii

o Large pulses will trigger the
St ting e threshold sooner for the same
o track impact -> small correction
for large time-over-threshold or
High-Threshold hit.

At a track refit, the track impact
S S R | along the wire, angle and other
nanoseconds info is available.

Small corrections for time-of-flight,
ATLAS TRT signal propagation and other
effects can be made at this point.

Peter Hansen, tracking algorithms
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Big water Cherenkov detectors

For calibration Super-K needs
for each single PMT:

1) The gain = charge / photo-electron.
2) The quantum and collection efficiency.
3) The timing calibration and resolution.

5 4) The background level.

The “space-points” are here In addition it needs the water transparency,

the signals on each PMT: temperature, the geo-magnetic field
the charges on the anode etc at each point in space.

and their arrival times.
A variety of light sources, radioactive
sources and even small linear
accelerators are used in the calibration.
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From space-points to tracks

= Given a collection of space-points we need to group together
those space-points that belong to a track and determine the
tracks features.

= The important feature of a track is its momentum, so we
open a parenthesis on momentum measurement

= Then we will look at tracking at trigger level
= Then study two track fit algorithms:

the Kalman filter and the global chi-squared fit.
Adaptive global methods are also discussed.

Peter Hansen, tracking algorithms
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Momentum measurement (..

I.-r T
P g
pPr =qBp
pr (GeV/e)=03Bp (T-m)
L - . — 0.3L-B
=sinf/2~0/2 - =
2P Pr

Apr = prsin@ =~ 0.3L-B
6* 03L°B
& Pr

s= pll-cosff2)~ p

s

This and next three slides are from Christian
Jorams summer student lectures

Peter Hansen, NordForsk lectures
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Momentum accuracy

the sagitta s is determined by 3 measurements with

error o(x): IR R
s=X =T
. 3 _ . EPr
olpr) _a(s) 300 3900 8pr
Pr S 5 0.3-BL"

for N equidistant measurements, one obtains
(R.L. Gluckstern, NIM 24 (1963) 381)

naas. )
olpr) o) Pr mgiviay  (orNz=10)
pr 0.3 B’

ex: p=1 GeV/c, L=1m, B=1T, o(x)=200pum, N=10

Teds.

”{Pr}
Pr

~ 0.5% (s~ 3.75 cm)
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Multiple scattering

Sufficiently thick material layer

— the particle will undergo multiple scattering.

g, = ORE _ /o

plane ’ﬁl.l' | plans -

P“

w ke
P (ﬂpﬂmle ) = TE
1 e:-:p{ . mﬁf; ]
276, 207 |
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Total momentum error ..)

contribution from multiple scattering

—

ApMS :pSiHO{] ~ 13_’)00136i |'|£F
P\ X,
ae | L
MS : 00136 II—
o(p)| _ A" _ VY goas— L
2 = = =0.045— iIndependent
D, Ap, 0.3BL B,LX, of p |

o(p)/p
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Fast pattern recognition

How to associate a subset of hits to a track at trigger level?

Predefined templates, i.e. patterns of fired cells defining an
allowed track. Used in fast trigger algorithms.

The cell tower is an example from the calorimeter world.

Hough transform is another method. For straight tracks in
two dimensions, each hit corresponds to a straight line in
the slope-intercept plane. Peaks in this plane where many
lines intercept reveal the hits-on-tracks.
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Simple Hough transform

Histogram methods may provide fast seeds for high
momentum tracks — here an example from the ATLAS TRT:

| I J id : I I i I i ‘ I TR-hits

Normal
hits

L e L e L e L 8 L e

ATLAS TRT
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General Hough transform

Scan in two dimensions (d=-Cr+d, )

Count number of compatible hits.

Ci+1

7

d
d

S i+1

G

A Salzburger / Artemis School on Calibration and performance of ATLAS detectors / ID reconstruction -

o. Direction

o,

diy -

‘ Hough Space
........................................................................ (?
............................................................... 8
Ciw:Ll C1
Curvature

part I/ 16-09-2008
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Conformal mapping

Preserves angles, but not lengths.
The points:
u=x/(x2+y?)
v=y/(x>+y?)
will lie on a straight line in (u,v)
space for hits on a circle passing
through (x,y)=(0,0).
A straight line can be characterized by its
point closest to the origin, with distance
d ("DOCA”") and direction 0.




P 28

Conformal mapping

For each hit (u,v), all d and 0 of lines passing through the hit

are entered in a |

~ Parameter Space

nistogram and the
ocal peaks are found.
-rom these we
iImmediately get the
circle parameters.

_ -0.05
radius r’ -0.11

Used by BES llI, Belle || and PANDA.
Even implemented on FPGA.
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Riemann track fit

Another fast non-iterative circle fit is the Riemann fit where a
circle in a 2-D plane is transformed into a plane in 3-D that
Intersects the Riemann sphere

The parameters of the plane through L are quickly found as
a linear combination of the hit coordinates, and these can
then be mapped to the circle parameters of L.

R. Frahwirth and A.Strandlie, J.Phys.Cond 762(2016)012032
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arXiv:1606.048802

Multiple scattering fit

In many experiments, like mu3e, MS dominates resolution:

Recurl pixel layers

e

A triplet of hits prBovides 6¥Constraints, but a helix with MS in
the middle plane is described by 8 parameters (6 helix
parameters plus two MS angle projections)

The missing constraints can be supplied by minimizing:

®prs(R3p)? . Ops(R3p)?

¥2 (Rap) = MSO(_ZSD) n MSE.ZBD)

0] 0

where R;p Is the helix radius and the two angles are the
azimuthal and polar scattering angles, respectively. This

minimalization leads to a fast online estimate of R, .
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Associative memory - ATLAS FTK

FTK The associative memory where each hit is seen
by all possible templates is the most advanced
example.

Second Stage Fit (4 brds) |
R ocessing « Hits are ganged into Super Strips (SS)

- Roughly 15x36 pixels/16strips per SS @
CT 1T 11 70 int/x-ing

(..

« Custom associative memory chips are
used to compare hits to 0O(10°) patterns
simultaneously

« Pattern matching finished as soon as all
hits are read

& ka4 2
o iy » Matched patterns (Roads) are then fit to
_— I v I l reject bad roads

« Most matches are fake, need fits to
— reduce bad rate
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The state vector

Let at each detector surface the track be given by a vector
(position, direction, 1/p), along with its uncertainties:

track parameters
/" extrapolated from A to B

track fit incl.
measurement of B

ANISISNINERNIS AN

reconstructed track
/ parameters on layer A

AMS SN RNS W N

true track

Figure from ATLAS reconstruction group
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Helix parametrization

B An example of a state vector is helix parameters, where
90°-A is the track angle to the B field, R is the radius, s the
path length and h is a sign. This gives the trajectory:

ar hs

x +R-(cos(e, +—-cosA)—cos,)
() f
y |= yO+R-(sin(0(0+Es-cosﬂ)—sin%)
\“ ) | 2%+s-sinA

\ J

W Atrack in a detector with cylinder symmetry is a collection of
helices at each “cylinder surface”.
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Perigee parameters track

The perigee parameters

_ q
X = ((Po, d)’ Z»0, p)

are often used to describe the track state at the closest
approach to the beam (z) axis.

g/p is measured with approximately gaussian uncertainty.

d, has a sign convention following that of the angular
momentum of the track wrt the z axis
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The projection matrix H

To compare with measurements m, the track state x needs
to be mapped onto “measurement space”. We linearize:

H=0dm/0x, where H is the projection matrix
(assuming for simplicity that x=0 corresponds to m=0)

Let a set of strips form a small angle a with the x axis. The
track parameters are x and y at each plane.
L | o
H = [—sma COS a]
RA Y.

produces the y’-coordinate perpendicular to the tilted strip.
This yields immediately the raw hit strip number m.
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Spectrometer example

4 y-7 pixel planes distance between planes d

Field Bz

A u

tanfg) = 0.3x [ B,dxx q/p=bq/p)

< W

Using units of Tesla,m, and GeV/c
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Spectrometer example

Projection matrix (linearized)
measurements ]

_ ) \
__ State vector at plane 1 Lo 0
“ . 1 d 0 0 O
Z
Z
L4 1 3 0 0 O
m=| ", x=|y |, H=
N ' O 0 1 O O
y/ 0 0 1 d O
Ya AP 0 0 1 2d bdl2
0 0 1 3d 3bd/2
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The Kalman filter

Determines the track state vector dynamically from
measurements at each detector surface.

These are either discarded or used to update the
existing state vector.

Needs only inversion of small matrices. Fast.

Can account for noise, multiple scattering and
energy loss at each surface. Efficient.

Is equivalent to the least squares fit, but provides
pattern recognition integrated in the fit.
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Seeding

We need track seeds with a high efficiency
and modest fake rate. Many possible strategies:

Figure from Mankel A
arXiv:0402039v1 | e ]

A A
B B
c . Y S T A
D . [\ D . VATEN Y ,
E [ -/ \- \- E [ | ;-[ .l'l \- \- ]
= R - TR
Start from two G| T Y A {f A
H . L] — H . VA A B ,
outer layers: R A S—— s Ty
J L — J L — ,
S S NS—[— R g— f — ~ Connectall
Lo w G A L e - . inner layer hits
/ 7 \ \ / ]u \ \ to each outer

ATLAS and CMS use the inner pixel layers for
seeds and then proceed outwards for track finding
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Cellular automaton seeding

Generic lib available!
https://github.com/HSF/Trick Track

CMS and Belle Il have cellular automatons running
in parallel GPU threads

« Cell: allowed doublet of hits.

* Cells start in state=0 .

 If there is an outer neighbour in the same
state, then state++

» Continue until states do not change

» Select eg quadruples by chosing
state=2 start cells

Great improvement in CMS fake rate:
1/100 wrt HLT 2016
-30% wrt triplet propagation method.
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The propagator F

Let the track transport from layer k-1 to k be given by
Xy = f (Xk—1)

Let the predicted state be denoted by a tilde. If f is not
already linear in x, we Taylor expand it:

X = FiX 4,
C/l:_] = Fka_1F/<T +Q,

where C, is the covariance matrix for the predicted state
and Q contains the additional random perturbations in the
step, such as multiple scattering and energy loss.
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Covariance matrices Vand C

A pair of random variables x; and x; has the covariance matrix:

V, = E((x, - E(x;)x (x; - E(x;))

It is symmetric and have diagonal elements equal to the
variances of the x’es.

Off-diagonal elements describe the degree of correlation
between x; and x;.

Any set of functions f; of the x’s has (to lowest order in a
Taylor expansion) the covariance matrix:

of of;
C/.Jf — z i L\,

This is the chain rule.
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The propagator F — simple example

The F propagator is exactly the same as the transfer matrix
of accelerator physics.

For our example spectrometer we have the z projection
propagation from the second to the third plane (a drift
space in accelerator language).

g 1 d ||z,
2, =Fz, = 0 1 P

C,=F,C,F, +0Q.
o o /d 6:.d*> 0..d

C. = m , Q:
* | o2/d 202 /d* 6>.d 6%
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The propagator F — complex case

In regions with an inhomogenous B field, the preferred
method is Runge-Kutta integration. Here, the trajectory
derivatives are sampled at a number of intermediate
positions, weighted so that the error is 5" power in h, the

small time-step to the next plane:
y=1ty), Yo=X%b)

Yo = Yo +£67(k1 + 2k2+ 2k3+ k4)

k] = f(tﬂyn)
h h

k, = f(tn+§7yn+ék1)
h h

k= F(t 40y, + k)
k4 = f(t;")"' hayn+ hl%)
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The propagator F — complex case

Let us try a grossly nonlinear case y=exp(t):

Y=y, Yo=1
k =1

h* . h
k, =1+ h+7(1+é)

h h R K
y1='|+6(k1+2k2+2k3+k4)='|+h+ >+ 6+24

Victory!
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The residual r

¥ The difference between a measurement m and its
prediction by the track state, Hx, is called the residual:

’7<k_1 =m, - H.X, R/I:_1 =V + chllf_1H/Z

V is the covariance matrix of the measurements
R is the covariance matrix of the residuals.

(Note that the contribution from the track is here added to
the measurement variance. The measurement is not used
yet. If the hit contributes to the track, the track variance is
iInstead subtracted from the residual variance).

At this point you can reject a measurement m, on the basis of
r’/R,. . This is the pattern recognition part of the KF.
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Updating the state vector:

A way to update the track state with the newly added hit is
to take a weighted average of the predicted track state and
the state suggested by the new measurement:

x, =C.(C;Y'x"+H'V, 'm,)
C.l=(C;H'"+HV,'H
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Updating the state vector:

An equivalent way is to use the gain matrix K:

K, = Cl,f"1HT(\/k + H,<(:/,<<'1H,Z)"1
X, = )?115_1 + K, (m, - Hk)?Ik(_1)
Co=(0-KH)CS
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Filtered residuals

The filtered residual, its covariance and x2 are
r=(1-HK)'"', R =(1-HK,V,, y’=r'R'r

track parameters
/ extrapolated from A to B

track fit incl.
measurement of B

ANISISNINSERNIS AN

reconstructed track
/ parameters on layer A

ANMS TSNS RNS SN

Figure from Fleischmann true track
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Smoothing

We have reached the end with n hits. Now the procedure is
repeated backwards. This is used to update the state at
each surface k with the information from all the other:

Ck|n_1 — Ck|k_1 + (le|k+1)_l

-1 b -1
Xin = Ck|n (Ck|k X T (Ck]kﬂ) xk|k+1)

Finally the state at the innermost surface is extrapolated to
the perigee, and this result is used in further analysis.



P 51

Combinatorial Kalman Filter

d For trackinc}; In dense track environments, the nearest hit
might not be the best.

dThe Combinatorial Kalman Filter (Mankel 1997) keeps many
options open for propagating a seed until one of them conquers
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Outlier removal and iterations

 Several iterations are normally used:

 The smoother fit can use updated
space-points (applying small corrections
depending on track parameters).

At the smoother step, outliers contributing a large x2
can be removed _
(due to d-electrons, nearby tracks or noise)

1 The easiest tracks (high pT, many hits-on-track)
are reconstructed first and their hits removed

d The remaining hits are now fitted with more relaxed
requirements.

Fine_III% repeat outside-in, using seeds in the outer layers,
to pick up long-lived decays and photon conversions.
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Global (Newton-Raphson) fits

The global least-squares fit requires to know in advance
which hits belong to the track.

It minimizes the weighted sum of distances between the
fitted track and the assigned hits, adjusting the track states
at each surface.

It is mathematically equivalent to the Kalman smoother for a
fixed selection of hits on a track.

If all measurement errors are Gaussian, it is also equal to
the maximum likelihood fit.



P 54

Global fits

In the approximation where the expected measurements
are linear in the track parameters x, we minimize:

i = (m= HX)T V(= Hx)

where m is a vector of measurements at all the surfaces.
The solution is:

x=(H"V'H)"'HV 'm

For normally distributed m, this is also the maximum
likelihood estimate of the parameters.

The factor 2 2
16y
H'VH)Y = (5—25)
( ) 2 5X° )

IS also the covariance matrix C of the track parameters.
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Newton-Raphson fit

If the projection h(x) is not linear, we can Taylor expand
around an initial value x, obtaining approximately:

DL ()= 2H 'V (m—h(x,)

dx
d2 2 ) )
d;g (x,)=2H"V'H =Cov'(x,)
X
2 2 2
we insert now instead X =x _(d 4 ) dy
| 0 7
dx dx

X, may not exactly minimize x? — but it is, after all, better
than x,. Thus we iterate until |x, —x, 4| < €.

This is basically MINUIT.
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Track fits in Super-Kamiokande

= Reconstruct Cherenkov rings
=Extract track parameters X=
=\/ertex position _
*Momentum and direction
=Particle ID

By maximizing the total likelihood:

i-th PMT’s charge, time

unhit hit

/ |
L(x) = H P(iunhit|x) H P(¢hit|x) f4(q:|x) fie (ti]|x)

| ! ™~

Unhit probability = Hit probability Charge likelihood Time likelihood
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0.5

04

03

02

0.1

Track fits in Super-Kamiokande

* The individual pdf’'s are far from Gaussian !

= So good seeding is very important to avoid local minima

and CPU consumption is very high

IIIIIIIIIIIIIIII

1111

’_‘.—
© lllllllllllllllllllll]lll

q(pe.)

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04f
0.02f
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Dealing with multiple scattering

The global chi-squared track fit can allow at each scattering
plane a MS angle treated as an extra track parameter with a
contribution to x?of (6/6, )

Alternatively we can introduce correlations between
surfaces in the covariance matrix V:

V>V +SOST S=0rld) ©,=6;

MS is approximately Gaussian.

The Global Chisquared and the Kalman Filter only work
optimally with Gaussian deviations from expectations.
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Dealing with Non Gaussian errors

Special methods are needed to take care of non-gaussian
iInfluences. Typical example is hard photon radiation where
the probability density for the electron to retain a fraction z
of its energy follows the Bethe-Heitler law

f(2)=(In2“" (c)
c=X,/An2

S1 S2 S3 S4 S5

4
35 |
3t
25;
2|
15|
1]

05 [

Bethe-Heitler
f(z)=(-In 2)* Y/ T'(c)

¢ = thickness(X) / In2
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Gaussian Sum Filter

Propagation with material effects
(including component reduction)

1
Propagation with mate- ‘ R

rial effects

Figure from Salzburger lectures

See eg R. Fruhwirth and S. Fruhwirth-Schnatter, 1998

Measurement Update

Branch the Kalman filter at each surface into parallel paths
using a finite number of different Gaussian errors.

This is the same as modelling e.g. the Bethe-Heltler as a
sum of Gaussians Nmax

f(2) = 29¢(Zﬂi7ai)

where the weights g, the average, u,, and variance, ¢, of the
energy are determined beforehand from simulation.
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Gaussian Sum Filter

GSF residu

600 E
500 :
400 :
300 :

200}

100}

From A. Strandlie, CMS simulation 2003

-8 .03 -0.02 -0.01 0 0.01 0.02 0.03
Residuals of g/p (in inverse GeV/c)

Effectively the track state branches out into a number of
possibilities at each plane.

Component reduction, must be carried out at some point to
keep the number of branches from exploding.

The resulting algorithm is very efficient in recovering from
hard bremsstrahlung, but is also very CPU consuming.
Often restricted to electron candidates.
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Global optimization

In case of competing assignments of hits to a given track
candidate - or to noise - what is the optimal assignment?

In essence this is the travelling salesman’s problem. It is
not sure that the nearest hit is the best choice. The problem
should be tackled by minimizing a total energy function.

In the Elastic Arms Algorithm a number of “deformable track
templates” must first be found. These should also include a
‘noise template”. The number of tracks stays fixed, but
which hits are assigned to which tracks is not yet fixed.
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Global optimization

A “metric” M., is defined, typically as the squared distance
from hit i to track template a.

One could try to minimise to minimize a “total energy”:
TrackdHits

E = 2 Z[S;'aMia]

where the “assignment strength” Sia is either O or 1.

However, optimizing the S,'s is tricky since the energy-
landscape is very “spiky” with lots of local minima.
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Elastic arms and annealing

This is tackled by annealing and fuzzy assignment strength:

_BM .
g
S, =

Ia Tracks
2 g PMia

where B=1/T and A is a “chisquared cut” of the order 10.
S,y IS here the assignment strength to noise (M,;=A)

We now start at a high “temperature™ where the S;;'s are
relatively large, even for distant hits. Few local minima.

The track parameters are then iterated to the global
minimum of E using its derivatives a la Newton-Raphson




P 65

Elastic arms and annealing

We then lower the temperature (by eg 5%), repeat
and continue until T<<1.
At this point, all the S,;'s take ~discreet values of 0 and 1.

Chisquared for 10 muon tracks in
HERA-B with decreasing temperature.
(From Borgmeier Diploma Thesis 1996)

More is found in R.Mankels review
(arXiv:040239v1) from 2004.
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Deterministic Annealing Filter

A problem with a global method like Elastic Arms is that the
number of tracks must be known beforehand.

It gives you better hit sharing, but not better track finding
efficiency.

Therefore Fruhwirth and Strandlie proposed to modify the
(local) Kalman filter using an assignment probability Sik

for assigning hit i in plane k to the current track, thus giving
all hits a say in the propagation of a given seed.
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DAF assignment probabilities

The assignment probability for each of nk measurements in
layer k to the current track is assumed to be proportional to
a multivariate Gaussian:

¢, = p(m; H,x, . TV, + H .C.H,)

where X here is the smoothed track state, but without
involving layer Kk in the fit, and T a temperature parameter
(the last term is the “track contribution” to the error, which
can often be ignored).

This is nothing but the likelihood for a track to produce a
given hit using scaled measurement errors. However, what
we want is the posterior probability of the track parameters.
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DAF assignment probability

Allowing for the hypothesis that no hit is produced by the
track in layer k, we normalise the assignment probability as:

G___

DA+ i)

J

The cut term may be parametrized as

| 1 A
Ai - dim(m) ] eXp(_ E)
27)"m T det V;

where | acts as a 2 cut-off at low temperature.
(Fruhwirth and Strandlie, Comp.Phys.Comm 120,197 (1999))
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DAF algorithm

The filtered state can take several measurements per
detector layer into account by using their weighted mean.

i

AVSISN IS ENS SN

measurements
with weights

weighted mean
of measurements

Figure from Fleischmann
PRD thesis (ATLAS) DRSNS B

true track
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DAF in practice

The Deterministic Annealing Filter is reported to be especially
effective in finding the best left-right choices in drift tubes.

It can be used as an "afterburner” and may significantly
Improve momentum resolution. Efficiency of track finding

1

R Rk —w—=%
o——6—06—6—0g__
0.6 R

—— DAF

0.4 S— CKF/KSM

' . &— CKF/DAF
Simulated performance in an 02{| —A&— GSFIKSM
ATLAS-like” setup of the DAF, o|L—=—GSFDAF
either in standalone mode or as 64 32 16 8 4 2 1
d traCk fitter fO”OW|n a CKF or GSF Maximum number of components
gggg)ﬂnder' (FrUhWI h and Strandlle’ o Generalized variance of residuals

10 , . .

F—F——F———F

10 29

64 32 16 8 4 2 1
Maximum number of components



P71

DAF as a multi-track fitter

It may be extended it to a multi-track fitter with several filters
propagating in parallel.
(Fruhwirth and Strandlie, Comp.Phys.Comm,133(2000)34).

In this case, the normalisation of assignment probabilities
needs to be changed so that the sum runs over all accepted
tracks competing for the measurements.

The procedure again starts at a high temperature and iterates
with decreasing tolerance, but without working with a fixed
number of tracks. Candidates are rejected along the way.
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Track scoring

To resolve competition among tracks for the same hits, a
“score” is used to decide the further fate of a track.

ATLAS uses a combination of sub-scores:

Number of precision hits

Number of outlier hits

Holes (track passing through live sensor with no signal)
Shared hits (penalized if hit is not “shareable”).

Total x? per degree of freedom

In a second pass the hits not yet assigned to a track may be
reconsidered with larger tolerances to form, for example, low pT
tracks or tracks from secondary interactions (long lived decays).
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Track scoring

LCHDb has in Run2 split the trigger in two levels, which enables
online alignment and calibration. But CPU bandwidth is an issue.

To speed up, a shallow neural net has been designed (using the
TMVA framework) for on-line rejection of fake tracks :

22 inputs -> m linear nodes ->
m non-lin nodes —> 0.7

. (- | 1 |
m linear nodes -> S [ ]
: = LHCb
m non-lin nodes -> 9t -
Decision 5 0.61 h
. . ] i ]
The result is a 16% saving -2 i 3 i
S~ .
- -ﬂ* -
05 __ (25ns, high luminosity) *l:__. —_
: ~ :
04 obability (50ns, high luminosity) "'.. ——
M R IR AR TS (S S S S NS " |
0.98 0.985 0.99 0.995 1

LHCb-PUB-2017-011 signal efficiency
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Finding the primary vertex

Every few minutes the "beam-spot” with high concentration of
track perigees is recalculated.

Hereafter, just two tracks suffices to provide an accurate seed
for a vertex Kalman Filter.

Beam spot

Figure from Mankel n=>0 n=1
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Finding the first vertex seed

Great care must be taken in this very first step.

ZEUS: candidate track pairs were ranked according to how
many other pairs they agreed with. The best pair then
started the chi-squared fit.

CMS: finds regions with a high density of track pair
crossings. Each track pair is weighted by a decreasing
function of the distance between their two perigees. The
position with the largest weight is the seed.
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| ATLAS Multi Vertex Finder

INPUT Seed Finder
Tracks - — | New vertex 1s seeded
- | Track selection |—

.1 Ee PIRIT MAE NSI Remaining Adaptive Multi Vertex Fitter

tracks Vertex is fit together
with all previous ones

o Figure from Saltzburger
= o R &

m Several vertices fitted simultaneously (20 vertices above)

W Several iterations with decreasing tolerance for assigning a
track to a vertex a la the Multitrack DAF.
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Billoir vertex fit

The alternative to a Kalman Filter is the Newton-Raphson
least squares fit (for vertices called a Billoir fit):

It requires that the collection of tracks associated with each
vertex is known in advance.

Not only the vertex is fitted, but also the track momenta, this
time with the constraint that they should all come from the
same vertex point. This yields improved momenta.
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Billoir vertex fit

et V= ( X, Y., Z/) be the vertex position for n tracks
et O = (P, P, P,;) be the i'th track momentum

et X = F (V, ,le) be the 5 track parameters of the i'th track
at some reference surface.

To first order in a Taylor series: F = F(V,, p,)+ Dov+ E 6p
VvV, and p,; are estimates of the vertex and track momenta.

Let OX; = Xi meas™ F (\70, Po,-) and V. be the covariance matrix
for 0X. where iis the track number.

Then
X =Y (0% - Dov- Eop) Vi (6% - DoV~ E op)
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Billoir vertex fit

Tatjana Lenz master thesis

Like in the track fit, we solve the 3+3n equations minimising
X*:

v=V,+(A- Y BC'B"))'(t- Y (BC) w)

P =1+ C (G -Bov)

A= E DIT\/i_1Di Bi = DIT\//'_1E/ Ci = EIT\/i_1Ei
t=YD/V'sx,  1=EV5x

The real work for the programmer is in the initial calculation
of D and E - and in the initial guess of v,
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Billoir vertex fit

Now interchange v, with v and continue until convergence
The covariance of the fitted parameters is at each step:

cov) = (A— D B,CﬂB,T)
covp)=C;'+(BC ') cov)BC;
covy,p)=-cov)D.E;’

We also get correlations between the track momenta:

COV(D,-,TJJ-) = 5UE;1 - E,_1DIT covy, TDJ)
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Exploiting external constraints

If you have some partial prior knowledge about the beam
collision position b, just add an extra contribution to the x?,
which will change its derivatives:

Sx* =@ —b)'V, (v - b)

If you have an exact constraint, like momentum
conservation, you can use the method of Lagrange

Multipliers:
S’ =-A+dv,) P)

Where A are 3 new arbitrary fit parameters and d is some
function that in principle is exactly zero.



P 82

b-jet tagging

Displaced
Tracks

Secondary
Vertex

Jets with a B-hadron can be identified by the lifetime (~1.5
ps) and high mass of the b quark (~4.2 GeV)

From the ATLAS B-physics group
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using secondary vertices

One way to find b-jets is to reconstruct the decay chain:
b-jet -> B+X -> DO+X+Y -> K+X+Y+Z
Where X are b-quark fragmentation particles, Y are other
particles from B-decay and Z other particles from D decay.

Another way is to use multi-variate techniques on the
number of found vertices along the jet-axis, their distances
from PV, the mass and number of tracks at each vertex etc
to discriminate between b-quarks and lighter partons.
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Using a lepton tag

Due to the high B-meson mass, its leptonic decay (~10%)
has a higher p;®' than leptons from light parton jets

,<< SATI AC  Run 152409 b-tagged jet in 7 TeV coII|S|ons
“WHILAJ  Event 4349994 \

" CYPEDIMENT p —49 GeV

o == LAl RLINLIVIAEN N

—_— 6 b -tagging quality tracks in the jet,
http://atlas.ch including one muon
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Combining all of it

J ATLAS combines the S=d,/ Ad, for all tracks in a jet:

N, —In(I1 .
P(jet) =11- Z ( ) where I1= [T [ f(S)dS
l! icjet
S is the impact parameter g 10T g
anif £ S gof [ Loossopyt  ATEASBrelmnen
. . . - 5 10° mmm Pythia Dije :b jets
its light jet probability. 3o R E
= E igh-performance tagger: E
The P(jet) estimator has many = .t PaDssVI - 3
nice properties. 100 4
10° E

10

1 Finally combine everything:
combined Likelihood - * P30-sv1 weig
or Multi-Variate Analysis

.
s
_.;.. ]

data/MC ratio
OO000 a——t—aa

00.0.... ¢“+ ++T+ u ]

20 0 0 10 20

VIONI00O LW BRUY

IP3D+SV1 welght
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B-tagging at Belle |l

Lﬁl(l.atln'lmm ]

.

: | |
electrons (7Ge rt Id!dentlﬂcation

—~—t
‘\'\.\ =

~7m St

posirons (4GeV)
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B-tagging at Belle |l

140 input features: kinematics, PID, Pvalues ..

(1) +@

) = k1) (Z w k) xj(k) X W/_(()k))

J=1 "ij
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B-tagging at Belle I

t, € {0,1}

m compare network output y,, and true information ¢,

m cross-entropy
E(w) = =>4t Iny, + (1 — t,) In(1 — y,)]

m weight update '
Aw' = —nVE,(w')

m weight update with momentum
Aw' = —nVE, (W) + pAw'™"

Train on 12 million events
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B-tagging at Belle I

1.0
v 08
)
o
v 0.6
.E —— deep neural network
'g —— category based
s 04
)
o
+ 0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

false positive rate



P 90

Lagrange Multipliers

Let x be the track parameters of the two tracks that form a
conversion candidate. The constraints must be expressed
as some functions, H(x), being exactly zero.

We again expand around an approximate solution Xx,:

oH _ _ . = _ = _ = —
—((x—-x,)+H(x,)=DAx+d =0
ox
In a photon conversion, the e+e- emerge parallel from a
common point, and the expression is like
Rl PP P Dy - -
d :H(plapzarlarz)/l :( L — =2 arl _rz)A
EI E2

Where the p’s and r’ s refer to the start points of the tracks.
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Lagrange Multipliers

The function to be minimized is now (dropping vector bars):
Zz = (x_xo)TVo_l(x_xo) T 21T(D(X_XA) +d)

The minimum is found in the space of the track
parameters x=(p,r) and the real constants A.

The "0” refer to the unconstrained solution from the track
fits and the “A” to the previous iteration of this fit.

The solutions have to be iterated since the constraint
equations were linearized.

MINUIT does all of that behind the scenes, but is not
normally possible to use in a reconstruction program.
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Solution to the constrained fit

(put derivatives of chi2 to zero and solve by substitution):

x=x,—V,D' A

A=V (D(x,—x,)+d)
v, =(DV,D")”

Ve =V =VDV, )V,

Z2 — ATVD_I//L




New PartcheDlscovery
The 5,* involves elegant
cascade that CMS tracker
handles beautifully.
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Alighment

In order to have high resolution and unbiased tracking, the
detector elements must be correctly aligned.

This is partly achieved by optical survey, and for example
laser alignment systems, to track short-term movements.

The ultimate alignment precision, however, is achieved by
using the fitted tracks themselves.
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Local alignment with tracks

How to determine the alignment corrections to the position
and orientation of each detector element from the
reconstructed tracks?

Consider a single measured coordinate y, and a track model
y=h(x,a), where x are the track parameters and a are the
alignment corrections.

A straight forward estimate of 0a; is simply the
average residual <r; =y, — h(x,a)>

If the considered plane does not take part in the fitted track,
r;is called an unbiased residual.

This ‘Tocal alignment ”requires in general many iterations
because the correlations between planes induced by the
fitted tracks are ignored with this method.

Peter Hansen, NordForsk lectures
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Alignment with tracks

44— common
. intersection point

artificial strip

DOCA residual

linear

residual prediction

signal

(L
PESEIR
angular _—" \ ;
residual ; ' particle track

I I.’

From ATLAS alignment paper
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Global alignment with tracks

In the "global ”approach we define a total x2 of a large track

sample:
XK= Yr'Rr

tracks

r(x,o.,m)= m- h(x,a)

where r are the residuals, a the alignment parameters of the
detector elements and x the individual track parameters.

We would like to simultaneously minimise x? both with
respect to the millions of x’ s and to the many a’ s.

Sounds impossible, but it isn’ t!
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Global alignment with tracks

After fitting for the track parameters, x, we have to first
order the total derivative wrt the alignment :

bez T D-1-
=2y AR'T
CH t;ks

where A is the partial derivative of r wrt a.

If R is diagonal, the derivative receives only contributions
from local detector elements for which A=0r/da is non-zero.

Finding da so that total derivative be zero thus results in M
coupled equations, just like for the Billoir vertex fit.
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Global alignment with tracks

The M equations to be solved are :

& __dx
el

CMS minimises the distance between the two sides of the
equation with a program called MINRES.

ATLAS calculates eigenvectors and eigenvalues of the
second derivative, exploiting the sparseness of this matrix,

in order to do a fast inversion.
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Global alignment with tracks

The explicit solution to the alignment problem is thus

d2Z2 )_1 dZ2
da’~ da

or, assuming r is linear in q,:

Ao =—(

1-1

A = — Ea_?R-lﬁ E a_FR-er
i da,  da

tracks tracks

where R=}) — HCHT IS the covariance matrix of the
residual vector of a track. See ATL-INDET-PUB-2007-009.
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Eigen-modes of distortion

Let

19¢ _1dx
2 da’ 2 oo’
Then the covariance of the corrections is C(Aa)=A".

Since this matrix has an inverse, it can be diagonalized and
written in terms of its eigenvectors u and eigenvalues d.

M
1 .
CyAa)= EF U d”
j Y

b=

where

A= Y — (B
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Eigen-modes of distortion

The eigenvectors are collective orthogonal distortions of the
detector. The change in the x2 due to the correction Aa
receives independent contributions from each mode j:

M
Ax® = -ZEdi (U by?
Jj 7

Thus we can identify and correct the contributions from the
ortho-normal modes independently of each other.
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Weak modes

Clearly there is a problem if dj=0.

Small eigenvalues of A correspond to small
dx?/da. These are called "weak modes”, poorly
constrained by the data.

There are some distortions which cannot be seen in the
residuals but still may spoil the momentum measurement.
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Weak modes

The only way out is to use external constraints.
If, for example, an optical survey yields the alignment shift
a with precision o, you could add a piece

AXZ = (OC - asurve))z /02

survey

In general, if relations g(a)=0 exist with covariance G, add:

Ax =g Gg
Exact constraints, such as energy-momentum conservation,
are best taken into account with Lagrange multipliers.
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Effect of weak mode misalignment

ATLAS saw the troubles from weak modes already in
simulation. Extra constraints from cosmics and
combined detectors helped a lot.
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Curls and twists (g anti-sym)

W Arotation in ¢ proportional with R of the various layers would
approximately conserve the helix-shape but bias the
momentum (different for positive and negative charge).

That is called a curl.

(a) “curl” (b) “twist”

B A rotation of the end of a cylinder layer would approximately
conserve the helix-shape but bias the momentum in an n
dependent way. That is called a twist.

From the ATLAS Silicon alignment group, Bruckman et al
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Checking for twists and curls

No effect of twists and curls seen after alignment
(Note: measurement uncertainty alone gives a resolution of 0.6 TeV-1)
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Radial distorsions

There are also weak mode distortions affecting charges
symmetrically — but different at different phi.

Ar—f(d) r ‘

From the ATLAS Silicon alignment group, Bruckman et al
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Checking radial deformations

Phi dependence of low mass resonances
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Figure 8: mgo(dygo) (left) and my (/) (right) as a function of ¢-direction of the resonance.
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From the ATLAS Silicon alignment group, Bruckman et al
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B field rotations
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From the ATLAS Silicon alignment group, Bruckman et al
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Correcting for B field rotation

B The needed extra constraint is here provided by the KO mass.

B The rotations in data are found from interpolation among
simulated rotated samples.
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The pile-up challenge

Even with new high granularity
trackers, the pile-up 200

at HL-LHC will significantly
reduce physics reach.

This goes both for performance
and sheer processing

capacity
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Multithreading

Because of power limitations, we are stuck with a clock

speed of 3 GHz.

However, the number of cores still grows (eg Xeon-Phi

has 64 cores and 256 threads)
The threads share memory and
can be swapped in and out fast.
This way you avoid idling and
save memory.

But all the software has to be
changed so that shared

services know who they are
serving and respond accordingly

e poe
aue s

Cartoon of event processing
- each event is a different colour
- each shape is a different algorithm

T
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New timing layers for HL-LHC

CMS: enclose entire tracker.
Barrel: Thin crystals with SiPM, o, = 30ps
Endcap: Low Gain Avalance Dev 3mm?, 30-50ps
ATLAS: 2.4 <n<4.2. LGAD 1mm?, o,= 30-50ps

Low gain -> thin detector -> high dV/dt -> good timing
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Timing in reconstruction

CMS Simulation <u> = 200

R B dorotoion -
| —+— 4D Tracks % ]
0.4_— # F * . ]
; oWty -
o f PRI .'é.fﬁﬂ 3 i
i 3 ﬁi e {M Wi, d Y -
or ty . .‘% y % { i ¥ -
_0.25— b @ % {iﬁa .%&Jr $ _E
-0.4— | | L | | ]
-10 -5 0 5 10
z (cm)

Great reduction of confusion. Everything benefits: isolation, MET, b-tag...

Timing info can be included in the Kalman smoother step
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# of pileup tracks/signal PV

Timing in analysis

40

35
30
25
20
15
10

CMS Simulation preliminary

p,>0.9 GeV, Ini<4.0.

o No timing, PU=200

W/ Timing Inl<4.0, PU=200
=w/ Timing Inl<3.0, PU=200
+w/ Timing Inl<1.5, PU=200

e Zuueve"ttracks ............ » ..............

OO

Density (events/mm)

Non prompt efficiency

CMS Phase-2 Simulation
T T T T l T T T T I T T T T

-~ (PU)=200, [nj<2.8

- —— MTD o, = 30ps
[ At<30=90ps

1 l 1 1 1 I

o
Prompt efficiency

0.85

Increase in efficiency of isolated
objects. _
Benefit seems to scale with
timing coverage.

Combine with calo-timing and get
also better H->yy vertexing
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light-jet rejection

rel. diff.

Timing in analysis

105 g TTT LI T T T T T T 1T L LI LI TT 1T T .; U 3
C MV — Tk 3 E 10
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10°E Tk HGTD E c
= 3 o 10
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10° _\\\“— = 8 1
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- S ] g 10
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10 \\ = .
= ATLAS Simulation Preliminary - 10
1 : tt simulation, jet p, >20 GeV, [n|>2.4 \\ . 10°
3.5E E
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0.5E-. .. . , i . . . . L T 05
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b-jet efficiency

ATLAS forward light jet rejection
70% improved
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fs=14TeV, (> =200 ATLAS

Inclined Barrel _
PowhegPythia tt

p=2%
1.5¢3,<2.0

Simulation Preliminary

- [Tk

== [Tk + HGTD, 6(t)=30 ps, 2.4<[n|<3.8 coverage

T R R R T |
250 300
MET Residual [GeV]

i IR R R
50 100 150 200

%0 30

MET Residual [GeV

20

Significant MET improvements.

New possibilities for heavy stable
particle searches.
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Data scouting

Even with the planned detector upgrades, the increasing luminosity
will force higher trigger thresholds, especially for jet based triggers.

This may cause us to miss possible new physics with weak couplings.

Already now, all calibration and alignment has moved upstream to

online

LT and calibration farms.

Trend at LHC is to also move suitable analysis to the trigger level:

_ 27 b (13 TeV)
% 108 §CMS ¢+ Data
E ek — Fit
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B 10° &
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Significance

T T T ‘
ATLAS Preliminary 1
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« Data

— Background fit
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p-value =0.19
Fit Range: 394 - 1236 GeV
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Machine learning in tracking

HEP.TrkX is a US based initiative to develop generic machine learning
algorithms for track reconstruction.

An initial study shows the potential of a recurrent (LSTM) and a
convolutional (CNN) network and the combination of the two.

The LSTM acts like a fast Kalman Filter and the CNN is good for parameter
eStImatlon EPJ Web of Conferences 150, 00003 (2017)

Connecting The Dots/Intelligent Trackers 2017
Input

Model prediction

Pixel

Layer
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-l- ra Ckl N g t o Ol b OX a-common-lracking-sw Build infrastructure

- gec (>=6.2) or clang
- cmake (>=35)

Core Dependencies
ACTS is an initiative (mainly by ATLAS - eigen (inear algebra)
people) to provide a generic toolbox - boost (unit testing)
of tracking algorithms for future
experiments
Plugin Dependencies (or
- DDdhep
- ROOT (>6.0)
acts-mini-fi
- Geantd for material m
- ROQT for writing
0 http://acts.web.cern.ch/ACTS/
A https:/gitlab.cern.ch/acts/a-common-tracking-sw .
Y https://its.cern.ch/jira/projects/ACTS/summary - Geantd forhadronic
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Summary of particle tracking

Precise spacepoints is the most important thing!
Need to be continously calibrated and aligned — online.

Trigger level tracking uses pre-fabricated templates or Hough
transforms.

Fits find the max likelihood track and vertex states. The
Kalman Filter, Gaussian Sum Filter and chisquared
minimization are the standard methods.

Further refinements are possible using global methods.

In future high lumi scenarios, the increase in combinatorics
will be mitigated by adding a time-dimension.



