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New TDAQ for 
HL-LHC and beyond

l LHC upgrade
l Upgrades to Trigger/DAQ
l New and future systems



High-luminosity LHC upgrade

l HL-LHC upgrade ~ 2024-2026
l Aim to provide > 3000 fb-1 by 2039
l Mean of up to ~200 ”soft” collisions per event!
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”Nominal” pileup event
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Physics at high luminosity…
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Challenges at high lumi

l Increased pileup means many more unrelated 
particles on top of “interesting” physics events

l This degrades our trigger performace
• Pattern recognition in trigger and tracker
• “Isolated” particle recognition in calorimeter
• “Missing energy” of neutrinos and other neutral 

particle
l Radiation damage also scales with luminosity

• Front-end electronics need to be replaced with 
new, radiation-tolerant systems
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High pileup conditions

l Many “soft” minimum-bias collisions 
overlaid on each “hard” physics event
§ More low-momentum tracks in inner 

detector and muon chambers
§ Low-energy calorimeter deposits 

surrounding and/or on top of interesting 
features

§ “Out of time” hits adversely affect BX 
identification and energy calculation 
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Single-object triggers

l Muon isolation particularly sensitive
l For calorimeter objects (e/γ/τ/had)

§ Isolation cuts must be higher 
(and thus less effective)

§ Pileup degrades ET resolution of 
central clusters
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Jets

l Minimum bias deposits contribute 
proportionally to jet window area
• Larger jet windows affected more 

by pileup
• Smaller jet windows “miss” more of 

the actual jet
l Jet algorithms often use sums of 

many calorimeter cells
• Particularly sensitive to out-of-time 

energy deposits
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Energy-sum algorithms

l Many low-ET deposits distributed 
throughout the calorimeter

l Large pedestals added to sum-ET
calculations

l Missing-ET measurements degraded
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Implications for L1 trigger

l Balance between rates and thresholds for 
single-object triggers
• Higher thresholds è lose physics
• Higher rates  è dead time

l Strategies to reduce rates:
• Pre-scaling low-threshold triggers
• Multi-object triggers (2e + 2j)
• Event topology
• Track trigger

l Smaller objects have less pileup
• Finer-granularity calorimeter trigger data
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Event topology
l Original triggers were multiplicity-based:

• Single electron > 40 GeV
• 2 jets > 25 GeV
• etc…

l ATLAS added a topology trigger for Run 2: 
• Add object coordinates to real-time data
• Perform topology-based algorithms like:

• E,g. two 25 GeV  Jets, 0 < Δφ < 2.8 
• Non-overlapping tau + Jet
• Invariant MT of two electrons
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ATLAS Run-2 architecture
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ATLAS topology upgrade
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CMX: Merger module replacement in jet, cluster processors

Backplane input
rate increased 4x

for more bandwidth

Large, fast FPGA
does multiplicity-
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Sends trigger objects
to L1Topo
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L1Topo processor module

Parallel –
optic

receivers

CTP output

Output
mezzanine

Processor
FPGAs Input

fibers

u Two modules, 2 FPGAs each
u Each FPGA has 80 input links

u Currently 6.4 Gbit/s 
u Can receive full event topology

u E/gamma/hadron clusters
u Jets
u Muons
u Sum and missing ET 

u Send up to 128 bits to CTP

Readout



L1Topo commissioning
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L1Topo with angular cut 

Without L1Topo

di-tau + jet(s) di-muon trigger

Important Higgs trigger.
~2 rate reduction, with
no loss of efficiency

Important b-physics trigger…
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EM/Tau ID in jFEX

l Legacy EM/Tau algorithms 
• 0.1 x 0.2 ‘cluster’
• 0.4 x 0.4 isolation window

l New EM algorithm
• 0.1 x 0.025 ‘cluster’
• 0.3 x 0.3 isolation window
• hadronic veto

l New Tau algorithms
• Up to 0.5 x 0.5 isolation window
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Jet ID in jFEX

l Jet identification with 0.1x0.1 towers
• Currently using 0.2x0.2

l Digital summing of towers reduces 
out-of-time pileup

l More sophisticated algorithms:
• Assemble jets from higher-ET

‘clusters’, ”round” jets, Gaussian fit, 
etc..

l gFEX: “Fat” jets (R ~ 1) 
• For ‘boosted’ physics
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‘Out-of-time’ pileup

l Calorimeter pulses are fit to an “ideal” shape 
to extract amplitude and time
• Adding out-of-time pulses degrades 

measurements
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Muons

l Muon particularly sensitive to pileup in 
forward regions of the detector
• Low PT particles from minimum bias
• Cavern- and beam-related backgrounds

l To improve muon performance
• Finer-granularity detectors in affected 

angular regions
• More trigger layers

• 4-fold coincidence better than 3-fold
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CMS muon upgrade
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4th layer of forward 
muon chambers  
(CSC & RPCs)
• better trigger 

robustness in range 
1.2<|h|<1.8 

• preserve low pT
threshold

Long shutdown 1
2014-15 



Atlas: new muon small wheel

• Replace “small wheel”
• New chambers with 

σ<100 μm 
• Improved PT

resolution
• Provides 4th trigger 

layer
• reduce fake rate
• Level-1 track 

segments with 
1 mrad resolution

• Installation  in LS2
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Isolated electrons/hadrons

l Finer-granularity isolated particle 
algorithms are less sensitive to pile-up

l Strategy
• Upgrade front-end electronics (if 

necessary) to add finer EM tower 
segmentation to L1 data path

• New L1 feature processors to 
receive and use the finer data

l Level-1 becomes more HLT-like
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Better calorimeter trigger data is 
needed for Level-0

l Current trigger receives analog “trigger tower” 
sums of multiple channels (0.1 x 0.1)
• Limited granularity
• Vulnerable to pile-up

• Nearby deposits
• “out-of-time” pile-up

l Upgraded system:
• Read out and digitally process each detector 

channel at 40 MHz (both amplitude and time)
• Provide higher-granularity trigger data, with only 

in-time energy deposits

24



CMS single-particle algos

• Finer-granularity calorimeter towers
• 0.087�0.087 instead of 0.1�0.1

• Smaller electron and tau candidates
• 2�2 and 2�3 clusters
• Calculate isolation deposits 

around clusters
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ATLAS: fine EM segmentation

Presampler: 0.1 x 0.1

Strip layer: 
1 sum (0.1 x 0.1) or
4 sums (0.025 x 0.1)

Middle layer: 

4 sums (0.025 x 0.1)

Back layer: 
1 sum 0.1 x 0.1

"1441"
10 sums/tower
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ATLAS Run 3 architecture 
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ATLAS feature extractors
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EM/Tau ID in eFEX

l Legacy EM/Tau algorithms 
• 0.1 x 0.2 ‘cluster’
• 0.4 x 0.4 isolation window

l New EM algorithm
• 0.1 x 0.025 ‘cluster’
• 0.3 x 0.3 isolation window
• hadronic veto

l New Tau algorithms
• Up to 0.5 x 0.5 isolation window
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Jets (jFEX and gFEX)

l Finer-granularity CAN help
• Reduce effects of out-of-time pileup

l More sophisticated algorithms
• Assemble jets from higher-ET ‘clusters’
• Round jets (vs. square)
• HLT-like algorithms (Gaussian fit…)
• gFEX: “Fat” jets (R ~ 1) for boosted 

physics
• Global pile-up calculation and 

subtraction
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Energy-sum algorithms

l Sum from finer cell granularity
• Reduce effects of out-of-time pileup
• Combined benefit with jets

l Selective inclusion of cells in sums
• CMS: ‘clusters’
• ATLAS: possible to implement 

feature-based sums 
• For example, Jet missing ET

l Improve signal processing
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Using clusters

• Clusters reduce effect of low-energy 
minimum-bias deposits

• Useful for jets and energy-sums
• Works better than zero-suppression

• Small deposits next to larger ones 
are still counted
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Tracking triggers
l Add tracking trigger to Level-1

• Allows triggers like isolated electrons with matching 
high-pT track

l Challenging – millions of channels!
• Millions of channels
• On-detector: power and dead material
• Off-detector: large bandwidth/latency
• Need to reduce data to be processed

l Approaches
• Seeded: L1Calo and L1Muon send object 

coordinates to guide L1Track processing (ATLAS)
• Self-seeded: L1Track independently identifies and 

processes track candidates. (CMS…)
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ATLAS trigger (HL-LHC)
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ATLAS track trigger

l Hardware trigger (Phase-0) does not use 
tracking information
• But 1 MHz L0 accept rate keeps more 

“interesting” events
l Event filter combines track information with 

calorimeter/muon objects
• Guided by L0 Regions of Interest (RoI)
• Interfaced with Hardware Track Trigger (HTT)

• CAM/FPGA based  
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CMS L1 trigger (HL-LHC)
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Tracker is part of Level-1 hardware trigger



CMS L1 track trigger

l Idea: High-PT tracks curve less than low-PT 
l ‘Use two layers of strip detectors in strong B-

field to select “straight” tracks
l Similar to how muon detectors work
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Future directions



Future Accelerators

l Accelerator energy 
continues to grow
• Rate of change 

decreasing?
l Processing power, 

bandwidth and storage 
media growing faster than 
luminosity

l Potential future machines?
• Linear Collider 

(500-1000 GeV)
• Super B-Factory (1036

/cm2s)
• Muon Collider?
• FCC: pp up to 100 TeV?

Livingston Plot

M. Tigner, Physics Today Jan 2001 p36



Particle Flow Calorimetry

l Traditional calorimetry (left) is limited by the 
lowest-resolution calorimeter (hadronic)

l By adding track information to identify the 
individual particles (right), resolution can be 
improved! 



Particle Flow Calorimetry

l Particle flow can be 
used to improve 
analysis of existing 
detectors

l Can be used in 
triggers with track 
info (CMS)

l Even better: trigger 
on high-granularity 
calorimeter data
• “Triggerless” DAQ
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Particle flow in CMS level-1
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”Triggerless” DAQ

* Alternatively, “self-triggered”

Conventional 
DAQ (simplified)
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Triggerless DAQ architecture
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Front-end electronics



Summary

l Many approaches to dealing with 
trigger/DAQ challenges

l Influenced by:
• Existing hardware constraints
• Available technology
• Previous experience of developers

l Future machines and detectors will be 
different from the ones today
• But many fundamentals will remain
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