

New TDAQ for HL-LHC and beyond

Samuel Silverstein, Stockholm University

- LHC upgrade
- Upgrades to Trigger/DAQ
- New and future systems

High-luminosity LHC upgrade

- HL-LHC upgrade ~ 2024-2026
- Aim to provide > 3000 fb-1 by 2039
- Mean of up to ~200 "soft" collisions per event!

"Nominal" pileup event

Z **→**μμ

plus 24 additional minimum-bias collisions

Physics at high luminosity...

- Increased pileup means many more unrelated particles on top of "interesting" physics events
- This degrades our trigger performace
 - Pattern recognition in trigger and tracker
 - "Isolated" particle recognition in calorimeter
 - "Missing energy" of neutrinos and other neutral particle
- Radiation damage also scales with luminosity
 - Front-end electronics need to be replaced with new, radiation-tolerant systems

- Many "soft" minimum-bias collisions overlaid on each "hard" physics event
 - More low-momentum tracks in inner detector and muon chambers
 - Low-energy calorimeter deposits surrounding and/or on top of interesting features
 - "Out of time" hits adversely affect BX identification and energy calculation

Single-object triggers

- Muon isolation particularly sensitive
- For calorimeter objects (e/γ/τ/had)
 - Isolation cuts must be higher (and thus less effective)
 - Pileup degrades E_T resolution of central clusters

- Minimum bias deposits contribute proportionally to jet window area
 - Larger jet windows affected more by pileup
 - Smaller jet windows "miss" more of the actual jet
- Jet algorithms often use sums of many calorimeter cells
 - Particularly sensitive to out-of-time energy deposits

- Many low-E_T deposits distributed throughout the calorimeter
- Large pedestals added to sum-E_T calculations
- Missing- E_T measurements degraded

Implications for L1 trigger

- Balance between rates and thresholds for single-object triggers
 - Higher thresholds → lose physics
 - Higher rates → dead time
- Strategies to reduce rates:
 - Pre-scaling low-threshold triggers
 - Multi-object triggers (2e + 2j)
 - Event topology
 - Track trigger
- Smaller objects have less pileup
 - Finer-granularity calorimeter trigger data

Event topology

- Original triggers were multiplicity-based:
 - Single electron > 40 GeV
 - 2 jets > 25 GeV
 - etc...
- ATLAS added a topology trigger for Run 2:
 - Add object coordinates to real-time data
 - Perform topology-based algorithms like:
 - E,g. two 25 GeV Jets, $0 < \Delta \phi < 2.8$
 - Non-overlapping tau + Jet
 - Invariant $M_{\rm T}$ of two electrons

ATLAS topology upgrade

CMX: Merger module replacement in jet, cluster processors

Important Higgs trigger. ~2 rate reduction, with no loss of efficiency

Important b-physics trigger...

EM/Tau ID in jFEX

Jet ID in jFEX

- Jet identification with 0.1x0.1 towers
 - Currently using 0.2x0.2
- Digital summing of towers reduces <u>out-of-time pileup</u>

- More sophisticated algorithms:
 - Assemble jets from higher-E_T 'clusters', "round" jets, Gaussian fit, etc..
- gFEX: "Fat" jets (R ~ 1)
 - For 'boosted' physics

'Out-of-time' pileup

- Calorimeter pulses are fit to an "ideal" shape to extract amplitude and time
 - Adding out-of-time pulses degrades measurements

Single-object Triggers

- Muon particularly sensitive to pileup in forward regions of the detector
 - Low P_T particles from minimum bias
 - Cavern- and beam-related backgrounds
- To improve muon performance
 - Finer-granularity detectors in affected angular regions
 - More trigger layers
 - 4-fold coincidence better than 3-fold

CMS muon upgrade

4th layer of forward muon chambers (CSC & RPCs)

- better trigger robustness in range 1.2<|η|<1.8
- preserve low p_T threshold
 Long shutdown 1
 2014-15

Atlas: new muon small wheel

- Replace "small wheel"
 - New chambers with σ<100 μm
 - Improved P_T resolution
- Provides 4th trigger layer
 - reduce fake rate
 - Level-1 track
 segments with
 1 mrad resolution
- Installation in LS2

- Finer-granularity isolated particle algorithms are less sensitive to pile-up
- Strategy
 - Upgrade front-end electronics (if necessary) to add <u>finer EM tower</u> segmentation to L1 data path
 - New L1 feature processors to receive and use the finer data
- Level-1 becomes more HLT-like

Better calorimeter trigger data is needed for Level-0

- Current trigger receives analog "trigger tower" sums of multiple channels (0.1 x 0.1)
 - Limited granularity
 - Vulnerable to pile-up
 - Nearby deposits
 - "out-of-time" pile-up
- Upgraded system:

- Read out and digitally process each detector channel at 40 MHz (both amplitude and time)
- Provide higher-granularity trigger data, with only in-time energy deposits

CMS single-particle algos

- Finer-granularity calorimeter towers
 - 0.087 × 0.087 instead of 0.1 × 0.1
- Smaller electron and tau candidates
 - 2×2 and 2×3 clusters
 - Calculate isolation deposits around clusters

ATLAS: fine EM segmentation

ATLAS Run 3 architecture

ATLAS feature extractors

EM/Tau ID in eFEX

- Finer-granularity CAN help
 - Reduce effects of out-of-time pileup
- More sophisticated algorithms
 - Assemble jets from higher- E_T 'clusters'
 - Round jets (vs. square)
 - HLT-like algorithms (Gaussian fit...)
 - gFEX: "Fat" jets (R ~ 1) for boosted physics
 - Global pile-up calculation and subtraction

- Sum from finer cell granularity
 - Reduce effects of out-of-time pileup
 - Combined benefit with jets
- Selective inclusion of cells in sums
 - CMS: 'clusters'
 - ATLAS: possible to implement feature-based sums
 - For example, Jet missing E_{T}
- Improve signal processing

Using clusters

- Clusters reduce effect of low-energy minimum-bias deposits
- Useful for jets and energy-sums
- Works better than zero-suppression
 - Small deposits next to larger ones are still counted

Tracking triggers

- Add tracking trigger to Level-1
 - Allows triggers like isolated electrons with matching high-pT track
- Challenging millions of channels!
 - Millions of channels
 - On-detector: power and dead material
 - Off-detector: large bandwidth/latency
 - Need to reduce data to be processed
- Approaches
 - Seeded: L1Calo and L1Muon send object coordinates to guide L1Track processing (ATLAS)
 - Self-seeded: L1Track independently identifies and processes track candidates. (CMS...)

ATLAS track trigger

- Hardware trigger (Phase-0) does not use tracking information
 - But 1 MHz L0 accept rate keeps more "interesting" events
- Event filter combines track information with calorimeter/muon objects
 - Guided by L0 Regions of Interest (RoI)
 - Interfaced with Hardware Track Trigger (HTT)
 - CAM/FPGA based

CMS L1 trigger (HL-LHC)

CMS L1 track trigger

- Idea: High-PT tracks curve less than low-PT
- 'Use two layers of strip detectors in strong Bfield to select "straight" tracks
- Similar to how muon detectors work

Future directions

Future Accelerators

- Accelerator energy continues to grow
 - Rate of change decreasing?
- Processing power, bandwidth and storage media growing faster than luminosity
- Potential future machines?
 - Linear Collider (500-1000 GeV)
 - Super B-Factory (10³⁶ /cm²s)
 - Muon Collider?
 - FCC: pp up to 100 TeV?

- Traditional calorimetry (left) is limited by the lowest-resolution calorimeter (hadronic)
- By adding track information to identify the individual particles (right), resolution can be improved!

Particle Flow Calorimetry

- Particle flow can be used to improve analysis of existing detectors
- Can be used in triggers with track info (CMS)
- Even better: trigger on high-granularity calorimeter data
 - "Triggerless" DAQ

Particle flow in CMS level-1

"Triggerless" DAQ

Triggerless DAQ architecture

Summary

- Many approaches to dealing with trigger/DAQ challenges
- Influenced by:
 - Existing hardware constraints
 - Available technology
 - Previous experience of developers
- Future machines and detectors will be different from the ones today
 - But many fundamentals will remain