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e |LHC upgrade
e Upgrades to Trigger/DAQ
e New and future systems




High-luminosity LHC upgrade
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e HL-LHC upgrade ~ 2024-2026
e Aim to provide > 3000 fb-1 by 2039
e Mean of up to ~200 "soft” collisions per event!




"Nominal” pileup event
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L2 Challenges at high lumi

e Increased pileup means many more unrelated
particles on top of “interesting” physics events

e This degrades our trigger performace
- Pattern recognition in trigger and tracker
- “Isolated” particle recognition in calorimeter
- “Missing energy” of neutrinos and other neutral

particle
e Radiation damage also scales with luminosity

- Front-end electronics need to be replaced with
new, radiation-tolerant systems




High pileup conditions

e Many “soft” minimum-bias collisions
overlaid on each "hard” physics event
= More low-momentum tracks in inner
detector and muon chambers

= Low-energy calorimeter deposits
surrounding and/or on top of interesting

features
= “Out of time” hits adversely affect BX

identification and energy calculation




L2 Single-object triggers

e Muon isolation particularly sensitive
e For calorimeter objects (e/y/1/had)

= Isolation cuts must be higher
(and thus less effective)
= Pileup degrades E- resolution of

central clusters




Jets

e Minimum bias deposits contribute
proportionally to jet window area
- Larger jet windows affected more

by pileup
- Smaller jet windows “miss” more of

the actual jet
e Jet algorithms often use sums of

many calorimeter cells
- Particularly sensitive to out-of-time

energy deposits




Energy-sum algorithms

e Many low-E; deposits distributed
throughout the calorimeter
e Large pedestals added to sum-E+

calculations
e Missing-E+ measurements degraded




Implications for L1 trigger

e Balance between rates and thresholds for

single-object triggers
Higher thresholds =» lose physics

Higher rates =» dead time

e Strategies to reduce rates:
Pre-scaling low-threshold triggers

Multi-object triggers (2e + 2j)

- Event topology

- Track trigger
e Smaller objects have less pileup
Finer-granularity calorimeter trigger data
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Event topology

e Original triggers were multiplicity-based:
- Single electron > 40 GeV
- 2 jets > 25 GeV

- efc...
e ATLAS added a topology trigger for Run 2:

- Add object coordinates to real-time data
- Perform topology-based algorithms like:
- E,9.two 25 GeV Jets, 0 < Ap <2.8

- Non-overlapping tau + Jet
. Invariant Mt of two electrons
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Barrel sector logic

Muon detector —

RN

Endcap sector logic
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ATLAS Run-2 architecture

Muon Trigger|

Topology trigger new in Run 2!

Analog trigger
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CMX: Merger module replacement in jet, cluster processors
Large, fast FPGA
does multiplicity-

Topology data
(trigger objects)

Multiplicity
results to
the CTP

ATLAS topology upgrade

based algorithms,
Sends trigger objects

|=

tp L1Topo

Backplane input
rate increased 4x
for more bandwidth
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N
Parallel —
optic Processor
receivers ~ FPGAs Input
\E /// fibers
o7/
¢ Two modules, 2 FPGAs each E /
¢ Each FPGA has 80 input links Readoutr i I
¢ Currently 6.4 Gbit/s [ [
¢ Can receive full event topology - N
¢ E/gamma/hadron clusters
¢ Jets Output []
& Muons <: mezzanine
¢ Sum and missing ET CTP output _

¢ Send up to 128 bits to CTP
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ATI.AS Prellminary L1Topo Commissioning
Data 2016, Ys= 13 TeV
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Important b-physics trigger...
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EM/Tau ID in jFEX

e Legacy EM/Tau algorithms

- 0.1 x0.2 ‘cluster —

0.4 x 0.4 isolation window —

e New EM algorithm
- 0.1 x0.025 ‘cluster’

0.3 x 0.3 isolation window

- hadronic veto
e New Tau algorithms F

Up to 0.5 x 0.5 isolation window
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Jet ID in JFEX

e Jet identification with 0.1x0.1 towers
- Currently using 0.2x0.2

e Digital summing of towers reduces
out-of-time pileup

e More sophisticated algorithms:

/// \\\ - Assemble jets from higher-Ey
‘clusters’, "round” jets, Gaussian fit,
etc..

\ /| e gFEX: “Fat” jets (R~ 1)

P — - For ‘boosted’ physics
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e Calorimeter pulses are fit to an “ideal” shape

to extract amplitude and time
- Adding out-of-time pulses degrades
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Single-object
Triggers
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Muons

e Muon particularly sensitive to pileup in
forward regions of the detector
- Low Py particles from minimum bias
- Cavern- and beam-related backgrounds

e To improve muon performance
- Finer-granularity detectors in affected

angular regions

- More trigger layers
. 4-fold coincidence better than 3-fold




CMS muon upgrade

JERS/ )
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E

4t layer of forward
muon chambers

(CSC & RPCs)

* better trigger
robustness in range

* preserve low pr
threshold
Long shutdown 1

2014-15
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Atlas: new mu

Replace “small wheel”
New chambers with

0<100 um
Improved P+
resolution

Provides 4t trigger

layer

reduce fake rate

Level-1 track
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1 mrad resolution
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|Isolated electrons/hadrons

e Finer-granularity isolated particle
algorithms are less sensitive to pile-up

o Strategy
- Upgrade front-end electronics (if

necessary) to add finer EM tower
segmentation to L1 data path

- New L1 feature processors to
receive and use the finer data

e Level-1 becomes more HLT-like
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&4,  Better calorimeter trigger data is
2wk: needed for Level-0

7] +
e Current trigger receives analog “trigger tower”
sums of multiple channels (0.1 x 0.1)

- Limited granularity

- Vulnerable to pile-up
- Nearby deposits
. “out-of-time” pile-up

e Upgraded system: L s s ss
- Read out and digitally process each detector
channel at 40 MHz (both amplitude and time)

- Provide higher-granularity trigger data, with only
In-time energy deposits
24
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j%é CMS single-particle algos
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Finer-granularity calorimeter towers
HCAL An x A@=0.087x0.087

- 0.087 x0.087 instead of 0.1 0.1 "1 111
Smaller electron and tau candidates 5
- 2X2 and 2 X 3 clusters l\ ]
- Calculate isolation deposits \\7<‘ely
around clusters [l
""""
N .
HCAL
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ATLAS: fine EM segmentation
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10 sums/tower

Back layer:
1sum 0.1 x 0.1

Middle layer:
4 sums (0.025 x 0.1)

Strip layer:
1 sum (0.1 x 0.1) or
4 sums (0.025 x 0.1)

Presampler: 0.1 x 0.1
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Muon detector

EM calorimeter
digital readout

!

Analog trigger
tower sums from
calorimeters

ATLAS Run 3 architecture
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>

RN

Endcap sector logic

Muon Trigger|
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L1Calo Trigger

Hadronic layer
from L1Calo (.1x.1)

Topological info
—

Trigger algorithm
results

New/upgraded
Hardware
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EM/Tau ID in eFEX

e Legacy EM/Tau algorithms

- 0.1 x0.2 ‘cluster —

0.4 x 0.4 isolation window —

e New EM algorithm
- 0.1 x0.025 ‘cluster’

0.3 x 0.3 isolation window

- hadronic veto
e New Tau algorithms F

Up to 0.5 x 0.5 isolation window
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L2 Jets (JFEX and gFEX)

& )

e
e Finer-granularity CAN help

- Reduce effects of out-of-time pileup

e More sophisticated algorithms
- Assemble jets from higher-E+ ‘clusters’

- Round jets (vs. square)
- HLT-like algorithms (Gaussian fit...)

v ™
7 N
/ \ . gFEX: “Fat” jets (R ~ 1) for boosted

physics

N 7] - Global pile-up calculation and

N / subtraction

™~ v
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Energy-sum algorithms

e Sum from finer cell granularity
- Reduce effects of out-of-time pileup
- Combined benefit with jets
e Selective inclusion of cells in sums

- CMS: ‘clusters’
- ATLAS: possible to implement

feature-based sums
- For example, Jet missing E+

e Improve signal processing

31




%@ Using clusters

Clusters reduce effect of low-energy
minimum-bias deposits

Useful for jets and energy-sums
Works better than zero-suppression

- Small deposits next to larger ones
are still counted

HCAL

(CMS)

1vO3
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Tracking triggers

e Add tracking trigger to Level-1
Allows triggers like isolated electrons with matching

high-pT track
e Challenging — millions of channels!

Millions of channels
On-detector: power and dead material

Off-detector: large bandwidth/latency
Need to reduce data to be processed

e Approaches
Seeded: L1Calo and L1Muon send object
coordinates to guide L1Track processing (ATLAS)

Self-seeded: L1Track independently identifies and
processes track candidates. (CMS...)
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}@ ATLAS trigger (HL-LHC)

%
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Inner Tracker Calorimeters Muon System
Calorimeter feature | .
: : /L_OCaI'o_\ LOMuon

extractors (FEX) ——n0|
(digital input data)

Barrel NSW Trigger

T e Sector Logic| | Processor

Sector Logic Processor

; i Endcap MDT Trigger Leve|-0 (1 MHZ)
| &2 ==, [ [(hardware)

Global Trigger (

vi V¥, V! mr¢ ¥
FELIX [<- - -
[ Je— CTP € _
Data Handlers <+ LO trigger data (40 MHz)
<~ - L0 accept signal
Y <— Readout data (1 MHz)
(" Dataflow ) «--- HTT data (10% data at 1 MHz)
L I 1 40 O k H <— HTT data (100 kHz)
evel- Z Event Storage Event < -EF t signal
. Builder Handler ||Aggregator accept signa
H |g h-level —~ \ - Q:owput data (10 kHz)
A

trigger (10 kHz) ]
(CPU based) [P]:‘:[ e Hardware Track Trigger

Farm

_ ) ~ (CAMs and FPGAs)
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L. ATLAS track trigger

e Hardware trigger (Phase-0) does not use

tracking information
- But 1 MHz LO accept rate keeps more

“interesting” events
e Event filter combines track information with

calorimeter/muon objects
- Guided by LO Regions of Interest (Rol)
Interfaced with Hardware Track Trigger (HTT)

- CAM/FPGA based
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CMS L1 trigger (HL-LHC)

Tracker is part of Level-1 hardware trigger

O(10) Tbps
~25ps

v

(barrel calorimeter trigger

endca barrel barrel forward drift resistive || cathode gas
tracker calorim e': or| |electromagnetic hadronic hadronic t b' plate strip electron
calorimeter calorimeter calorimeter UoeS |l chambers || chambers || multipliers
v v v v vy ¥ V¥ v v
TPG TPG TPG TPG TPG TPG [ TPG ) TPG TPG

v

barrel muon
track finder

global trigger

v

v

endcap muon
track finder

correlator
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CMS L1 track trigger

e |ldea: High-PT tracks curve less than low-PT
e ‘Use two layers of strip detectors in strong B-

field to select “straight” tracks
e Similar to how muon detectors work

Fail

Pass = Stub
OOOOO
SSSSSS
R . 7 N .
nnnnn
SSSSSS
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Future directions
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e Accelerator energy
continues to grow

Rate of change
decreasing?

e Processing power,
bandwidth and storage
media growing faster than

luminosity
e Potential future machines?

Linear Collider
(500-1000 GeV)

Super B-Factory (1036
/cm?s)

Muon Collider?

FCC: pp up to 100 TeV?

HALLE

RLLL

Future Accelerators

Livingston Plot

LLHC

— Hadron Colliders 7

Tevatronl 1500

SLC,LEP

Trstan

“TRA, PEP

et e Colliders
1]

CESK

® VEPPIV

SPEARII

SPEAR, DDORIS, VEPPLHI

ADONE

L@ Prin-Stan, VEPPIL, ACO

M. Tigner, Physics Today Jan 2001 p36

170 1984 19'N) 200 2011

YEAR OF COMPLETION



Particle Flow Calorimetry
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e Traditional calorimetry (left) is limited by the
lowest-resolution calorimeter (hadronic)

e By adding track information to identify the
individual particles (right), resolution can be
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charged hadron

neutral hadron

T~

Particle Flow Calorimetry

e Particle flow can be

used to improve
analysis of existing

detectors

e Can be used in

triggers with track
info (CMS)

e Even better: trigger

on high-granularity

calorimeter data
- “Triggerless” DAQ




standalone muons

charged hadrons

linked
muons »
muon/track &P
iy PRI electrons
linking D
(closest in pr) WP T
k - Q\'bkqer\\o
tracks oD S photons
N (\\\\C o 3 N
&9 8\0 N ot
& N Q\’t‘(Q 9
3,
. (2‘&3 ® N O
electromagnetic/ P& 0«0
electromagnetic track linking e
, . 2 o
calorimeter — nimked tracks calorimeter/track
linking
. vYY (based on pr and AR)
Clu?ter":‘gr electromagnetic+hadronic
calibration J subtract
electrons/photons

hadronic calorimeter
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Detectors Detectors
I |
' = Self-
Hardware = Frontend triggered
trigger = pipeline FE readout
. E
Individual hits Readout
. —_—>
Typically full — I Rl)oi?’-fi?:t with time stamp buffers
Event data | |
Switch Switch
I f
Software CPU Software CPU
trlgger farm trigger farm
l
Conventional ‘ Triggerless*
DAQ (simplified) DAQ

* Alternatively, “self—triggeregg -



Triggerless DAQ architecture
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Front-end electronlcs
Self-

Amplifier trigger, Time-

/ shaper Readout Stamped
data

Switch

ALl

Storage

Run control,
monitoring




Summary

e Many approaches to dealing with
trigger/DAQ challenges

e Influenced by:
- Existing hardware constraints

- Available technology
- Previous experience of developers

e Future machines and detectors will be

different from the ones today
- But many fundamentals will remain
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